УДК 551

НОВЫЕ ДАННЫЕ О СОСТАВЕ ЖЕЛЕЗОМАРГАНЦЕВЫХ КОРОК РАЗЛОМА ДОЛДРАМС, ЦЕНТРАЛЬНАЯ АТЛАНТИКА

© 2021 г. Н. П. Константинова^{1,*}, академик РАН А. И. Ханчук², П. Е. Михайлик², С. Г. Сколотнев³, Е. В. Иванова⁴, А. С. Бич¹, Г. А. Черкашев^{1,5}

Поступило 30.09.2020 г. После доработки 10.11.2020 г. Принято к публикации 10.11.2020 г.

Приводятся новые данные о морфологии, химическом составе и возрасте железомарганцевых корок разлома Долдрамс, Центральная Атлантика, полученных в ходе 45-го рейса НИС "Академик Николай Страхов". По результатам химического анализа корки разлома Долдрамс характеризуются повышенными содержаниями Fe, Al, Si и микроэлементов – Cd, Cr, Li, Hf, Nb, Sb, Sc, Th, W и V. Большая часть корок имеет двухслойное строение: верхний слой отличается более высокими содержаниями терригенного вещества и пониженными концентрациями основных рудных элементов и РЗЭ в сравнении с нижним слоем, что отражает смену условий формирования.

Ключевые слова: железомарганцевые корки, разлом Долдрамс, Срединно-Атлантический хребет **DOI:** 10.31857/S2686739721020092

На сегодняшний день железомарганцевые образования (ЖМО) Атлантического океана вызывают большой интерес как с научной точки зрения, так и с практической. Химический состав основных рудных элементов (Мп, Fe, Co, Ni, Cu, Pb, Zn) ЖМО разлома Долдрамс, отобранных в 1987—1989 гг. в экспедициях НИС "Академик Николай Страхов", изучен ранее [1]. В настоящей публикации приведены данные о морфологии и химическом составе новой коллекции корок, драгированных в восточной части разлома Долдрамс.

Материал для исследований получен в ходе международной комплексной экспедиции на НИС

"Академик Николай Страхов" в 2019 г. (45-й рейс) [2, 3]. Железомарганцевые корки были подняты при драгировании южного и северного склонов долины разлома Долдрамс с глубин 4000–2570 м (рис. 1; табл. 1). Образцы общей массой 3 кг получены на трех станциях(S45-11, S45-13, S45-15), однако большая часть материала была отобрана на станции S45-13 (табл. 1).

Было проанализировано 3 образца: S45-13/I (слой 1), S45-13/II (слой 2), S45-11 (рис. 2). Концентрации макро- и микроэлементов определялись методами ИСП-АЭС на спектрометре iCAP6500 Duo ("ThermoScientific") и ИСП-МС

№ станции	Коорд	инаты	Глубина	Толщина		
лестанции	Широта (с.ш.)	Долгота (з.д.)	драгирования, м	корки, мм		
S45-11	08°06′	38°10′	3000-2570	20		
S45-13	08°18′	38°17′	3850-3770	60		
S45-15	08°18′	38°40′	4000-3990	3		

Таблица 1. Местоположение станций драгирования

¹ ВНИИ Океангеология им. И.С. Грамберга, Санкт-Петербург, Россия

*e-mail: NPKonstantinova@gmail.com

² Дальневосточный геологический институт Дальневосточного отделения Российской академии наук, Владивосток, Россия ³ Геологический институт Российской академии наук, Москва, Россия

⁴ Институт океанологии им. П.П. Ширшова Российской академии наук, Москва, Россия

⁵ Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Рис. 1. Схема расположения станций отбора образцов ЖМО разлома Долдрамс.

Рис. 2. Железомарганцевые корки разлома Долдрамс, станции S45-13, S45-11.

Рис. 3. Сопоставление средних содержаний (Хср) петрогенных и рудных элементов в анализируемых образцах разлома Долдрамс с корками из других областей: северная часть Тихого океана (NPPZ), Атлантический океан [6]; разлом Долдрамс* (изученные ранее [1]), разлом Богданова [5].

на квадрупольном масс-спектрометре Agilent 7700x ("Agilent Technologies"), определение содержания Si выполнено гравиметрическим методом.

