УДК 550.42+552.42(571.53)

НОВЫЕ ДАННЫЕ О ВОЗРАСТЕ ГРАНУЛИТОВ ЧЕРЕМШАНСКОЙ ТОЛЩИ ШАРЫЖАЛГАЙСКОГО ВЫСТУПА ФУНДАМЕНТА СИБИРСКОЙ ПЛАТФОРМЫ

© 2020 г. С. В. Высоцкий^{1,*}, академик РАН А. И. Ханчук¹, В. И. Левицкий², Е. И. Демонтерова³, И. В. Левицкий², А. В. Игнатьев¹, Т. А. Веливецкая¹

Поступило 11.02.2020 г. После доработки 18.02.2020 г. Принято к публикации 20.02.2020 г.

Приводятся новые данные U–Pb-датирования гранулитов черемшанской толщи, вмещающих метаморфизованные вулканогенно-осадочные сульфидные руды, в которых установлено масс-независимое фракционирование изотопов серы. Для цирконов из секущих толщу тел ортотектитов определен конкордантный U–Pb-возраст – 1866.8 ± 7.6 млн лет, который отражает завершающий этап проявления гранулитового метаморфизма. В графит–сульфидно–кордиеритовых (±Bt)- и гранат–биотит–ортопироксеновых-парагнейсах определен модельный возраст $T_{\rm ND}$ (DM) ~ 3.0 млрд лет, указывающий на формирование протолита осадочных пород в мезоархее. Для ортотектитов изотопные Sm–Nd-характеристики отличаются от данных для парагнейсов, что указывает на разные их источники.

Ключевые слова: гранулиты, циркон, U–Pb-возраст, Sm–Nd модельный возраст, сульфидные руды, архей, Шарыжалгайский выступ

DOI: 10.31857/S2686739720040210

Открытие явления масс-независимого фракционирования изотопов серы (MIF-S) и сохранения этой геохимической метки в некоторых архейских породах используется как независимый критерий вовлечения в рудный процесс осадочной серы, прошедшей через цикл преобразований в атмосфере древней Земли [1]. Одно из немногих известных в России колчеданных месторождений, для которых установлено масснезависимое фракционирование изотопов серы, расположено на территории Шарыжалгайского краевого выступа фундамента Сибирской платформы, в междуречье р. Китой и р. Тойсук (рис. 1). Нами были проведены исследования изотопного возраста кристаллических гнейсов и сланцев, вмещающих колчеданные руды. Образцы взяты

из керна скважин, где в сульфидах руд было обнаружено масс-независимое фракционирование изотопов серы [2].

Вмещающими породами колчеданных руд являются гранулиты (кристаллические гнейсы и сланцы) черемшанской толщи шарыжалгайской серии. Толща по минеральным ассоциациям, соотношениям пород, их составам не имеет аналогов как среди высокометаморфизованных (гранулитовая фация), так и низкометаморфизованных образований региона [3]. Ее главная отличительная особенность состоит в присутствии метаморфизованных древних осадочных пород - вещественных аналогов черных сланцев. В толще присутствует стратиформное сульфидное оруденение, относящееся к серноколчеданному типу. По геологическим и петрографическим данным оруденение сформировалось по осадочным и вулканогенным породам до проявления метаморфизма гранулитовой фации и в дальнейшем частично преобразовано при поздних трансформациях. Изотопный состав серы сульфидов [2] однозначно подтверждает участие в их генерации осадочной серы, прошедшей цикл атмосферных преобразований. Последнее свидетельствует о том, что породы протолита черемшанской толщи были

¹ Дальневосточный геологический институт

Дальневосточного отделения Российской академии наук, Владивосток, Россия

² Институт геохимии им. А.П. Виноградова Сибирского отделения Российской академии наук, Иркутск, Россия ³ Институт земной коры Сибирского отделения Российской академии наук, Иркутск, Россия

^{*}E-mail: vysotskiy@fegi.ru

Рис. 1. Геологическая схема Шарыжалгайского краевого выступа Сибирской платформы. *1* – осадочный чехол Сибирской платформы; *2*–*4* – структуры краевого выступа фундамента платформы: *2* – Урикско-Ийский грабен, *3* – Онотский зеленокаменный пояс, *4* – шарыжалгайский гранулито-гнейсовый комплекс; *5* – террейны Центрально-Азиатского складчатого пояса; *6* – Главный Саянский глубинный разлом; *7* – прочие разломы. а – район изучения черемшанской свиты шарыжалгайского гранулитового комплекса.

