ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ, 2021, том 496, № 2, с. 169–175

———— ПЕТРОЛОГИЯ ———

УДК 551.242/551.14

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ЦИРКОНА (SIMS) ИЗ ГРАНИТОИДОВ КОНСТАНТИНОВСКОГО ШТОКА (РАЙОН ЗОЛОТОРУДНОГО МЕСТОРОЖДЕНИЯ СУХОЙ ЛОГ): ВОЗРАСТ, ИСТОЧНИКИ И ГЕОЛОГИЧЕСКИЕ СЛЕДСТВИЯ

© 2021 г. Е. Ю. Рыцк^{1,*}, Е. В. Толмачева¹, С. Д. Великославинский¹, член-корреспондент РАН А. Б. Кузнецов¹, Н. В. Родионов², А. А. Андреев³, А. М. Федосеенко¹

> Поступило 09.11.2020 г. После доработки 19.11.2020 г. Принято к публикации 23.11.2020 г.

Приведены результаты U—Pb-геохронологического исследования (SIMS-метод) по циркону гранитоидов Константиновского штока, находящегося в 6 км от золоторудного месторождения Сухой Лог. Средневзвешенное значение 206 Pb/ 238 U-возраста для длиннопризматических кристаллов, оболочек и ядер ранней стадии кристаллизации зональных цирконов составляет 303 ± 3 млн лет (CKBO = 0.87). Полученные данные о возрасте ксеногенных ядер зональных цирконов Константиновского штока свидетельствуют о нахождении в основании рудоконтролирующей сдвиговой зоны месторождения Сухой Лог палеопротерозойских и девонских гранитоидов.

Ключевые слова: U–Pb-геохронологические исследования, циркон, гранитоиды, Константиновский шток, месторождение золота Сухой Лог

DOI: 10.31857/S2686739721020171

В Бодайбинском осадочном палеобассейне сосредоточены крупные коренные и россыпные золоторудные объекты Ленской провинции, включая уникальное месторождение золота и ассоциирующих металлов платиновой группы Сухой Лог [1, 2]. Генетические модели золоторудных месторождений Бодайбинского рудного района в углеродистых карбонатно-терригенных толщах предусматривают длительную историю их формирования, охватывающую период от неопротерозоя до кайнозоя ([1, 3–5] и др.) с образованием промышленного золотого оруденения в палеозое — на рубе-

¹ Институт геологии и геохронологии докембрия Российской академии наук, Санкт-Петербург, Россия жах 447 ± 6 и 321 ± 14 млн лет [6]. Эти этапы рудообразования могут коррелировать с гранитоидным магматизмом и генерацией рудоносных флюидных систем в каледонскую [7] и/или герцинскую эпохи ([3, 4] и др.). Однако достоверные геохронологические свидетельства каледонского гранитообразования в Бодайбинском регионе не установлены, а возрастной диапазон становления внутриплитных гранитоидов герцинской эпохи, включая мамско-оронские пегматоидные граниты и массивы Ангаро-Витимского батолита, остается дискуссионным ([5, 8, 9] и др.).

Константиновский шток — единственный небольшой выход крупнозернистых порфировидных гранитов в пределах отрицательной гравитационной аномалии, обусловленной гранитоидами Угаханского криптобатолита, в которой и находится золоторудное месторождение Сухой Лог [10]. Согласно геофизическим данным [11], Константиновский шток связан подводящими каналами с магматическим очагом предполагаемого Угаханского гранитоидного массива неизвестного возраста (рис. 1). Надежные данные о