Длина образцов железомарганцевых корок варьирует от 3 до 13 см, толщина — от 3 до 60 мм (рис. 2). Морфология поверхности мелкоботриоидальная. Образцы имеют различия в морфологическом строении. Так, корки со станции S45-13 состоят из двух слоев: нижний слой (слой 1), толщиной в среднем 15 мм, плотный, темно-коричневый с микрослоистой структурой, а верхний слой (2) характеризуется средней толщиной 45 мм, более рыхлый, с колломорфной столбчатой структурой, интерстиции заполнены светлым рыхлым материалом. Образец S45-11 имеет однослойное строение, по морфологии схож с верхним слоем образца S45-13. Образец корки станции S45-15 маломощный, до 3 мм, его химический состав не анализировался. Субстрат представлен от слабо измененных перидотитов до серпентинитов.

Полученные содержания основных рудных элементов близки ранее опубликованным данным ЖМО разлома Долдрамс [1] (рис. 3). Исключение составляет Со, содержание которого в исследуемых корках выше. Сравнение анализируемых образцов с кобальт-богатыми корками (КМК) Тихого океана указывает на обогащенность Fe и Cu и обедненность Mn, Ni и Co корок разлома Долдрамс. Однако высокие средние содержания Со (0.38) в последних позволяют отнести их к KMK-типу ЖМО(Co > 0.2) [4] (рис. 3). Распределение элементов по разрезу корок различно: нижний слой характеризуется повышенными содержаниями всех рудных элементов. Отношение Mn/Fe корок разлома Долдрамс в среднем составляет 0.53, что соизмеримо с гидрогенными корками Атлантики (0.69) и значительно отличается от КМК Тихого океана (1.35) [1, 5, 6]. Кроме того, корки разлома Долдрамс характеризуются высоким, относительно КМК Магеллановых гор,

Рис. 4. Распределение РЗЭ и Y в корках разлома Долдрамс, северной части Тихого океана (NPPZ), Атлантического океана [6], нормализованных на сланец (PAAS) [8].

средним содержанием Al (3.27 и 1.01 соответственно).

Корки разлома Долдрамс обогащены Cd, Cr, Li, Hf, Nb, Sb, Sc, Th, W, V (табл. 2) по отношению к KMK Тихого океана. Все вышеперечисленные металлы, за исключением Cd и Li, относятся к группе элементов, представленных в морской воде в форме отрицательно заряженных оксианионов и гидроксильных комплексов [7]. Согласно электрохимической модели образования гидрогенных железомарганцевых корок, эти комплексы сорбируются гидроксидами железа, имеющими в морской воде слабый положительный или нейтральный поверхностный заряд [7]. Следовательно, увеличение концентраций этих элементов вызвано повышенным содержанием гидроксидов железа в исследуемых корках.

Сумма редкоземельных элементов (РЗЭ) в исследуемых образцах изменяется от 1763 до 2514 г/т

Таблица 2. Содержание редких и рассеянных элементов (г/т) в корках разлома Долдрамс относительно КМК северной части Тихого океана (NPPZ)

	Cd	Cr	Hf	Li	Nb	Sb	Sc	Th	V	W
S45-11	7.39	66.37	14.38	18.17	93.35	78.12	21.92	71.04	972	74.16
S45-13/I	4.64	44.83	13.55	11.17	78.68	57.12	24.01	74.71	1144	141.95
S45-13/II	4.78	43.75	10.30	23.50	65.89	50.46	18.12	72.13	827	78.95
Хср	5.60	51.65	12.74	17.61	79.31	61.90	21.35	72.63	981	98.35
Тихий NPPZ [6]	3.59	27.90	9.43	2.92	51.60	39.30	6.50	11.00	641.0	89.0

Примечание. Хср – среднее значение.

Таблица 3. Содержание редкоземельных элементов и иттрия (г/т) в корках разлома Долдрамс

	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Y	Но	Er	Tm	Yb	Lu	Σ	Се ан.	YSN/HoSN
S45-11	237	1054	65	232	52	13	59	10	67	204	12	36	6	31	4	1878	1.95	0.60
S45-13/I	340	1369	99	332	76	20	87	14	84	201	14	38	6	31	4	2514	1.71	0.52
S45-13/II	222	998	63	215	50	12	56	10	60	182	11	31	5	26	4	1763	1.93	0.61
Хср	266	1140	76	260	59	15	67	11	70	196	13	35	5	29	4	2052	1.84	0.57

Примечание. Хср – среднее значение, Σ – сумма РЗЭ.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 496 № 2 2021

(табл. 3). Такие высокие значения соизмеримы с гидрогенными КМК Тихого и Атлантического океанов и увеличивают их потенциальную практическую значимость (рис. 4). Распределение РЗЭ и Y, нормализованных на сланец (PAAS) (SN) [8], в корках разлома Долдрамс схоже для всех проб и характеризуется наличием положительной Се-аномалии (>1) (табл. 3), что связано с окислительно-сорбционным механизмом накопления Се в корках [9].