сформированы не позднее 2.3–2.4 млрд лет назад, т.е. до насыщения атмосферы Земли кислородом [1]. Поэтому определение времени образования рудоносного протолита является достаточно важной задачей.

Хотя породы черемшанской толщи считаются одними из древнейших в регионе [4], данные о времени ее формирования только косвенные. Модельный возраст $T_{Nd}(DM)$ метамагматических пород (эндербитов), предположительно, черемшанской толщи, составляет 3.84 млрд лет ($\epsilon ND(T) = -23.1$), а возможных протолитов метаосадочных гранат—шпинель—силлиманит—кордиеритовых-сланцев — 3.18 млрд лет ($\epsilon ND(T) = -13.2$) [5]. Недавно полученные данные о присутствии зерен детритовых цирконов с возрастами 3.70–2.74 млрд лет в высокоглиноземистых гнейсах позволили обосновать существование архейского этапа осадконакопления [6].

Были выделены и изучены зерна цирконов из секущих гнейсы и сланцы тел калишпатовых мигматитов — ортотектитов (проба X26/4). Ортотектит (Mc, Pl, Qz, Bt, Opx, Ms) — слабо полосчатый, средне-крупно- и неравномернозернистый, с обособлениями и гнездами биотита и граната. Развит в виде послойных и секущих тел мощностью до 25 м.

U-Рb-исследование зерен цирконов ортотектита выполнено на ионном микрозонде SHRIMP-II в Центре изотопных исследований ВСЕГЕИ (Санкт-Петербург) по методике [7]. Выбор участков для датирования осуществлялся по оптическим (в проходящем и отраженном свете) и катодолюминесцентным изображениям, отражающих внутреннее строение и зональность зерен цирконов. Также анализировались изображения в обратно-отраженных электронах, отражающие их поверхностную гетерогенность. При измере-

Рис. 2. Катодолюминесцентное изображение типичных зерен циркона из ортотектита. Показаны точки датирования, номера соответствуют табл. 1.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 491 № 2 2020

