УДК 550.902.66

ПЕРВЫЕ ¹⁴⁷Sm—¹⁴³Nd-ДАННЫЕ ДЛЯ ПОРОД, ПРЕДСТАВЛЯЮЩИХ ИНТЕРВАЛ 6925.2—8250 МЕТРОВ СВЕРХГЛУБОКОЙ СКВАЖИНЫ СГ-7 (ЗАПАДНО-СИБИРСКАЯ НЕФТЕГАЗОНОСНАЯ ПРОВИНЦИЯ)

© 2021 г. Ю. Л. Ронкин^{1,*}, Т. В. Карасева², член-корреспондент РАН А. В. Маслов¹

Поступило 24.09.2020 г. После доработки 16.11.2020 г. Принято к публикации 16.11.2020 г.

Изучена ¹⁴⁷Sm—¹⁴³Nd-систематика 14 образцов базальтов, туфов, силицитов и долеритов из интервала 6925.2—8250 м сверхглубокой скважины СГ-7 (Ен-Яха), расположенной в северной части Западно-Сибирской нефтегазоносной провинции. Для двух базальтов, условно относимых к триасу, получен возраст 251 млн лет, первичное отношение (¹⁴³Nd/¹⁴⁴Nd)₀ = 0.51258 ± 0.00028, ¹⁴⁷Sm—¹⁴³Nd-данные для остальных 10 образцов, относимых к перми, выявили изохронную (MSWD = 0.79) зависимость, определяющую возраст 276 ± 45 млн лет (95% дов. интервал) и (¹⁴³Nd/¹⁴⁴Nd)₀ = 0.512545 ± 0.000046. Инициальные значения $\varepsilon_{Nd}(t)$ для триасовых $\varepsilon_{Nd}(251) = +5.1$ и пермских $\varepsilon_{Nd}(276) = +5.1$ пород изученного интервала демонстрируют значения, соответствующие умеренно деплетированной мантии. Величины ¹⁴³Nd-модельных возрастов свидетельствуют о том, что субстратом для изученных пород были неопротерозойские и/или более древние образования.

Ключевые слова: Западно-Сибирская нефтегазоносная провинция, сверхглубокая скважина СГ-7, ¹⁴⁷Sm—¹⁴³Nd-метод изотопной геологии

DOI: 10.31857/S2686739721020158

Сверхглубокая скважина СГ-7 (Ен-Яха, глубина забоя 8250 м), пробуренная с целью изучения глубинного геологического строения северной части Западно-Сибирской нефтегазоносной провинции (ЗСНГП), и оценки перспектив нефтегазоносности триасовых и палеозойских отложений, является 9-й по глубине забоя, после Кольской сверхглубокой (СССР, 12262 м), Bertha Rogers (США, 9583 м), Tiber (США, 10690 м, глубина моря 1266 м), Baden Unit (США, 9159 м), Hauptbohrung ($\Phi P\Gamma$, 9101 м), Zistersdorf UT2A (Австрия, 8553 м), Tashen 1 (Китай, 8408 м), "Саатлинская" (СССР, 8324 м), построена между Песцовым и Ен-Яхинским газоконденсатными месторождениями, в пределах группы месторождений Большого Уренгоя в 150 км к северу от г. Новый Уренгой.

Результаты комплексного изучения, в том числе методами изотопной геологии [2–7], вскрытых СГ-7 отложений, существенно изменили традиционные представления о глубинном строении и нефтегазоносности севера ЗСНГП. Однако опубликованные ранее Sm—Nd-данные [2] характеризуют всего два образца, к тому же отобранных не из скважины СГ-7, а представляющих раннетриасовые риолиты бассейна р. Синара (восток Среднего Урала) и Даниловского грабена (запад Западной Сибири), что накладывает определенные ограничения на выводы авторов.