² Всероссийский геологический научно-

исследовательский институт им. А.П. Карпинского, Санкт-Петербург, Россия

³ Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук, Москва, Россия

^{*}E-mail: ERytsk@geogem.spb.ru

Рис. 1. Тектоническая позиция гранитоидов Константиновского штока в структуре Байкало-Патомского складчатого пояса. 1 – четвертичные отложения; 2 – позднепалеозойские образования: гранитоиды чивыркуйского (*a*) и конкудеро-мамаканского (*б*) комплексов (по [10]), высокотемпературные бластомилониты (*в*); 3 – раннепалеозойский чехол; 4 – вендские осадочные палеобассейны; Байкало-Патомский складчатый пояс (5–8): 5 – неопротерозойские осадочные палеобассейны; Байкало-Патомский складчатый пояс (5–8): 5 – неопротерозойские осадочные палеобассейны; Байкало-Патомский складчатый пояс (5–8): 5 – неопротерозойские осадочные палеобассейны Чуя-Нечерского палеоподнятия в краевых (*a*) и погребенных (*b*) зонах; 6 – Мамско-Бодайбинский венд-неопротерозойский структурный блок; 7 – Сухоложская рудоконтролирующая сдвиговая зона; 8 – Олокит вона прогибов и палеоподнятий раннего неопротерозоя; 9 – неопротерозойские вулкано-плутонические комплексы Байкало-Муйского пояса; *Раний докембрий* (10–12): 10 – гранитоиды; 11 – выступы фундамента кратона; 12 – Чарская глыба; 13 – местоположение Константиновского штока и месторождения Сухой Лог; 14 – нерасчлененные тектонические границы и швы: установленные (*a*) и предполагаемые (*б*).

возрасте гранитоидов Константиновского штока также отсутствуют, а резкое расхождение между собой оценок возраста по циркону (530– 650 млн лет) и сфену (290 ± 20 млн лет) [3, 5] рассматривалось как свидетельство унаследованного или захваченного циркона из вмещающих пород [5]. Учитывая неопределенность геохронологических данных, полученных (TIMS) ранее по большим навескам циркона, исключавших возможность учета их сложного строения, мы вернулись к изучению циркона гранитоидов Константиновского штока SIMS-методом локального U–Pbизотопного датирования единичных зерен и отдельных элементов их внутренней структуры. Помимо оценки возраста гранитоидов, находящихся в 6 км от месторождения Сухой Лог, задача состо-

Рис. 2. Микрофотографии кристаллов циркона из гранита Константиновского штока. I, III, V, VII – в режиме катодолюминесценции; II, IV, VI и VIII – в проходящем свете.

яла в выявлении и получении возрастной информации для ксеногенного циркона, захваченного расплавом из фундамента или вмещающих пород Бодайбинского прогиба.

По данным исследования в проходящем свете и в режиме катодолюминесценции (КЛ) циркон, выделенный из гранитов Константиновского штока, представлен двумя морфологическими типами. Преобладают идиоморфные и субидиоморфные зональные кристаллы, состоящие из ядер и оболочек с K_y от 3 до 5 и длиной 150–500 мкм (рис. 2 I–VI) и значительно реже (не более 10%) наблюдаются длиннопризматические кристаллы с K_y , равным 5–6, и длиной около 250–300 мкм (рис. 2 VII–VII).

Ядра в зональном цирконе (І тип) составляют от 10 до 50% объема зерен, трещиноватые, часто бурые, пятнистые, с корродированной поверхностью. В режиме КЛ они светло-серые, часто с тонкой зональностью (рис. 2 I, V). Большинство этих ядер имеет несомненно ксеногенную природу, однако часть из них, возможно, была сформирована на ранней стадии кристаллизации расплава.

Оболочки на ядрах в проходящем свете прозрачные, не трещиноватые, идиоморфные (рис. 2 II, VI). В режиме КЛ в них наблюдается грубая осцилляторная зональность, в которой темно-серая окраска оболочек вблизи ядер сменяется черной на периферии (рис. 2 I, III) за счет высокого содержания урана (в среднем около 1680 г/т).

В ядрах наблюдаются полностью раскристаллизованные расплавные включения (PB 1 на рис. 2 VI), что свидетельствует об их магматической природе. Во внешней части оболочек иногда наблюдается тонкая зона субмикроскопических флюидных включений (рис. 2 IV), связанная, вероятно, с дегазацией расплава на завершающей стадии кристаллизации.

Длиннопризматический циркон (II тип) прозрачный, бесцветный, ядер не содержит, среднее содержание урана 750 г/т. В режиме КЛ видна грубая зональность с темно-серой внутренней и черной периферической зонами. Наблюдаются единичные полностью раскристаллизованные расплавные включения (РВ-2 на рис. 2 VIII), свидетельствующие о магматической природе длиннопризматического циркона.

