———— ГЕОЭКОЛОГИЯ ———

УДК 621.039.7

МОДЕЛЬ ВЫЩЕЛАЧИВАНИЯ "СОСТАРЕННЫХ" НАТРИЙ-АЛЮМОФОСФАТНЫХ СТЕКЛОМАТРИЦ РАДИОНУКЛИДОВ

© 2021 г. В. И. Мальковский^{1,*}, член-корреспондент РАН С. В. Юдинцев¹

Поступило 12.10.2020 г. После доработки 11.11.2020 г. Принято к публикации 11.11.2020 г.

Высокорадиоактивные отходы ядерной энергетики включают в стеклообразные матрицы для удаления в глубокие подземные хранилища. Распад радионуклидов вызывает разогрев и кристаллизацию остеклованных отходов с ухудшением способности удерживать опасные компоненты. С учетом экспериментальных данных предложена модель растворения в воде закристаллизованного Na–Al– P-стекла для прогноза поведения такой матрицы в хранилище.

Ключевые слова: ядерная энергетика, радиоактивные отходы, изоляция, стекломатрица, раскристаллизация, прогноз устойчивости, теоретическая модель разрушения **DOI:** 10.31857/S2686739721020109

Изоляция высокоактивных отходов (ВАО) от переработки отработанного топлива (ОЯТ) является необходимым условием ресурсосберегающего и экологически безопасного топливного цикла ядерной энергетики. ВАО представляют собой азотнокислые растворы с высокими концентрациями радионуклидов [1]. Основным способом обращения с ними признана стратегия отверждения жидких ВАО и подземного захоронения [2– 4]. Перевод жидких ВАО в твердое состояние осуществляется включением растворенных компонентов в матрицу-консервант. В нашей стране для этого используется натрий-алюмофосфатное стекло, в остальных странах – боросиликатное [3–6].

Одним из главных требований к матрицам ВАО является долговременная устойчивость в подземных водах после размещения в хранилище [6, 7]. Имеется большое количество данных по интенсивности растворения стеклообразных матриц отходов в нагретых водных растворах в различных условиях [4–7]. Остеклованные ВАО выделяют тепло за счет радиоактивного распада, изза чего их температура существенно повышается. Разогрев стекла приводит к изменению его строения (кристаллизации), этот процесс интенсивно протекает в интервале температуры 450–550°С для алюмофосфатных стекол и 600–700°С для боросиликатных матриц [4, 5]. В таких условиях полная или частичная девитрификация стекломатриц происходит за время от нескольких часов до первых суток. В среде паров воды с влажностью около 70% температура кристаллизации Na-Al-P-стекла опускается до 250-300°С [8], а сам процесс занимает не более суток (рис. 1). Изменение остеклованных ВАО в горячем влажном воздухе получило название "паровая гидратация", а сами измененные матрицы называют состаренными (или aged в англоязычной литературе) [9]. При контакте таких ускоренно-состаренных матриц с водой содержание в ней плутония, нептуния, урана и имитаторов продуктов деления (Cs) возрастает в десятки и даже тысячи раз по сравнению с растворами. полученными в опытах с неизмененным стеклом [9, 10]. Вода в небольшом количестве попадает в контейнер с остеклованными ВАО до его герметизации на радиохимическом заводе. Контакт паров воды с матрицей может также произойти при разрушении контейнера уже на начальной "сухой" стадии эволюции подземного хранилища, которая может длиться до ста лет после его закрытия и характеризуется температурой от 100 до 140°С [11].

Для прогноза поведения матриц отходов в хранилище необходимо проанализировать их устойчивость в течение всего времени, пока долгоживущие радионуклиды актинидов и продуктов деления представляют экологическую угрозу для биосферы (до десятков тысяч лет и более). С этой целью на основе полученных ранее данных [10] разработана модель временной зависимости растворения в воде девитрифицированных

¹ Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук, Москва, Россия

^{*}E-mail: malkovsky@inbox.ru

Рис. 1. СЭМ-изображение Na–Al–Р-стекла с имитаторами отходов: исходное (а) и после девитрификации в среде пара (б). Цифрами обозначены номера фаз (*1–4*). Составы фаз *1–4* приведены в табл. 2.

