——— МИНЕРАЛОГИЯ ——

УЛК 549.283

ЭПИГЕНЕТИЧЕСКИЕ ИЗМЕНЕНИЯ МЕДИСТОГО ЗОЛОТА В СТРУКТУРЕ РАСПАДА Au-Ag-Cu-Pd-ТВЕРДОГО РАСТВОРА

© 2020 г. С. А. Онищенко^{1,*}, С. К. Кузнецов^{1,**}, Е. М. Тропников¹

Представлено академиком РАН Асхабовым А.М. 18.02.2020 г. Поступило 19.02.2020 г. После доработки 11.03.2020 г. Принято к публикации 13.03.2020 г.

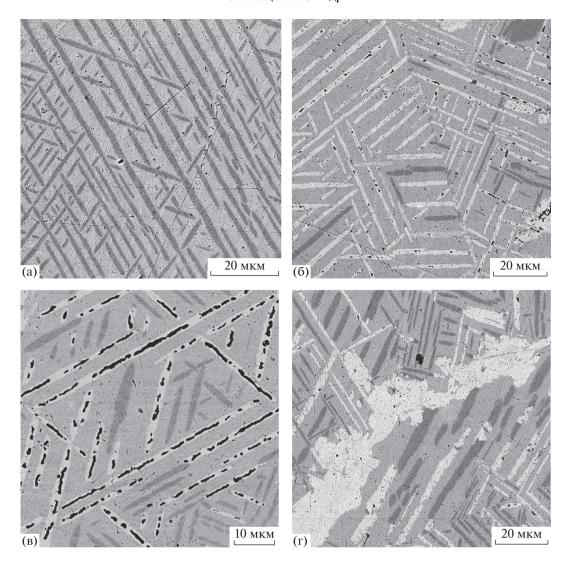
Структура распада Au-Ag-Cu-Pd-твердого раствора представлена многочисленными пластинками медистого золота в Au-Ag-Pd-матрице. Пластинки содержат (в среднем, в мас. %): Au-87.1; Cu-10.3; Pd-1.8; Ag-1.1, что соответствует минеральной фазе Au_3Cu . Впервые обнаружено избирательное замещение пластинок медистого золота высокопробным золотом (98 мас. % Au) с очень точным наследованием структуры распада твердого раствора. Замещение обусловлено воздействием эпигенетических растворов на самородное золото гетерогенного строения с выносом относительно подвижных компонентов.

Ключевые слова: медьсодержащее золото, структура распада твердого раствора, золоторудное месторождение Чудное (Приполярный Урал, Россия)

DOI: 10.31857/S2686739720060134

В медистом золоте, встречающемся чаще всего в породах основного-ультраосновного состава, нередко наблюдаются хорошо выраженные структуры распада твердых растворов [1—7]. Для таких структур характерно наличие многочисленных пластинок, ориентированных по определенным кристаллографическим направлениям, обычно отличающихся от матрицы высоким содержанием меди. Образование структур распада в исходно гомогенном твердом растворе вызывается уменьшением смесимости компонентов и их перераспределением с понижением температуры.

Авторами в медьсодержащем золоте (Си 4.2—5.4 мас. %) с характерной структурой распада твердого раствора пластинчато-решетчатого строения впервые обнаружено избирательное замещение пластинок медистого золота весьма высокопробным золотом с образованием вторичной структуры, повторяющей структуру распада. Объектом изучения являлось самородное золото месторождения Чудное (пробы отобраны на поверхности и из керна скважин). Исследования проведены в Институте геологии ФИЦ Коми НЦ УрО РАН (оператор Е. М. Тропников) с исполь-


Золоторудное месторождение Чудное находится на западном склоне Приполярного Урала в бассейне верхнего течения р. Кожим [8]. Самородное золото заключено главным образом в фукситовых прожилках в риолитах. Толщина фукситовых прожилков колеблется от долей миллиметра до 1-1.5 см, фуксит представлен тонкочешуйчатыми агрегатами изумрудно-зеленого цвета, содержание Cr_2O_3 составляет 1-7 мас. %. В срастании с самородным золотом находятся стибиоарсениды пал-