По данным [1], начиная с глубины 3597 м разрез СГ-7 представлен отложениями ачимовской (до глубины 3847 м) и подачимовской (3847-3854.4 м) толщ, баженовской (3854.4-3886 м), георгиевской (3886-3891 м), абалакской (3891-3960 м), тюменской (3960-4687 м), котухтинской (4687-5308 м), ягельной (5308-5417 м) и новоуренгойской (5417-5562 м) свит (все имеют юрский возраст), а также породами триаса, относящимися к витютинской (5562-5776 м), варенгаяхинской (5776-6056 м), пурской (6056-6504 м), трыбъяхской (6504-6655 м), хадуттейской (6655-6921 м), коротчаевской (6921-7414 м) и верхам аймальской свитам. Пермский возраст имеют породы основной части аймальской (7414-8248.13 м) и монгаюрибейской (интервал 8248.13-8250.22 м) свит.

В настоящей работе охарактеризована ¹⁴⁷Sm-¹⁴³Nd-систематика 14 образцов пород (базальты, туфы, силициты, долериты) в целом (табл. 1), ото-

¹ Институт геологии и геохимии Уральского отделения Российской академии наук, Екатеринбург, Россия ² Пермский государственный университет, Пермь, Россия

пермо, госсия

^{*}E-mail: y-ronkin@mail.ru

Рис. 1. ¹⁴⁷Sm/¹⁴⁴Nd-¹⁴³Nd/¹⁴⁴Nd-эволюционная диаграмма для пород пермской системы (образцы 3187, 3431) из сверхглубокой скважины СГ-7 (интервал 6925.2–7132.4 м). Синим цветом выделен силицит (3455), исключенный из расчета.

бранных выборочно из интервала 6925.2—8250 м и предположительно относимых к триасу и перми [1].

Определение концентраций Sm и Nd, а также отношений ¹⁴⁷Sm/¹⁴⁴Nd и ¹⁴³Nd/¹⁴⁴Nd в исходном материале осуществлялось масс-спектрометрическим методом изотопного разбавления. Навеска образца 0.1-0.2 г с дозированным количеством трассера ¹⁵⁰Nd + ¹⁴⁹Sm (исходя из условий оптимального разбавления) и смеси кислот HF + HNO₃ в соотношении 5:1, помещались во фторопластовую капсулу. Разложение проводилось в автоклавах путем нагрева до $t = 130 - 200^{\circ}$ С. После полного растворения материала смесь выпаривалась досуха, заливалась 10Н НСІ для разрушения фторидов и 6 ч выдерживалась в автоклаве при $t = 130^{\circ}$ С. Далее образец вновь выпаривался досуха, сухой остаток заливался 2.3H HCl, центрифугировался и вносился в ионообменную колонку (L 170 мм, d 5 мм) с ионитом AG-50×8, 200-400 меш. В этих колонках осуществлялось отделение суммы REE от основных составляющих пробы путем ступенчатого элюирования 2.3Н НСІ и 3.9Н НСІ. Далее фракция элюата, содержащая Nd, Sm, другие REE и следы некоторых элементов пробы, упаривалась и растворялась в 0.6 мл 0.1 H HCl. Окончательное выделение Sm и Nd проводилось на второй хроматографической колонке ((L 90 мм, d 5 мм) с ди-(2-этилгексил) ортофосфорной кислотой, нанесенной на политрифторхлорэтилен (KEL-F). С целью более эффективного отделения Nd и Sm от следов щелочноземельных элементов проводилось градиентное элюирование 0.1 H HCl и 0.3 H HCl. Элюаты NdCl₃ и SmCl₃ выпаривались, обрабатывались азотной кислотой и

Рис. 2. ¹⁴⁷Sm/¹⁴⁴Nd-¹⁴³Nd/¹⁴⁴Nd-эволюционная диаграмма для пород пермской системы (образцы 3654, 3676, 3771, 3821, 3886, 4146, 4235, 4326, 4416, 4446) из сверхглубокой скважины СГ-7 (интервал 7322.9–8250 м). Синим цветом выделен силицит (4436), исключенный из расчета.