Na-Al-P-стекол. Исходное стекло имеет однородное строение (рис. 1а), если не считать газовые поры, и состав. После суточной обработки паром воды при 300 С происходит его раскристаллизация (рис. 16; табл. 1). Определение интенсивности растворения закристаллизованного Na-Al-P-стекол в воде осуществлялось следующим образом. Монолитные образцы (состава, в мас. %: 17.3 Na₂O; 14.0 Al₂O₃; 51.1 P₂O₅; 5.5 Fe₂O₃; 1.1 NiO; 2.1 SrO; 2.5 Cs₂O; 2.1 Ce₂O₃; 2.0 Nd₂O₃; 2.3 UO_3 ; $\Sigma = 100\%$) помещались в титановый автоклав с фторопластовым вкладышем. Автоклав заполнялся дистиллированной водой, герметично закрывался и помещался в термостат при температуре 90°С. Через определенное время (1, 3, 10 и 30 сут) автоклав извлекался из термостата и охлаждался проточной водой. Раствор из автоклава сливался, и в нем измерялись концентрации продуктов растворения стекла. Затем автоклав с тем же образцом заполнялся дистиллированной водой, герметизировался и помещался в термостат. Концентрации элементов в растворах измерялись методом ICP-MS в ИГЕМ РАН.

Обозначим Δt_i интервал времени между (i - 1)-й и *i*-й заменой раствора. Среднюю скорость рас-

Рис. 2. Интенсивность выщелачивания Al из матрицы по отношению к Na и P.

творения стекла, нормализованную по элементу *E*, в интервале времени Δt_i можно оценить по формуле $R_{i,E} = mC_{i,E}/(F_ES\Delta t_i)$, где *m* – масса раствора в автоклаве, $C_{i,E}$ – массовая концентрация элемента *E* в растворе, *S* – площадь поверхности образца, F_E – массовая доля элемента *E* в стекле.

Если растворение образца осуществляется конгруэнтно, т.е. поверхность его контакта с раствором перемещается параллельно самой себе, то R_{iF} должны быть одинаковыми для всех *E*. Однако в большинстве случаев это не так [10, 12], часть этих элементов относительно легко переходит в раствор, а менее растворимые элементы оседают в поверхностном слое матрицы, уменьшая площадь ее контакта с раствором. Для сравнения скорости поступления в раствор элементов E и F, образующих каркас матрицы, удобно использовать количественную характеристику $\gamma_{E/F}(t_n) = R_{n,E}/R_{n,F},$ где $t_n = \sum_{i=1}^n \Delta t_i$. Если $\gamma_{E/F} \ll 1$, то при растворении матрицы элемент F преимущественно поступает в раствор, а элемент Е в большей степени оседает в поверхностном слое образца, что замедляет его растворение. Зависимости характеристик $\gamma_{E/F}$ от времени для элементов каркаса стекла (Na, Al и P) после гидратации в паре приведены на рис. 2. Отметим, что Al поступает в раствор гораздо слабее, чем Р и Na. За исключением короткого начального интервала времени величины $\gamma_{Al/P}$ и $\gamma_{Al/Na}$ в течение эксперимента меняются незначительно.

Элемент	Атомные количества элементов в расчете на 10 катионов					
	№ 1 Na—Al-фосфат-1	№ 2 Na—Al-фосфат-2	№ 3 Sr-Ln-U-фосфат	№ 4 Сѕ–U-фосфат	Исходное стекло	
Na	3.84	2.69	—	1.00	3.27	
Al	1.96	1.66	0.44	0.50	1.61	
Р	3.89	4.15	5.06	3.73	4.22	
Fe	0.31	0.74	—	0.23	0.40	
Ni	—	0.55	—	_	0.09	
Sr	—	0.16	1.24	—	0.12	
Cs	—	0.05	—	1.57	0.10	
Ce	—	—	1.41	_	0.07	
Nd	—	—	1.19	—	0.07	
U	—	—	0.66	2.97	0.05	
0	15.05	16.08	19.77	20.62	15.76	

Таблица 1. Состав стекла и фаз после его девитрификации при обработке паром

Для анализа влияния осаждения продуктов выщелачивания Na–Al–P-стекла на изменение поверхности выщелачивания предложена следующая модель. Обозначим z глубину продвижения фронта растворения, а S – текущее значение поверхности фронта растворения. При продвижении фронта растворения на Δz произойдет выщелачивание массы образца $\rho_m S(z)\Delta z$, ρ_m – плотность стекла. Из этой массы часть перейдет в раствор, а часть продуктов выщелачивания массой δ_m осядет на поверхности образца. Изменение S за счет осаждения этих слаборастворимых продуктов выщелачивания удовлетворяет уравнению

$$S(z + \Delta z) - S(z) = -A\delta_m,$$

где А – некоторый постоянный коэффициент.