зованием электронного микроскопа "TescanVega" 3 LMH с энергодисперсионным спектрометром X-Max 50 "OxfordInstruments" (напряжение 20 кВ, вакуум 0.05 Па, характеристические линии: $AuM\alpha$, $AgL\alpha$, $CuK\alpha$, $PdL\alpha$, $HgM\alpha$, эталоны — чистые металлы для Au, Ag, Cu, Pd и HgTe для Hg). Время набора спектров составляло 60-80 с (600 тыс. импульсов). Погрешность определения Аи не превышала 1 отн. %, Ag и Cu - 2-3 отн. % при содержании около 10 мас. % и 6-8 отн. % при содержании 1-2 мас. %. Порог обнаружения Рd 0.5 мас. %, погрешность определения 15–20 отн. % при содержании 12 мас. %. Порог обнаружения Си 0.3 мас. %, Ад 0.4 мас. %, Нд 1 мас. %. Данные о составе первичного гомогенного золота получены путем микрозондового анализа отдельных участков размером от 20×20 до 50×50 мкм, включающих как матрицу, так и пластинки мелистого золота. Состав матрицы и пластинок определялся в точках с номинальным диаметром зонда 0.2 мкм, фактическим – около 1 мкм.

¹ Институт геологии Федерального Исследовательского Центра Коми Научного Центра Уральского отделения Российской академии наук, Сыктывкар, Россия

^{*}E-mail: mine222@ya.ru

^{**}E-mail: kuznetsov@geo.komisc.ru

Рис. 1. Замещение пластинок медистого золота высокопробным золотом в структуре распада Au—Ag—Cu—Pd-твердого раствора: а — пластинки медистого золота (темные) в Ag—Au-матрице; б — псевдоморфозы высокопробного золота (светлые) по пластинкам медистого золота (темные), в — пористо-кавернозное строение высокопробного золота; г — сочетание прожилковидных и пластинчатых выделений высокопробного золота (светлое). Полированные шлифы, изображения в отраженных электронах.

ладия (мертиит-изомертиит, стибиопалладинит, атенеит) при полном отсутствии сульфидов. Вместе с фукситом и самородным золотом в прожилках присутствуют алланит, кварц, альбит, отмечаются кальцит, титанит, апатит и другие минералы.

Самородное золото в центральной части месторождения (рудная зона Славная), изученное нами и рядом других авторов [8], представлено частицами или зернами уплощенной, изометричной и неправильной формы, размер их варьирует от 1—2 мкм до 2 мм, крайне редко до 8 мм. Выявлено самородное золото двух типов. Преобладает самородное золото І типа, содержащее 84—88 мас. % Au, 7—12 мас. % Ag, 1.3—5.5 мас. % Cu, 1—2 мас. % Pd и около 1 мас. % Hg. Самородное золото ІІ типа обычно наблюдается в виде не-

больших выделений, находящихся в срастании с самородным золотом І. Для самородного золота ІІ характерна высокая пробность, содержание Au составляет 94—98 мас. %, Pd — 1.5—2 мас. %, Cu — до 0.9 мас. %, Ag — до 0.7 мас. %. Как предполагалось ранее [8], и это подтверждается результатами наших исследований, золото ІІ образовалось позднее золота І типа.

При содержании меди более 2—2.5 мас. % в самородном золоте I типа проявляется фазово-неоднородное пластинчато-решетчатое строение, образованное многочисленными пластинками медистого золота в Ag—Au-матрице (рис. 1а). Такое строение золота обусловлено распадом первичного Au—Ag—Cu—Pd-твердого раствора, о чем свидетельствует, в частности, четко проявленное

закономерное распределение пластинок медистого золота в матрице и их выклинивание при сближении с пластинками другой ориентировки. По форме пластинки медистого золота представляют уплощенные линзы, их толщина обычно составляет 1—3 мкм, длина 20—30 мкм, изредка до 80 мкм.

В самородном золоте с хорошо выраженной структурой распада твердого раствора выявлено замещение пластинок медистого золота, находящихся в Ag-Au-матрице, высокопробным золотом. При этом наблюдается точное наследование пластинчато-решетчатого строения структуры распада твердого раствора (рис. 16). Замещение пластинок проявлено неравномерно, в одних золотинах замещены только единичные пластинки медистого золота, в других замещению подвержена большая их часть; при этом всегда остаются пластинки, не затронутые замещением. Отдельно взятые пластинки медистого золота замещаются целиком, реже частично. Высокопробное золото имеет пористое строение, содержит мелкие каверны (рис. 1в).