далее производилось измерение соответствующих изотопных распространенностей Sm и Nd с помощью мультиколлекторного термоионизационного масс-спектрометра (TIMS) "TRITON" в статическом режиме регистрации ионных токов. Коррекция на изотопное фракционирование неодима производилась при помощи нормализации измеренных значений по отношению ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219 в предположении экспоненциальной зависимости. Уровень холостого опыта 15 рg и 25 рg для Sm и Nd соответственно. Результаты многократного ($n_{La Jolla} = 21$, $n_{BCR-2} = 26$) анализа стандартных образцов La Jolla и BCR-2 приводятся в табл. 1.

Полученные ¹⁴⁷Sm $^{-143}$ Nd-изотопные данные представлены в табл. 1, а также на диаграммах (рис. 1–3). Аналитика, приведенная в табл. 1, характеризуются размахом значений Sm 1.41–12.9 г/т (коэффициент вариации, KB¹ 58.5%); Nd 5.0– 51.8 г/т (61.4%); ¹⁴⁷Sm/¹⁴⁴Nd 0.1413–0.1750 (6.9%); ¹⁴³Nd/¹⁴⁴Nd 0.512798–0.512863 (0.0042%) соответственно.

Аппроксимация с помощью полиномиального метода наименьших квадратов [12], положения фигуративных точек на графике в координатах 147 Sm/ 144 Nd– 143 Nd/ 144 Nd (рис. 1, 2) позволяет вычислить как возрасты, соответствующие углам наклона линий регрессий, так и первичные отношения (143 Nd/ 144 Nd)₀, отвечающие точкам пере-

¹ KB = 100*STDEV/AVERAGE, rge: AVERAGE = \overline{x} = $=\frac{1}{n}\sum_{i=1}^{n} x_i$, STDEV = $\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})/(n-1)}$.

Таблица 1	. ¹⁴⁷ Sm- ¹⁴³ Nd ID-	-TIMS-систематика	цля пород из	сверхі	лубоко	й скважины	СГ-7 (Еі	н-Яха, интер	вал 6925.2-	—8250 м)	_		
Образен	Интервал. м	Система/свита	Порода	Sm^{l}	Nd ¹	⁴⁷ Sm / ¹⁴⁴ Nd ¹	+2σ	¹⁴³ Nd / ¹⁴⁴ Nd ¹	+2α	$\varepsilon_{\rm Mid}(0)^2$	$\epsilon_{\rm Mid}(t)^3$	Ss, T_{DM}^4	Ts, T _{DM} ⁵
				Γ,	/T							HIſW	лет
3187	6925.2-6937.4	Триас,	Базальт	3.73	13.8	0.1633	0.0008	0.512845	0.000008	4.0	5.1	838	581
3431	7064.45-7070.0	коротчаевская свита		1.41	5.00	0.1706	0.0009	0.512857	0.000009	4.3	5.1	926	580
3455	7122.99–7132.2	Триас, аймальская свита	Силицит	3.14	11.3	0.1674	0.0008	0.512851	0.000009	4.2	5.1	886	582
3654		Петин срита	Туф	2.42	8.36	0.1750	0.0009	0.512863	0.000011	4.4	5.2	866	601
3676	8.0761-6.7751	спекшихся	Долерит	3.82	13.8	0.1678	0.0008	0.512845	0.000010	4.0	5.1	911	608
3771	7376.48-7382.2	туфов		7.61	29.1	0.1584	0.0008	0.512833	0.000009	3.8	5.2	800	600
3821	7415.6-7421.0		Туф	12.9	51.8	0.1501	0.0008	0.512821	0.000010	3.6	5.3	731	595
3886	7470.48-7479.9			4.34	17.4	0.1509	0.0008	0.512815	0.000010	3.5	5.1	753	606
4146	7664.0-7673.3		Долерит	5.31	22.0	0.1457	0.0007	0.512814	0.000010	3.4	5.3	701	593
4235	7778.59-7787.6	Пермь, табьяхская и	Базальт	3.95	16.2	0.1475	0.0007	0.512814	0.000010	3.4	5.2	719	598
4326	8000.0-8017.0	монгаюрибейская свиты	Туф	5.09	21.8	0.1413	0.0007	0.512798	0.00000	3.1	5.1	693	605
4416			Долерит	6.55	26.3	0.1508	0.0008	0.512809	0.000010	3.3	5.0	765	615
4436	8245.0-8250.0		Силицит	6.04	24.5	0.1489	0.0007	0.512806	0.000010	3.3	5.0	751	614
4446			Базальт	2.35	8.48	0.1671	0.0008	0.512848	0.000009	4.1	5.2	890	602
Стандарт	bl												
La Jolla N	[d (n = 21)]							0.511858	0.000005				
BCR-2 (n	= 26)		Базальт	6.51	28.4	0.1385	0.0004	0.512637	0.000008				
Примечан	ия: (1) – получе	но методом ID-TIM	S; (2) – pac	считан	io c yy	етом ¹⁴⁷ Sm/ ^{1.}	⁴⁴ Nd _{CHUF}	$x = 0.1967, ^{1}$	^{[43} Nd/ ¹⁴⁴ Nc	I _{CHUR} =	0.512638	; (3) -	$\varepsilon_{Nd}(0) =$