Поскольку в течение всего описанного эксперимента по выщелачиванию, за исключением краткого начального периода, величины $\gamma_{Al/Na}$ и $\gamma_{Al/P}$ изменялись незначительно (рис. 2), в линейном приближении можно записать $\delta_m = \theta \rho_m S(z) \Delta z$, где $0 < \theta < 1$. Следовательно,

$$\frac{dS}{dz} = -A\theta\rho_m S, \quad z = 0, \quad S = S_0,$$

где S₀ – поверхность образца. Отсюда

$$S = S_0 \exp(-Bz), \tag{1}$$

где $B = A\theta \rho_m$.

Во всех экспериментах концентрации продуктов выщелачивания матрицы в растворе малы. Это позволяет предположить, что выщелачивание всех кристаллических фаз протекает независимо. Миграция продуктов растворения *i*-й фазы к исходной поверхности образца осуществляется за счет диффузии через канал с переменным сечением $s_i(z)$ и удовлетворяет уравнению:

$$\frac{\partial C^{(i)}}{\partial t} = \frac{1}{s_i(z)} \frac{\partial}{\partial z} \left(D_i s_i(z) \frac{\partial C^{(i)}}{\partial z} \right), \tag{2}$$

217

где $C^{(i)}$ — локальная массовая концентрация продуктов выщелачивания *i*-й фазы, D_i — коэффициент молекулярной диффузии продуктов выщелачивания *i*-й фазы, $s_i(z)$ — площадь фронта выщелачивания при его смещении на расстояние *z* от исходной поверхности образца, *t* — время. Согласно (1), $s_i(z)$ можно представить в виде $s_i(z) =$ $= S_m \sigma_i \exp(-b_i z)$, где S_m — исходная поверхность образца, σ_i , b_i — константы. Одна из фаз (№ 3 на рис. 1 и в табл. 1) представлена фосфатом РЗЭ со структурой монацита. Монацит практически не растворим в воде до 150°С, поэтому растворение этой фазы не учитывалось. Обозначим *t_n* время *n*-й замены раствора в автоклаве. При этом выполняется условие

$$t = t_n, \quad C^{(i)} \equiv 0. \tag{3}$$

Граничные условия для уравнения (2) запишутся в виде

$$z = 0, \quad C^{(i)} = C_v^{(i)}; \quad z = Z_i(t), \quad C^{(i)} = C_{\text{sat}}^{(i)}, \quad (4)$$

где $C_v^{(i)}$ — концентрация продуктов выщелачивания *i*-й фазы в объеме раствора, $C_{\text{sat}}^{(i)}$ — концентрация насыщения продуктов выщелачивания *i*-й фазы в воде, $Z_i(t)$ — перемещение фронта выщелачивания *i*-й фазы за время *t*. Величины $C_v^{(i)}$ и $Z_i(t)$ определяются из соотношений [13]:

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 496 № 2 2021

Номер фазы	D_i , M^2/c	$C_{ m sat}^{(i)},$ безразм.	σ _{<i>i</i>} , безразм.	<i>b_i</i> , 1/м
1	3.3×10^{-11}	0.014	0.65	1.3×10^{4}
2	4.9×10^{-13}	0.011	0.17	0.73×10^4
4	6.1×10^{-13}	0.017	0.20	2.6×10^{4}

Таблица 2. Параметры модели из данных эксперимента по выщелачиванию

$$\frac{\partial C_v^{(i)}}{\partial t} = \frac{\rho_i s[Z_i(t)]}{m} \frac{dZ_i}{dt},$$

$$\rho D_i \frac{\partial C^{(i)}}{\partial z} [t, Z_i(t)] = \rho_i \frac{dZ_i}{dt},$$
(5)

где ρ_i – плотность *i*-й фазы, ρ – плотность воды.

Уравнение (2) с начальными и граничными условиями (3), (4) и дополнительными соотношениями (5) полностью определяют задачу Стефана, если заданы параметры { $C_{sat}^{(i)}$, D_i , σ_i , b_i , i = 1, ..., 4}. Их значения получены из условия:

$$\Phi = \sum_{n=1}^{4} \left[\frac{1}{C_{n,E}} \sum_{i=1}^{4} (1 - \delta_{i,3}) C_{v}^{(i)}(t_{n}) F_{i,E} - 1 \right]^{2} \to \min, (6)$$

где n — номер замены раствора в автоклаве, i — номер фазы, $\delta_{i,j}$ — символ Кронекера, $F_{i,E}$ — мас-

Массовая концентрация Na в растворе, г/г 0.0006 🖗

Рис. 3. Сравнение расчетных (линия) и измеренных (точки) концентраций Na в воде в опытах по растворению закристаллизованного Na–Al–P-стекла. Ступенчатое снижение концентрации до нуля соответствует замене раствора в автоклаве через интервалы времени 1, 3, 10 и 30 сут.