Для получения информации о генезисе корок часто используются диаграммы зависимости отношений CeSN/Ce*SN и Nd, а также CeSN/Ce*SN и YSN/HoSN (рис. 5) [10]. Корки разлома Долдрамс попадают в область гидрогенных образований, которые характеризуются положительной Ce-аномалией и максимальными значени-

ями Nd (>100 мг/кг). На графике отношения CeSN/Ce*SN и YSN/HoSN гидротермальные образования являются единственной группой с YSN/HoSN-отношением больше 1. Для гидрогенных корок это отношение, как правило, варьирует в пределах 0.61–0.91 [10], в исследуемых корках YSN/HoSN незначительно ниже и в среднем составляет 0.57, что связано с более интенсивным фракционированием Но и У в придонных условиях Центральной Атлантики вследствие преимущественного осаждения Но на взвешенные частицы Fe-Mn-оксигидроксидов. Это может быть вызвано меньшей устойчивостью комплексных соединений Но в морской воде в сравнении с соединениями У [11]. И Се-аномалия, и отношение У/Но отражают гидрогенное образование исследуемых корок.

Рис. 5. Графики зависимости (a) CeSN/Ce*SN и YSN/HoSN, (б) CeSN/Ce*SN и Nd для различных генетических типов ЖМО и корок разлома Долдрамс [10]. Обозначения: SN – австралийский постархейский сланец – PAAS [8], Ce* – цериевая аномалия (CeSN* = 0.5LaSN + 0.5PrSN) [10].

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 496 № 2 2021

По данным кобальтового хронометра [12], скорость роста нижнего слоя образца S45-13 составляет 1.87 мм/млн лет, а верхнего достигает 3.06 мм/млн лет. Возраст нижнего слоя, рассчитанный с учетом средних скоростей роста и средних мощностей слоев, составляет примерно 22.7 млн лет, а формирование верхнего слоя началось приблизительно 8 млн. лет спустя. Различие в морфологии и химическом составе нижнего и верхнего слоев образца S45-13 указывает на смену условий формирования корок, произошедшую около 14.7 млн лет назад. В верхнем слое происходит рост концентрации Si и Al, что может указывать на увеличение содержания терригенной примеси.

Таким образом, по вещественному составу и распределению РЗЭ железомарганцевые корки разлома Долдрамс относятся к кобальт-богатому типу ЖМО, имеющему гидрогенный генезис [4].

Начало роста корок совпадает с границей олигоцен/миоцена, когда в центральной Атлантике фиксируются значительные тектонические движения океанского дна, которые привели к возобновлению осадконакопления. Домиоценовый период характеризуется сильными придонными течениями в экваториальной области Атлантики, которые, вероятно, препятствовали образованию корок [13].

Увеличение скорости роста слоя 2 в сравнении с нижележащим слоем привело к уменьшению концентрации Со и росту содержания терригенного материала, что совместно с морфологией корок указывает на смену гидродинамического режима, вероятно, на уменьшение скоростей придонных течений в среднем миоцене. В Тихом океане смена условий формирования КМК связывается с крупными вулканотектоническими активизациями (ВТА) [14]. Рассчитанная нами временная граница смены условий формирования КМК разлома Долдрамс (14.7 млн лет) не соответствует установленной в Центральной Атлантике позднемиоценовой ВТА (10-7 млн лет) [5], что может быть связано с использованием расчетного метода датирования [12] и требует подтверждения.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