ПЕРВЫЕ ¹⁴⁷Sm-¹⁴³Nd-ДАННЫЕ ДЛЯ ПОРОД

151

= 10^{4*}[(¹⁴³Nd/¹⁴⁴Nd/¹⁴⁴Nd/¹⁴⁴Nd_{CHUR}) – 1], ε_{Nd}(*t*) = 10^{4*}[(IR/IR_{CHUR}) – 1], для *t* = 251 млн лет для образцов 3187, 3431 и 276 млн лет для остальных, где CHUR (<u>CH</u>on-

dritic Uniform Reservoir), IR – Initial Ratio; (4) – одностадийный возраст (Single stage), ¹⁴⁷Sm/¹⁴⁴Nd_{DM}=0.219, ¹⁴³Nd/¹⁴⁴Nd_{DM}=0.513151; (5) – двухстадийный возраст (Two

stage), 147 Sm/ 144 Nd_{CC} = 0.12, rge CC (average Continental Crust), 147 Sm/ 144 Nd_{DM}=0.219, 143 Nd/ 144 Nd_{DM}=0.51315, rge DM (Depleted Mantle).

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 496 № 2 2021

сечения прямых (штриховая и сплошная трассировка) с осью ординат при нулевом значении аргумента.

Для образцов 3187, 3431, условно относимых к триасу [1], подобные расчеты определяют возраст 251 млн лет, первичное отношение $(^{143}Nd/^{144}Nd)_0 = 0.51258 \pm 0.00028$, $\varepsilon_{Nd}(251) = +5.1$. Относительно малые вариации значений $^{147}Sm/^{144}Nd$ и $^{143}Nd/^{144}Nd$ по осям абсцисс и ординат (KB 3.1 и 0.0017% соответственно) обусловливают значительную погрешность вычисленного возраста, референсно удовлетворяя, тем не менее, имеющимся представлениям об их положении в разрезе [1].

Более представительными являются 147 Sm- 143 Nd-данные для остальных образцов (3654, 3676, 3771, 3821, 3886, 4146, 4235, 4326, 4416 и 4446). Для них наблюдаются сравнительно бо́льшие вариации отношений 147 Sm/ 144 Nd (KB = 7.1%), в связи с чем вычисленный возраст 276 млн лет характеризуется меньшей неопределенностью ±45 млн лет (95% дов. интервал). Первичное отношение (143 Nd/ 144 Nd)₀ = 0.512545 ± 0.000046, $\varepsilon_{Nd}(276)$ = = +5.1, MSWD = 0.79 (рис. 2).