Изотопное датирование отдельных зерен циркона осуществлялось на ионном микрозонде SHRIMP–II в ЦИИ ВСЕГЕИ по методике [12]. Интенсивность первичного пучка молекулярного кислорода составляла 4 нА, диаметр кратера 25 мкм при глубине 2 мкм. Обработка полученных данных производилась с использованием программы SQUID [13]. Уран-свинцовые отношения нормализовались на значении 0.0668, соответствующем стандартному циркону TEMORA, содержания Pb, U и Th – относительно стандартного циркона 91500. Погрешности индивидуальных датировок приведены на уровне 1 сигмы.

Всего исследовано 37 зерен циркона, для которых получено 62 оценки возраста. В таблице приведены результаты исследования за исключением зерен с высоким содержанием обычного свинца и дискордантных оценок возраста (табл. 1). Средневзвешенное значение ²⁰⁶Pb/²³⁸U-возраста семи длиннопризматических кристаллов составляет 301 ± 8 млн лет (СКВО = 0.48) (рис. 3–I). Оценки ²⁰⁶Pb/²³⁸U-возраста магматических оболочек зональных цирконов I типа и длиннопризматических кристаллов II типа в пределах ошибок не отличаются друг от друга — 305 ± 5 млн лет (СКВО = =0.48, *n* = 12) (рис. 3–II). Для 11 ядер зональных цирконов I типа получены оценки ²⁰⁶Pb/²³⁸U-возраста, совпадающие в пределах ошибок с возрастом оболочек и длиннопризматических кристаллов (средневзвешенное значение 301 ± 8 млн лет (CKBO = 1.6) (рис. 3–III), что подтверждает формирование этих ядер на ранней стадии кристаллизации циркона. Средневзвешенное значение

Рис. 3. Диаграмма с конкордией для длиннопризматических кристаллов (I), магматических оболочек (II) и ядер ранней стадии кристаллизации циркона (III) из гранита Константиновского штока по данным табл. 1.

 206 Pb/ 238 U-возраста для длиннопризматических кристаллов, оболочек и ядер ранней стадии кристаллизации зональных цирконов (n = 30), имеющих сравнимые средние содержания урана

(1245 г/т), составляет 303 ± 3 млн лет (СКВО = = 0.84) и интерпретируется как возраст кристаллизации гранитов Константиновского штока. Полученная оценка возраста подтверждает при-