		;	i			Возраст	, млн. лет	ļ					Изот	ОПНЫ	е отнош	ения					
Зерно, точка	ppm	U, ppm	Th, ppm	²³⁸ U	²⁰⁶ Pb*,	$\frac{^{206}\text{Pb}}{^{238}\text{U}}$	²⁰⁷ Pb ²⁰⁶ U	Ú %	$\frac{^{238}\mathrm{U}}{^{206}\mathrm{Pb}}$	* *	²⁰⁷ Pb ²⁰⁶ Pb	%	$\frac{^{238}U}{^{206}Pb^{*}}$	% +	$\frac{207}{206}$ Pb*	% +	$\frac{207}{235} \frac{\text{Pb}*}{\text{U}}$	% +	$\frac{^{206}\mathrm{Pb}^{\ast}}{^{238}\mathrm{U}}$	*	Rho
X26-4-11.2	0.02	1230	195	0.16	347	1833 ± 36	1853.8 ± 6.5	1	3.04	2.3	0.11353	0.35	3.041	2.3	0.11335	0.35	5.14	2.3	0.3288	2.3	0.988
X26-4-9.1	0.10	231	48	0.22	65.7	1842 ± 37	1856 ± 15	-	3.021	2.3	0.11432	0.78	3.024	2.3	0.11349	0.85	5.17	2.5	0.3307	2.3	0.940
X26-4-9.2	0.03	1124	29	0.03	326	1875 ± 37	1856.3 ± 7	Ξ	2.962	2.3	0.11373	0.38	2.962	2.3	0.11351	0.39	5.28	2.3	0.3376	2.3	0.986
X26-4-5.1	0.04	308	152	0.51	90.5	1898 ± 38	1859 ± 12	2	2.92	2.3	0.11407	0.68	2.921	2.3	0.1137	69.0	5.37	2.4	0.3424	2.3	0.959
X26-4-15.1	0.18	149	60	0.42	42.2	1839 ± 38	1860 ± 23		3.023	2.4	0.1153	1.2	3.029	2.4	0.1137	1.3	5.18	2.7	0.3302	2.4	0.878
X26-4-2.1	0.03	389	232	0.62	108	1805 ± 37	1869 ± 11	4	3.095	2.3	0.11456	0.62	3.095	2.3	0.11433	0.63	5.09	2.4	0.3231	2.3	0.965
X26-4-8.1	0.03	531	333	0.65	155	1890 ± 38	1869.5 ± 9.4	-	2.934	2.3	0.11459	0.51	2.935	2.3	0.11434	0.52	5.37	2.4	0.3407	2.3	0.975
X26-4-14.1	0.02	249	119	0.49	72.9	1891±38	1876 ± 13	Γ	2.933	2.3	0.11487	0.74	2.933	2.3	0.11472	0.75	5.39	2.4	0.3409	2.3	0.952
X26-4-12.1	0.05	379	212	0.58	110	1868± 38	1880 ± 11	-	2.973	2.3	0.11545	0.61	2.974	2.3	0.115	0.63	5.33	2.4	0.3362	2.3	0.965
X26-4-11.1	0.04	386	246	0.66	112	1881 ± 38	1885 ± 11	0	2.951	2.3	0.11567	0.61	2.952	2.3	0.11533	0.62	5.39	2.4	0.3387	2.3	0.965
X26-4-7.1	0.19	326	199	0.63	93.9	1859 ± 38	1893 ± 14	2	2.986	2.3	0.1175	0.64	2.992	2.3	0.11583	0.77	5.34	2.5	0.3342	2.3	0.950
X26-4-1.1	0.07	403	282	0.72	117	1875 ± 37	1894 ± 12	1	2.96	2.3	0.11651	0.67	2.962	2.3	0.11591	69.0	5.4	2.4	0.3376	2.3	0.957
X26-4-3.1	0.02	237	146	0.64	69.4	1892 ± 39	1896 ± 14	0	2.931	2.4	0.11619	0.76	2.932	2.4	0.11605	0.77	5.46	2.5	0.3411	2.4	0.950
Примечанис Поправка на раста. Rho –	а: Ошиб а обыкна коэфф	ка прин овенны ициент	зедена 1 й свинс ы коррс	на урові зц провс зляции с	не 1 . РІ здена по отношеі	о _с и Рb* – о измереннс иий ²⁰⁷ Рb*/	соответствен лму ²⁰⁴ Рb. D - ^{,235} U и ²⁰⁶ Pb [,]	но об - стеі */ ²³⁸ 1	быкнов тень ди. J.	сконд	й и ради цартност	огенн и, отр.	ый свин ицатель	IELL. O	шибка ке еличины	либро: – обра	вки стан, гтно диск	дарта конда	не превь ртные зна	ачени	г 0.5%. Ая воз-

Таблица 1. Изотопные U-Pb-данные и возраст циркона из ортотектитов черемшанской толщи

62

ВЫСОЦКИЙ и др.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 491 № 2

²⁰²⁰

Номер	Название породи	Возраст, млрд лет	Содержан	ние, мкг/г	¹⁴⁷ Sm / ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	$\mathbf{s}_{\mathrm{res}}(T)$	$T_{\rm Nd}({\rm DM}),$
образца	пазвание породы		Sm	Nd	Sill/ Nu	$\pm 2\sigma$		млрд лет
X1/37	Плагиогнейс — Gr, Po, Crd Pl, Qz, Kfs	1.88	5.1	25	0.1257	0.511373 ± 13	-7.6	3.06
X10/6	Плагиогнейс — Gr, Po, Py, Crd, Bt, Sil, Pl, Qz, Kfs	1.88	4.8	24	0.1209	0.511309 ± 15	-7.7	3.00
X-4	Плагиогнейс – Grt, Sil, Opx, Pl, Qz, Bt, Ms	1.88	4.7	25	0.1179	0.511218 ± 10	-8.7	3.06
X26/4	Ортотектит – Mc, Pl, Qz, Bt, Opx, Ms	1.88	27	147	0.1138	0.511608 ± 15	-0.1	2.35