Полученные величины $(^{143}Nd/^{144}Nd)_0 0.51258 \pm$ ± 0.00028 и 0.512545 ± 0.000046 соответствуют в терминах ¹⁴⁷Sm-¹⁴³Nd-модельных представлений, значениям $\varepsilon_{Nd}(t) = +5.1$ (табл. 1), показывая, что изученные образования произошли из остаточных фаз исходного резервуара после удаления из него вещества в некоторый более ранний момент времени. Иными словами, можно утверждать, что породы "обеднены литофильными элементами с большим ионным радиусом", которые в ходе частичного плавления преимущественно переходят в жидкую фазу [9], что находит свое отражение на графике " $t - \varepsilon_{Nd}(t)$ " (рис. 3), на котором фигуративные точки изученных пород локализуются между линиями эволюции изотопного состава неодима модельных резервуаров CHUR и DM, демонстрируя значения $\varepsilon_{Nd}(t)$, соответствующие умеренно деплетированной мантии. В этом смысле ¹⁴⁷Sm-¹⁴³Nd-изотопные характеристики изученных пород как триасовой, так и пермской системы, разительно отличаются от таковых, опубликованных в ([2], стр. табл. [8]), демонстрирующих "коровые" значения $\varepsilon_{Nd}(t) - 3.52$ и -3.85для раннетриасовых риолитов бассейна р. Синара (восток Среднего Урала) и Даниловского грабена (запад Западной Сибири) соответственно.

Сравнительное постулирование близости в пределах наблюдаемых неопределенностей, инициальных величин отношений IR = $({}^{143}Nd/{}^{144}Nd)_0$ затруднено значительной погрешностью определения этого параметра для пород триасовой системы (±0.00028) в силу, как уже отмечалось, весьма ма-

Рис. 3. График " $t-\varepsilon_{Nd}(t)$ " для пород из сверхглубокой скважины СГ-7 (6925.2–8250 м). DM – деплетированная мантия. CHUR – хондритовый однородный резервуар. Single stage, Two stage – области линий эволюции изотопов неодима в рамках одностадийной и двухстадийной [11] моделей соответственно. Вкладка справа отображает положение фигуративных точек в увеличенном масштабе. Гистограмма, выделенная синим цветом вдоль оси ординат (значения более $\varepsilon_{Nd}(0) = +11$ исключены), соответствующая практически нормальному распределению вероятности, визуализирует статистику (n = 166) отношений ¹⁴³Nd/¹⁴⁴Nd для базальтов срединно-океанических хребтов (MORB) [10].

лой "растяжкой" значений современных значений ¹⁴⁷Sm/¹⁴³Nd, ¹⁴³Nd/¹⁴⁴Nd.

Модельные одностадийные ¹⁴⁷Sm-¹⁴³Nd-возрасты, вычисленные относительно деплетированного источника (DM), определяемые углами наклона линий соединяющих фигуративные точки образцов и DM (область Single stage, рис. 3) укладываются в диапазон 693-998 млн лет (табл. 1). Сравнительно более узкий интервал 580-615 млн лет соответствует двухстадийным (Two stage) [11] ¹⁴⁷Sm-¹⁴³Nd-модельным датировкам. В любом случае наблюдаемые значения $T_{\rm DM}$ фиксируют минимально возможные возрасты протолита для изученных образцов, свидетельствуя о том, что субстратом для пород были неопротерозойские и/или более древние образования [8], что находит соответствующее независимое полтверждение U-Рb SHRIMP-II-данными 600, 1047, 1085, 1375, 1504, 1751 и 1816 млн лет для циркона из базальтов (интервал 6925-6950 м) СГ-7 [5].

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследования выполнены в рамках темы № АААА-A18-118053090044-1 государственного задания ИГГ УрО РАН.

СПИСОК ЛИТЕРАТУРЫ

- Ехлаков Ю.А., Угрюмов А.Н., Санфирова С.С. Новые данные о строении красноселькупской серии Западной Сибири // Геология, геофизика и разработка нефтяных и газовых месторождений. 2012. Т. 7. С. 16–25.
- Берзин С.В., Иванов К.С., Бочкарев В.С., Зайцева М.В. Изотопия (Pb, He, Sr, Nd), минералогия и геохимия пермотриасовых базальтов Западно-Сибирского мегабассейна, вскрытых сверхглубокой скважиной Ен-Яхинской СГ-7 // Горные ведомости. 2016. № 3–4. С. 28–43.
- Бочкарев В.С., Брехунцов А.М., Дещеня Н.П., Лукомская К.Г., Иванов К.С., Калеганов Б.А., Федоров Ю.Н. Новые данные о К-Аг возрасте магматических пород доюрского фундамента северной и западной частей Западно-Сибирской геосинеклизы // Горные ведомости. 2006. 1. С. 20–24.
- Бочкарев В.С., Брехунцов А.М., Лукомская К.Г., Клец А.Г., Травин А.В. Новые результаты изотопных определений возраста доюрских базальтов северной части Западно-Сибирской геосинеклизы // Горные ведомости. 2007. Т. 12. С. 6–15.