совое содержание такого элемента Е в каркасе матрицы, который, во-первых, наиболее легко (по сравнению с другими элементами каркаса) переходит в раствор, а во-вторых, не осаждается при его диффузионном переносе от фронта вышелачивания до основного объема раствора в автоклаве. Из данных наших опытов по растворению девитрифицированных стекол следует, что таким элементом является Na [10]. Уравнение (2) интегрировалось полунеявным конечно-разностным методом с учетом соотношений (5) и условий (3) и (4) [14]. Минимум функции Ф определен модифицированным градиентным методом с контролем сходимости [15]. Полученные значения параметров даны в табл. 2, а вычисленные для них концентрации Na в растворе согласуются с измеренными в опытах по выщелачиванию (рис. 3). Полученные из решения задачи Стефана зависимости $Z_i(t)$ при этих параметрах с удовлетворительной точностью могут быть аппроксимированы степенными функциями вида $Z_i^0 t^{P_i}$ с показате-

ны степенными функциями вида $Z_i T$ с показателями степени P_i от 0.4 до 0.7, что согласуется с решениями близких по постановке задач Стефана, приведенными в [13]. Эти зависимости имеют вид

$$Z_1 = 8.09 \times 10^{-4} t^{0.38}, \quad Z_2 = 3.36 \times 10^{-5} t^{0.58}, \quad (7)$$
$$Z_4 = 3.36 \times 10^{-5} t^{0.7},$$

где $[Z_i] = M; [t] = сут.$

Общая масса *i*-й фазы, выщелачиваемая с единичной поверхности образца, определяется выражением

$$m_i(t) = \frac{\rho_i}{S_m} \int_0^{Z_i(t)} s_i(z) dz.$$

Тогда масса *i*-й фазы, выщелачиваемая в единицу времени с единичной поверхности раскристаллизованного Na–Al–P-стекла, вычисляется по формуле:

$$\frac{dm_i}{dt} = \rho_i \sigma_i \exp[-b_i Z_i(t)] \frac{dZ_i}{dt} = \rho_i \sigma_i \exp(-b_i Z_i^0 t^{P_i}) \frac{P_i Z_i^0}{t^{1-P_i}},$$

где значения Z_i^0 , P_i приведены в выражении (7), а параметры σ_i , b_i – в табл. 2.

Отсюда масса натрия, переходящая в раствор с единичной поверхности образца в единицу времени, вычисляется по формуле

$$\frac{dm_{\rm Na}}{dt} = \sum_{i=1}^{4} F_{i,\rm Na} \frac{dm_i}{dt} (1 - \delta_{i,3}) =$$

$$= \sum_{i=1}^{4} (1 - \delta_{i,3}) F_{i,\rm Na} \rho_i \sigma_i \exp(-b_i Z_i^0 t^{P_i}) \frac{P_i Z_i^0}{t^{1-P_i}}.$$
(8)

Однако с точки зрения оценки защитных свойств матрицы большее значение имеет определение массы актинидов, поступающей в рас-

Рис. 4. Интенсивность выщелачивания U и имитаторов актинидов (Ce, Nd) по отношению к Na.

твор в единицу времени с единичной поверхности образца. В качестве их имитаторов в образец вводились радиоизотоп ²³⁸U и геохимические аналоги актинидов: Се и Nd. Интенсивность вышелачивания U. Ce и Nd по отношению к интенсивности выщелачивания Na характеризуется параметрами $\gamma_{U/Na}$, $\gamma_{Ce/Na}$, $\gamma_{Nd/Na}$, зависящими от времени (рис. 4). Можно отметить, что за исключением сравнительно короткого начального периода графики всех трех зависимостей практически совпадают. Из табл. 1 следует, что U входит в состав третьей и четвертой фазы, а Ce и Nd – только в состав слаборастворимой третьей фазы. По-видимому, отклонение кривой $\gamma_{U/Na}(t)$ в начальный период времени обусловлено наличием в приповерхностном слое образца более растворимой четвертой фазы (пластинчатые кристаллы на рис. 1б). В дальнейшем переход U, Ce и Nd в раствор осуществляется только за счет частиц третьей фазы, о чем убедительно свидетельствует совпадение всех трех кривых на рис. 4. Для всех трех имитаторов актинидов зависимости $\gamma_{Act/Na}(t)$ (где Act = U, Ce, Nd) вне начального интервала времени с хорошей точностью аппроксимируются функцией

$$\gamma_{\text{Act/Na}}(t) \cong 0.0495 \exp(-0.076t),$$
 (9)

где [t] = сут.