оцЯ	0.580	0.582	0.687	0.659	0.731	0.558	0.324	0.608	0.652	0.685	0.653	0.755	0.748	0.633	0.695	0.734	0.784	0.584	0.712	0.646	0.678	0.582	0.590	0.766	0.524	0.760	0.415	0.558	0.529	0.605	0.572	0.416	0.483	0.721	0.755	0.706	0.765	0.866	0.912	
Err, %	1.2	1.2	1.1	1.1	1.1	1.2	1.3	0.9	1.1	1.1	0.9	1.1	1.1	1.2	0.9	1.1	0.0	0.9	0.9	1.2	1.2	1.0	0.9	0.9	1.2	0.9	1.3	0.9	0.9	0.9	1.2	1.0	1.2	1.2	1.0	1.4	1.0	1.2	1.2	
∩ ₈₅₇ /9d ₉₀₇	0.0481	0.0473	0.0486	0.0482	0.0485	0.0467	0.0468	0.0469	0.0470	0.0478	0.0479	0.0480	0.0482	0.0487	0.0487	0.0488	0.0494	0.0496	0.0500	0.0514	0.0472	0.0456	0.0483	0.0479	0.0485	0.0484	0.0520	0.0472	0.0495	0.0455	0.0561	0.0586	0.0623	0.1496	0.3207	0.3209	0.3320	0.3672	0.4614	
Err, %	2.1	2.0	1.7	1.7	1.5	2.1	4.0	1.5	1.7	1.6	1.4	1.5	1.5	1.8	1.3	1.5	1.1	1.5	1.2	1.8	1.7	1.7	1.6	1.2	2.3	1.2	3.1	1.6	1.8	1.5	2.1	2.5	2.5	1.6	1.3	2.0	1.4	1.4	1.3	
$\Omega_{SEZ}/9d_{L0Z}$	0.35	0.34	0.36	0.35	0.35	0.34	0.33	0.34	0.34	0.35	0.34	0.35	0.35	0.35	0.35	0.35	0.36	0.36	0.36	0.38	0.34	0.32	0.35	0.35	0.35	0.34	0.38	0.34	0.35	0.33	0.41	0.44	0.47	1.43	5.06	4.99	5.21	6.40	11.59	
Err, %	1.7	1.6	1.2	1.3	1.1	1.7	3.8	1.2	1.3	1.2	1.0	1.0	1.0	1.4	0.9	1.0	0.7	1.3	0.9	1.4	1.3	1.4	1.3	0.8	1.9	0.8	2.8	1.3	1.5	1.2	1.7	2.3	2.2	1.1	0.9	1.4	0.9	0.7	0.5	
9d ₉₀₇ /9d ₂₀₇	0.0521	0.0522	0.0530	0.0524	0.0527	0.0526	0.0515	0.0518	0.0524	0.0527	0.0518	0.0524	0.0528	0.0518	0.0524	0.0520	0.0521	0.0521	0.0525	0.0531	0.0529	0.0517	0.0520	0.0523	0.0523	0.0517	0.0526	0.0529	0.0519	0.0522	0.0534	0.0541	0.0546	0.0693	0.1143	0.1129	0.1139	0.1263	0.1822	
Err, %	1.2	1.2	1.1	1.1	1.1	1.2	1.3	0.9	1.1	1.1	0.9	1.1	1.1	1.2	0.9	1.1	0.9	0.9	0.9	1.2	1.2	1.0	0.9	0.9	1.2	0.9	1.3	0.9	0.9	0.9	1.2	1.0	1.2	1.2	1.0	1.4	1.0	1.2	1.2	
9d ₉₀₇ /N ₈₆₇	20.79	21.14	20.57	20.75	20.63	21.40	21.37	21.32	21.28	20.90	20.86	20.84	20.73	20.54	20.52	20.47	20.23	20.15	20.02	19.46	21.17	21.95	20.71	20.89	20.63	20.68	19.24	21.17	20.20	21.98	17.82	17.05	16.06	69.9	3.12	3.12	3.01	2.72	2.17	
D' %	-4	1	8	1	4	9	-11	9–	2	4	-8	0	5	-10	-2	ـــ	9–	-8	-2	3	6	-5	9—	-	-2	-10	4-	10	6-	2	-	2	1	1	4	Э	1	2	6	тоонтне
əa∀ 9d ²⁰² /d ⁷⁰²	290 ± 39	294 ± 37	330 ± 27	305 ± 29	317 ± 24	312 ± 39	263 ± 87	277 ± 28	302 ± 30	315 ± 27	278 ± 24	301 ± 22	319 ± 22	275 ± 33	302 ± 21	286 ± 24	291 ± 16	288 ± 29	307 ± 20	333 ± 31	324 ± 28	273 ± 31	285 ± 29	299 ± 17	300 ± 44	273 ± 17	314 ± 64	326 ± 30	283 ± 34	294 ± 27	348 ± 38	376 ± 52	395 ± 49	907 ± 23	1869 ± 16	1846 ± 25	1863 ± 16	2048 ± 12	2673 ± 9	
9g€ U ⁸²² /d ⁹⁰²	303 ± 4	298 ± 3	306 ± 3	303 ± 3	305 ± 3	294 ± 3	295 ± 4	295 ± 3	296 ± 3	301 ± 3	302 ± 3	302 ± 3	304 ± 3	306 ± 3	307 ± 3	307 ± 3	311 ± 3	312 ± 3	314 ± 3	323 ± 4	298 ± 3	287 ± 3	304 ± 3	301 ± 3	305 ± 4	304 ± 3	327 ± 4	298 ± 3	311 ± 3	287 ± 3	352 ± 4	367 ± 4	389 ± 5	898 ± 10	1793 ± 16	1794 ± 22	1848 ± 17	2016 ± 21	2446 ± 25	тношений
udd ^{per} 9d ₉₀₇	18.9	28.4	44.2	35.9	55.0	24.6	9.5	46.1	38.2	54.7	85.7	80.1	78.2	33.6	66.7	74.1	109.7	88.0	151.2	27.3	35.6	31.7	39.0	105.6	16.8	131.8	10.1	64.3	42.8	76.1	19.3	19.5	31.1	33.7	42.7	20.4	33.8	53.3	59.9	in your o
∩ _{8€7} /4L _{ZĘZ}	0.55	0.08	0.08	0.22	0.07	0.58	0.30	0.12	0.56	0.21	0.10	0.16	0.20	0.15	0.13	0.09	0.07	0.08	0.12	0.03	0.63	0.08	0.06	0.03	0.09	0.06	0.06	0.10	0.15	0.09	0.07	0.02	0.05	1.42	1.13	0.67	2.13	0.47	0.96	
udd 'yL	243	52	78	186	94	343	69	132	512	266	202	293	356	116	206	159	187	151	399	16	538	61	57	80	37	182	13	152	147	164	25	9	31	360	169	48	244	78	140	TODDO T
udd 'N	458	697	1056	868	1320	612	235	1143	945	1331	2076	1942	1885	804	1592	1763	2581	2053	3518	619	878	809	940	2565	402	3170	225	1582	1004	1940	400	387	579	262	155	74	118	169	151	фитиен
% ^{°94} 907	0.05	0.12	0.08	0.04	0.07	0.13	0.42	0.11	0.05	0.10	0.25	0.11	0.16	0.10	0.05	0.10	0.03	0.47	0.13	0.00	0.04	0.05	0.07	0.07	0.12	0.13	0.17	0.21	0.27	0.31	0.06	0.17	0.27	0.04	0.15	0.11	0.03	0.07	0.06	φeov – (
Spot	I_11.1	$I_{-13.1}$	$I_{-}14.2$	$I_{-17.1}$	I_19.1	$I_{-}16.1$	$I_114.1$	$II_2.2$	$I_{-3.1}$	$I_4.2$	I-2_6.2	II_16.1	$I_{-5.2}$	$I_{-}15.1$	II_5.3	II 1.2	II 10.2	II 13.2	II_17.2	$II_{-}10.1$	$II_2.1$	II_9.1	II_11.1	$II_16.2$	I_6.1	$II_{-}18.1$	I_5.1	II-2_3.2	$\Pi_{-4.1}$	II_8.1	$I_{-}15.2$	$II_{-}14.1$	$I_{-8.1}$	I_1.1	II_12.1	$I_{-7.2}$	$II_{-}10.1$	I4.1	$I_{-18.2}$	Photo Photo
циркона Тип	ческие кристаллы п Длиннопризмати-					пД эг					ИХ	łhC	шо	90						Сингенетичные ядра									г Ксеногенные ядра								Приме			