- Бочкарев В.С., Брехунцов А.М., Иванов К.С. Основные результаты сверхглубокого бурения скважин (СГ-6 Тюменской и СГ-7 Ен-Яхинской) в Западной Сибири // Горные ведомости. 2013. Т. 12. С. 6–30.
- Карасева Т.В., Горбачев В.И., Титова Г.И., Фрик М.Г. Изотопно-геохимические критерии газоносности больших глубин севера Западной Сибири // Геология, геофизика и разработка нефтяных и газовых месторождений. 2009. Т. 6. С. 20–30.
- Фрик М.Г., Васянина Д.И., Карасева Т.В., Кузнецова О.В., Горбачев В.И. Особенности изотопного состава углерода органического вещества и битумоидов пород на больших глубинах // Геохимия. 2010. Т. 3. С. 1–10.
- 8. Arndt N.T., Goldstein S.L. Use and Abuse of Crust-formation Ages // Geology. 1987. T. 15. P. 893–895.
- 9. *Faure G.* Principles of Isotope Geology, 1986. John Wiley & Sons. 589 p.
- Huang S., Jacobsen S.B., Mukhopadhyay S. ¹⁴⁷Sm-¹⁴³Nd systematics of Earth are Inconsistent with a Superchondritic Sm/Nd Ratio // Proceedings of the National Academy of Sciences. 2013. V. 110 (13). P. 4929– 4934.
- Liew T.C., Hofmann A.W. Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from a Nd and Sr Isotopic Study // Contribs to Miner. and Petrol. 1988. V. 98. P. 129–138.
- 12. *Ludwig K.R.* User's Manual for Isoplot/Ex Ver. 3.66: Berkeley, CA. 2008. 77 p.

THE FIRST ¹⁴⁷Sm-¹⁴³Nd DATA FOR ROCKS REPRESENTING THE INTERVAL 6925.2-8250 METERS OF THE SUPERDEEP BOREHOLE (SG-7, WESTERN SIBERIAN OIL AND GAS PROVINCE)

Yu. L. Ronkin^{a,#}, T. V. Karaseva^b, and Corresponding Member of the RAS A. V. Maslov^a

^a Institute of Geology and Geochemistry, Urals Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation

^b Perm State University, Perm, Russian Federation

[#]E-mail: y-ronkin@mail.ru

The ¹⁴⁷Sm⁻¹⁴³Nd systematics of 14 samples of basalts, tuffs, silicites and dolerites from the interval 6925.2–8250 m of the superdeep borehole SG-7 (En-Yakha), located in the Northern part of the West Siberian oil and gas province, was studied. For two basalts, conditionally attributed to the Triassic, the age was 251 Ma, the initial ratio (¹⁴³Nd/¹⁴⁴Nd)₀ = 0.51258 ± 0.00028. ¹⁴⁷Sm⁻¹⁴³Nd data for the remaining 10 samples attributed to the Permian revealed an isochron (MSWD = 0.79) dependence, which determines the age of 276 ± 45 Ma (95% conf. interval) and (¹⁴³Nd/¹⁴⁴Nd)₀ = 0.512538 ± 0.000046. The initial $\varepsilon_{Nd}(t)$ values for the Triassic $\varepsilon_{Nd}(251) = +5.1$ and Permian $\varepsilon_{Nd}(276) = +5.1$ rocks of the studied interval demonstrate the values corresponding to the moderately depleted mantle. The ¹⁴³Nd values of the model ages indicate that the substrates for the studied rocks were Neoproterozoic and/or older formations.

Keywords: West Siberian oil and gas province, superdeep borehole SG-7, ¹⁴⁷Sm-¹⁴³Nd isotope geology method