Содержание Аи в первичном гомогенном Аи-Ag-Cu-Pd-твердом растворе составляет 85.4-87.9, Ag - 7.1 - 8.7, Cu - 4.2 - 5.4, Pd - 0.8 - 1.9 mac. %. Матрица золотинок имеет Ag-Au-состав с примесью Cu и Pd (табл. 1), содержание Au в среднем составляет 85.9; Ag - 9.7; Cu - 2.3; Pd - 1.5 мас. %. Пластинки имеют Cu-Au-состав с примесью Ag и Pd, средний состав пластинок: Au – 87.1; Cu – 10.3; Pd — 1.8; Ag — 1.1 мас. %. Состав пластинок медистого золота $Au_{2.80}Cu_{1.03}Pd_{0.11}Ag_{0.06}$ соответствует минеральной фазе Au₃Cu, отмечавшейся ранее в ряде месторождений, но в иной форме выделений ([3-5, 9] и др.). Золото и палладий между матрицей и пластинками распределяются относительно равномерно. Средний состав самородного золота, замещающего пластинки медистого золота: 98 мас. % Аи и 1.8 мас. % Рd, что полностью соответствует характерному для месторождения позднему высокопробному золоту II. Следует заметить, что в самородном золоте присутствует также ртуть, однако определение ее малых содержаний вызвало у нас затруднения. По данным [8], содержание ртути в матрице самородного золота І составляет 0.7-1.3 мас. %, в пластинках медистого золота -0.1-0.4 мас. %, а в самородном золоте II она практически отсутствует.

Замещение пластинок медистого золота высокопробным золотом подтверждается тем, что в отдельных золотинах такое же по составу высокопробное золото образует прожилки, сопряженные с пластинчатыми формами (рис. 1г). Иногда высокопробное золото развивается в виде отдельных пятен или кайм замещения по периферии медьсодержащего золота с сохранением последнего в виде реликтов.

Таблица 1. Состав продуктов распада медьсодержащего золота I и состав высокопробного золота II (мас. %)

го золота 1 и состав высокопрооного золота 11 (мас. %)					
Зерно	Cu	Pd	Ag	Au	Сумма
Ag-Au-матрица					
23_8	2.73	1.41	8.93	86.19	99.26
23_9	2.21	0.92	10.17	85.79	99.09
23_15	2.27	1.88	9.70	85.39	99.24
23_19	2.63	1.86	8.52	86.44	99.45
23_20	2.17	1.48	9.32	86.58	99.55
24_2	2.16	1.55	10.26	85.29	99.26
24_5	2.16	1.24	10.99	85.32	99.71
Cu—Au-пластинки					
23_8	10.53	1.65	0.96	86.76	99.90
23_9	10.47	1.75	1.31	86.81	100.34
23_15	10.19	1.71	1.19	87.32	100.41
23_19	9.88	1.85	0.97	87.30	100.0
23_20	10.26	1.58	0.99	87.28	100.11
24_2	10.40	1.94	1.11	86.81	100.26
24_5	10.46	2.07	1.11	87.26	100.9
Псевдоморфозы золота II по Си–Аи-пластинкам					
23_8	_	1.86	_	98.16	100.02
23_9	0.68	1.60	_	98.12	100.4
23_15	_	1.54	_	98.21	99.75
23_19	_	2.17	_	97.31	99.48
23_20	_	2.30	_	97.59	99.89
24_2	0.61	2.20	_	97.55	100.36
24_5	_	1.24	-	99.65	100.89

Примечание. Прочерк — содержание элемента ниже порога обнаружения.

Образование высокопробного золота II связано с воздействием эпигенетических растворов на самородное золото, испытавшее распад твердого раствора. При этом происходил вынос меди и серебра из первичного золота, сопровождавшийся значительным увеличением пробности при сохранении палладия. Выносом меди и серебра объясняется пористое строение высокопробного золота. Согласно экспериментальным данным в гомогенных сплавах Ад-Аи и Си-Аи наблюдается анодное селективное растворение серебра и меди, золото в большинстве сред остается нерастворимым [10]. Избирательное замещение пластинок Cu-Au-состава в Ag-Au-матрице обусловлено, видимо, более высокой разностью электродных потенциалов в паре Си-Аи по сравнению с Ад-Аи. Определенную роль могут играть также электрохимические процессы между Си-Аи-пластинками и Ag-Au-матрицей, составляющими гальваническую пару.