СПИСОК ЛИТЕРАТУРЫ

- 1. Базилевская Е.С. Исследование железо-марганцевых руд океана. Труды Геологического института. М.: Наука, 2007. Вып. 518.
- 2. Иванова Е.В., Сколотнев С.Г., Борисов Д.Г. и др. Комплексные исследования зон трансформных разломов Долдрамс и Вима в 45-м рейсе НИС "Академик Николай Страхов" // Океанология. 2020. Т. 60. № 3. С. 488–490.
- 3. *Сколотнев С.Г., Санфилиппо А., Пейве А.А. и др.* Новые данные по строению мегатрансформной системы Долдрамс (Центральная Атлантика) // ДАН. Науки о Земле. 2020. Т. 491. № 1. С. 29–32.
- Андреев С.И., Аникеева Л.И., Казакова В.Е. и др. Кобальт-богатые руды Мирового океана. СПб.: ФГУП ВНИИ Океангеология, 2002. 167 с.
- 5. Пущаровский Ю.М., Сколотнев С.Г., Пейве А.А. и др. Геология и металлогения Срединно-Атлантического хребта: 5–7° с.ш. Труды Геологического института. М.: Наука, 2004. Вып. 562.
- Hein J.R., Mizell K., Koschinsky A., et al. Deep-ocean Mineral Deposits as a Source of Critical metals for High- and Green-technology Applications: Comparison with Land-based Resources // Ore Geology Reviews. 2013. V. 51. P. 1–14. 2012.12.001. https://doi.org/10.1016/j.oregeorev
- Koschinsky A., Hein J.R. Uptake of Elements from Seawater by Ferromanganese Crusts: Solid-phase Associations and Seawater Speciation // Marine Geology. 2003. V. 198. P. 331–351.
- 8. *McLennan S.M.* Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Geochemistry and Mineralogy of the Rare Earth Elements // Rev. Miner. 1989. V. 21. P. 169–200.
- 9. Дубинин А.В. Геохимия редкоземельных элементов в океане. Ин-т океанологии им. П.П. Ширшова РАН. М.: Наука, 2006. 360 с.
- Bau M., Schmidt K., Koschinsky A., et al. Discriminating Between Different Genetic Types of Marine Ferromanganese Crusts and Nodules Based on Rare Earth Elements and Yttrium // Chem. Geol. 2014. V. 381. P. 1–9.
- Bau M., Dulski P., Möller P. Yttrium and Holmium in South Pacific Seawater: Vertical Distribution and Possible Fractionation Mechanisms // Chem. Erde. 1995. V. 55. P. 1–15.
- Manheim F.T., Lane-Bostwick C.M. Cobalt in Ferromanganese Crusts as a Monitor of Hydrothermal Discharge on the Sea Floor // Nature. 1988. V. 335. P. 59–62. https://doi.org/10.1038/335059a0
- Панаев В.А., Митулов С.Н. Сейсмостратиграфия осадочного чехла Атлантического океана. М.: Недра, 1993.
- 14. Михайлик П.Е., Ханчук А.И., Михайлик Е.В. и др. Самородное золото в Fe-Mn корках гайота Детройт (Императорский хребет, Тихий океан) // Вестник ДВО РАН. 2014. № 4. С. 13-24.

FERROMANGANESE CRUSTS OF THE DOLDRUMS FRACTURE ZONE. **CENTRAL ATLANTIC: NEW DATA OF THE CHEMICAL COMPOSITION**

N. P. Konstantinova^{*a*,#}, Academician of the RAS A. I. Khanchuk^{*b*}, P. E. Mickailik^{*b*}, S. G. Skolotnev^{*c*}, E. V. Ivanova^d, A. S. Bich^a, and G. A. Cherkashev^{a,e}

^a Institute for Geology and Mineral Resources of the Ocean (VNIIOkeangeologia), St. Petersburg, Russian Federation ^b Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russian Federation ^c Geological Institute of the Russian Academy of Sciences, Moscow, Russian Federation

^d Shirshov Institute of Oceanology of the Russian Academy of Sciences, Moscow, Russian Federation

^e Saint-Petersburg State University, St. Petersburg, Russian Federation #e-mail: NPKonstantinova@gmail.com

The paper presents new data on the morphology, chemical composition, and age of the ferromanganese crusts of the Doldrums Fracture Zone, Central Atlantic, obtained during the 45th cruise of the Akademik Nikolay Strakhov research vessel. Based on the chemical composition studying, the Doldrums crusts are characterized by high concentrations of Fe, Al, Si, and trace elements – Cd, Cr, Li, Hf, Nb, Sb, Sc, Th, W, and V. Most of the crusts have a two-layer structure: the upper layer shows an increased content of detritus and lower concentrations of the Mn. Fe. Co. Ni, Cu and REE in comparison with the lower layer. Two-layered structure reflects the change in the conditions of crust formation.

Keywords: ferromanganese crusts, Doldrums Fracture Zone, Mid-Atlantic Ridge