Таким образом, массу актинида Act, переходящую в раствор с единичной поверхности в единицу времени, можно оценить по определению $\gamma_{Act/Na}$ как

$$\frac{dm_{\rm Act}}{dt} = \frac{dm_{\rm Na}}{dt} \frac{F_{\rm Act}}{F_{\rm Na}} \gamma_{\rm Act/Na},$$

где $dm_{\rm Na}/dt$ и $\gamma_{\rm Act/Na}$ вычисляются по формулам (8) и (9).

Данная модель может быть использована для анализа долговременной устойчивости раскристаллизованных алюмофосфатных матриц в отношении основных элементов каркаса стекла (Na, Al, P), а также для оценки интенсивности выноса из нее элементов отходов, в том числе радионуклидов.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Исследование выполнено в рамках темы НИР государственного задания ИГЕМ РАН. Состав растворов определен в центре коллективного пользования "ИГЕМ РАН – Аналитика".

СПИСОК ЛИТЕРАТУРЫ

- 1. Копырин А.А., Карелин А.И., Карелин В.А. Технология производства и радиохимической переработки ядерного топлива: М.: Атомэнергоиздат, 2006. 576 с.
- End Points for Spent Nuclear Fuel and High-level Radioactive Waste in Russia and the United States / Committee on End Points for Spent Nuclear Fuel and High-Level Radioactive Waste in Russia and the United States. Washington: National Academies Press. 2003. 137 p.
- 3. Laverov N., Yudintsev S., Kochkin B., Malkovsky V. // Elements. 2016. V. 12. P. 253–256.
- Вашман А.А., Демин А.В., Крылова Н.В., Кушников В.В., Матюнин Ю.И., Полуэктов П.П., Поляков А.С., Тетерин Э.Г. Фосфатные стекла с радиоактивными отходами / Под ред. А.А. Вашмана, А.С. Полякова. М.: ЦНИИатоминформ, 1997. 172 с.
- Donald I.W., Metcalfe B.L., Taylor R.N.J. // Journ. of materials science. 1997. V. 32. P. 5851–5887.
- Nuclear Waste Conditioning. A Nuclear Energy Division Monograph. Ed. by Jean-François Parisot. Gifsur-Yvette: Commissariat à l'énergie atomique, 2009. 151 p.
- Abdelouas A., Neeway J., Grambow B. // In: Springer Handbook of Glass. Musgraves J.D., Hu J., and Calvez L. (Eds.). Switzerland AG: Springer Nature. 2019. Chapter 12.
- Александрова Е.В., Мальковский В.И., Юдинцев С.В. // ДАН. 2018. Т. 482. № 6. С. 693–696.
- 9. Bates J.K., Seitz M.G., Steindler M.J. // Nucl. and Chem. Waste Managem. 1984. V. 5. P. 63–73.
- Malkovsky V.I., Yudintsev S.V., Aleksandrova E.V. // Journ. of Nuclear Materials. 2018. V. 508. P. 212–218.
- 11. Diomidis N., Johnson L.H. // JOM. 2014. V. 66. Iss. 3. P. 461–470.

- 12. *Rebiscoul D., Frugier P., Gin S., Ayral A.* // Journ. of Nuclear Materials. 2005. V. 342. P. 26–34.
- 13. *Carslaw H.S., Jaeger J.C.* Conduction of Heat in Solids, 2d ed. Oxford: Clarendon Press, 1959. 510 p.
- 14. *Roache P.J.* Computational Fluid Dynamics. Albuquerque: Hermosa Publishers, 1976. 446 p.
- 15. *Gill P.E., Murray W., Wright M.H.* Practical optimization. London: Academic Press: 1981. 401 p.

MODEL OF LEACHING OF "AGED" SODIUM-ALUMINOPHOSPHATE VITREOUS WASTE FORMS OF RADIONUCLIDES

V. I. Malkovsky^{a,#} and Correspondent-Member of the RAS S. V. Yudintsev^a

^a Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Moscow, Russian Federation [#]E-mail: malkovsky@inbox.ru</sup>

High-level radioactive waste of nuclear power engineering are vitrified for removal to deep underground repositories. Radionuclides decay leads to heating and crystallization of the vitrified waste with a deterioration of their ability to retain hazardous components. A model of dissolution of crystallized Na–Al–P-glass in water is developed taking into account experimental data. The model is destined for prediction of waste form behavior in the repository.

Keywords: nuclear power engineering, radioactive waste, isolation, vitreous waste form, crystallization, stability forecast, theoretical model of destruction