Следует отметить значительное сходство в составе и характере развития высокопробных межзерновых прожилков и кайм в саморолном золоте, возникающих в условиях гипергенеза в зоне окисления и россыпях [11] и высокопробного золота, включая золото, замещающее медистые пластинки в структуре распада, в коренных рудах месторождения Чудное. Ранее при изучении месторождения с поверхности предполагалось гипергенное происхождение высокопробного золота [8]. В настоящее время установлено, что высокопробное золото, составляющее обычно 3–15% от всего золота в рудах, встречается по всей глубине вскрытого скважинами оруденения (до 200 м); причем зависимости его содержаний от глубины не отмечено, что ставит под сомнение роль гипергенных процессов. На наш взгляд, образование вторичного высокопробного золота может быть обусловлено гипогенными гидротермальными растворами.

Таким образом, в медьсодержащем золоте могут наблюдаться структуры распада твердого раствора, в которых медистые пластинки избирательно замещены более поздним высокопробным золотом с точным наследованием их первичного строения.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследования выполнены при частичной финансовой поддержке РФФИ в рамках научного проекта N = 20-05-00393A.

СПИСОК ЛИТЕРАТУРЫ

1. *Мурзин В.В., Суставов С.Г.* Твердофазные превращения в природном медистом золоте // Изв. АН СССР. Сер. геол. 1989. № 11. С. 94—104.

- Knight J., Leitch C.H.B. Phase Relations in the System Au—Cu—Ag at Low Temperatures, Based on Natural Assemblages// Canad. Miner. 2001. V. 39. P. 889—905.
- 3. *Спиридонов Э.М.*, *Плетнев П.А*. Месторождение медистого золота Золотая Гора (о "золото-родингитовой" формации). М.: Научный мир. 2002. 220 с.
- 4. Некрасов И.Я., Иванов В.В., Ленников А.М. и др. Редкие природные многокомпонентные сплавы на основе золота и меди из платиновой россыпи Кондерского щелочно-ультраосновного массива (Юго-Восток Алданского щита, Россия) // Геология руд. месторождений. 2001. Т. 43. № 5. С. 452—464.
- 5. *Рудашевский Н.С., Рудашевский В.Н., Ниелсен Т.Ф.Д.* Сплавы и интерметаллиды золота и меди в золото-палладиевых рудах Скаергардского массива (Гренландия) // Зап. РМО. 2014. Ч. 143. № 4. С. 1—23.
- 6. Пальянова Г.А., Мурзин В.В., Журавкова Т.В., Варламов Д.А. Au—Cu—Ag минерализация родингитов и нефритоидов Агардагского гипербазитового массива (Южная Тува, Россия) // Геология и геофизика. 2018. Т. 59. № 3. С. 300—321.
- Murzin V.V., Chudnenko K.V., Palyanova G.A., Varlamov D.A., Naumov E.A., Pirajno F. Physicochemical Model for the Genesis of Cu–Ag-Au-Hg Solid Solutions and Intermetallics in the Rodingites of the Zolotaya Gora Gold Deposit (Urals, Russia) // Ore Geol. Rev. 2018. V. 93. P. 81–97.
- 8. *Тарбаев М.Б., Кузнецов С.К., Моралев Г.В. и др.* Новый золото-палладиевый тип минерализации в Кожимском районе Приполярного Урала // Геология руд. месторождений. 1996. Т. 38. № 1. С. 15—30.
- 9. *Knipe S.W., Fleet M.E.* Gold-copper Alloy Minerals from the Kerr Mine, Ontario // Canad. Miner. 1997. V. 35. Pt 3. P. 573–586.
- 10. Маршаков И.К., Введенский А.В., Кондрашин В.Ю., Боков Г.А. Анодное растворение и селективная коррозия сплавов. Воронеж: Изд-во Воронеж. гос. ун-та. 1988. 205 с.
- 11. *Мурзин В.В., Малюгин А.А.* Типоморфизм золота зоны гипергенеза (на примере Урала). Свердловск: УНЦ АН СССР. 1987. 96 с.

EPIGENETIC ALTERATIONS OF CUPREOUS GOLD IN THE Au-Ag-Cu-Pd EXSOLUTION TEXTURE

S. A. Onishchenko^{a,#}, S. K. Kuznetsov^{a,##}, and E. M. Tropnikov^a

^a Institute of Geology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation

#E-mail: mine222@ya.ru

##E-mail: kuznetsov@geo.komisc.ru

Presented by Academician of the RAS Ashabov A.M. February 18, 2020

The exsolution texture of native copper-bearing gold (4.2-5.4 wt % Cu) is represented by numerous lamellae of cupreous gold in an Ag–Au matrix. On the average, the lamellae contain: Au - 87.1, Cu - 10.3, Pd - 1.8, Pd - 1.8,

Keywords: copper-bearing gold, exsolution texture, Chudnoye gold ore deposit