Таблица 2. Изотопные Sm-Nd-данные для пород черемшанской свиты

Примечание. Погрешность определения отношения 147 Sm/ 144 Nd в образцах составляет ±0.2% (±2SD). єNd_(t) и T_{Nd}(DM) рассчитаны с учетом возраста пород и современных значений в хондрите 147 Sm/ 144 Nd – 0.1967 и 143 Nd/ 144 Nd – 0.512638 [10] и деплетированной мантии 147 Sm/ 144 Nd – 0.2136 и 143 Nd/ 144 Nd – 0.513151 [11]. Методика Sm–Nd-исследований представлена в работе [12].

нии интенсивность первичного пучка молекулярного кислорода составляла 4 нА, диаметр пятна (кратера) 30 мкм с глубиной 2 мкм. Обработка данных осуществлялась с использованием программы SQUID [8]. U—Pb-отношения нормализованы на значение 0.0668 стандарта циркона Тетога с возрастом 416.8 млн лет, а в качестве концентрационного стандарта использовался циркон 91500 (81.2 г/т урана). Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1σ , погрешности вычисленных значений конкордантных возрастов и пересечений с конкордией приводятся на уровне 2σ .

Всего проанализировано 14 зерен циркона в 22 точках. Зерна цирконов представлены преимущественно призматическими субидиоморфными кристаллами размером 80—150 мкм. Все они имеют коричнево-медовый цвет с темно-вишневым оттенком. В катодолюминесцентном изображении (рис. 2), обычно в краевой части, реже — в центральной, отмечается появление светлых обособлений, с четким тонким полосчатым строением (осциллярной зональностью). Зерна цирконов образуют устойчивую совокупность без существенных отклонений в составах и характеризуют генерацию, присущую магматическим породам.

Фигуративные точки цирконов образуют компактное поле на диаграмме с конкордией. Дискордантные значения, обусловленные изменениями зерен цирконов в процессах последующего метаморфизма, исключены из расчетов возраста. По 13 точкам пробы X26/4 получен конкордантный возраст 1866.8 ± 7.6 млн лет (рис. 3), который отражает завершающий этап проявления гранулитового метаморфизма.

Для установления модельного Sm—Nd-возраста протолитов пород с графит-сульфидной минерализацией (колчеданных руд) были выбраны типичные для толщи разности: графит—сульфидно-кордиеритовые (X1/37, X10/6)- и гранат биотит—ортопироксеновые (X4)-плагиогнейсы из трех скважин. Так же были проведены Sm—Ndисследования ортотектита (X26/4).

Sm—Nd-данные для графит—сульфидно—кордиеритовых- и гранат—биотит—ортопироксеновых-плагиогнейсов идентичны между собой (табл. 2). Модельный возраст в породах (T_{ND} (DM))) отвечает мезоархейскому уровню (3.0 млрд лет (табл. 2, выб. 1–3) и близок к T_{ND} (DM) (3.1– 3.3 млрд лет) высокоглиноземистых и гранатбиотитовых гнейсов китойского и шарыжалгайского комплексов других районов Шарыжалгайского выступа [6]. По соотношению ¹⁴⁷Sm/¹⁴⁴Nd в графит-сульфидных гнейсах (табл. 2) они близки к значениям для архейских (0.125) пелитов [9].

Для ортотектитов изотопные Sm—Nd-характеристики отличаются от данных для парагнейсов (табл. 2), что указывает на разные их источники. Для ортотектитов модельный возраст источников палеопротерозойский ($T_{Nd}(DM) - 2.3$ млрд лет), он широко проявлен в магматитах Шарыжалгайского выступа [3, 5, 6].

Полученные результаты показывают, что черемшанская толща является полигенным, полихронным комплексом, время формирования осадочного протолита которого относится к мезоар-

Рис. 3. Диаграмма ²⁰⁶Pb/²³⁸U-²⁰⁷Pb/²³⁵U для цирконов из ортотектитов.

хею (~3.0 млрд лет). Именно в это время произошло образование протолита колчеданных руд. Несмотря на последующий неоднократный высокоградиентный метаморфизм, сопровождавшийся изменением первичного минерального состава пород и хемогенным фракционированием изотопов, метка атмосферного резервуара серы в сульфидных рудах хорошо сохранилась.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Исследование проведено при финансовой поддержке РФФИ в рамках научного проекта № 17–05– 00469, а также является вкладом в исследования по теме AAAA–A17–117092750069–9 и выполнения государственного задания по Проекту IX.129.1.3. (№ 0350– 2016–0029). Изотопные исследования Sm–Nd выполнены в ЦКП "Геодинамики и геохронологии" ИЗК СО РАН (Иркутск).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Pavlov A.A., Kasting J.F.* // Astrobiology. 2002. V. 2. № 1. P. 27–41.
- Высоцкий С.В., Игнатьев А.В., Левицкий В. И. и др. // Геология и геофизика. 2019. Т. 60. № 8. С. 1091–1107.

- Левицкий В.И. Петрология и геохимия метасоматоза при формировании континентальной коры. Новосибирск: Академическое изд-во «ГЕО». 2005. 343 с.
- Государственная геологическая карта РФ. Масштаб 1:1000000, N 48. (Под ред. Галимовой Т.Ф.) С-Пб: Картографическая фабрика ВСЕГЕИ, 2009.
- Левицкий И.В. Геохимия гранулитовых и зеленокаменных комплексов Присаянского выступа фундамента Сибирской платформы. Автореф. дисс. ... канд. геол.-минер. наук, Иркутск: ИГХ СО РАН. 2012. 23 с.
- Туркина О.М., Сергеев С.А., Сухоруков В.П. и др. // Геология и геофизика. 2017. Т. 58. № 9. С. 1281– 1297.
- Williams I.S. U-Th-Pb Geochronology by Ion Microprobe // Rev. Econ. Geol. 1998. V. 7. P. 1–35.
- Ludwig K.R. SQUID 1.00 User's Manual // Berkeley Geochronology Center Special Publication. 2000. V. 2. 19 p.
- 9. Jahn Bor-Ming, Condie K.C. // Geochem, et Cosmochim. Acta. 1995. V. 59. P. 2239–2258.
- Jacobsen S.B., Wasserburg G.J. // Earth Planet. Sci. Lett. 1984. V. 67. P. 137–150.
- Goldstein S.J., Jacobsen S.B. // Earth Planet. Sci. Lett. 1988. V. 87. P. 249–265.
- Demonterova E.I., Ivanov A.V., Mikheeva E.M. et al. // Bull. Soc. Géol. Fr. 2017. V. 188. № 1–2. P. 1–29.

NEW DATA ON THE AGE OF GRANULITES OF THE CHEREMESHANSKAYA UNIT (SHARYZHALGAI UPLIFT, SOUTHWEST OF THE SIBERIAN CRATON, RUSSIA)

S. V. Vysotskiy^{*a*,#}, Academician of the RAS A. I. Khanchuk^{*a*}, V. I. Levitskii^{*b*}, E. I. Demonterova^{*c*}, I. V. Levitskii^{*b*}, A. V. Ignatiev^{*a*}, and T. A. Velivetskaya^{*a*}

^a Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russian Federation
^b A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
^c Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
[#]E-mail: vysotskiy@fegi.ru

The paper presents new U–Pb data for granulites of the Cheremshanskaya Unit containing metamorphosed volcanic-sedimentary sulfide ores, in which MIF-S are established. Concordant U–Pb age of 1866.8 \pm 7.6 Ma, reflecting the final stage of granulite metamorphism, has been determined for zircons from orthectectites that cut hosted paragranulites. For graphite-sulfide-cordierite (\pm Bt) and garnet-biotite-orthopyroxene paragnesses, the model age ($T_{\rm ND}$ (DM)) was determined to be ~3.0 Ga, which indicates the formation of protolithic sedimentary rocks in the Mesoarchaean. The Sm-Nd isotopic characteristics for orthectectites differ from those for paragnesses, inferring about their different sources.

Keywords: granulites, zircon, U-Pb age, Sm-Nd age, sulfide ores, Archean, Sharyzhalgai Uplift