Таблица 1. Результаты U–Pb-геохронологического исследования цирконов из гранитов Константиновского штока (проба КШ-1)

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 496 № 2 2021

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ЦИРКОНА (SIMS)

надлежность гранитоидов Константиновского штока к герцинской эпохе внутриплитного магматизма. Вместе с гранитоидами северной части Тельмамского массива, имеющими те же оценки возраста [9], формирование Константиновского штока коррелирует с процессами становления Ангаро-Витимского батолита в период $312 \pm 3 - 300 \pm 2$ млн лет [8].

Для 9 ядер зональных цирконов второго типа, в которых содержания U значительно меньше, чем в длиннопризматических кристаллах и оболочках (в среднем 255 г/т), получены конкордантные оценки возраста (табл. 1), варьирующие в широком интервале от 352 до 2446 млн лет, подтверждая ксеногенную природу этих ядер циркона. Источником палеозойских ксеногенных ядер зонального циркона (206 Pb/ 238 U-возраст – 352 ± 4 , $367 \pm 4, 389 \pm 5$ млн лет) могли являться мамскооронские пегматоидные граниты, образованные в результате зонального метаморфизма, наложенного на фундамент и перекрывающие осадочные толщи Бодайбинского прогиба. Присутствие пегматоидных гранитов отмечалось в ксенолитах даек аглан-аянского комплекса в бассейне реки Кадали [14].

Циркон с палеопротерозойскими (1846 \pm 25, 1863 \pm 16, 1869 \pm 16, 2048 \pm 12 млн лет) и архейскими (2673 \pm 9) оценками ²⁰⁷Pb/²⁰⁶Pb-возраста типичен для гранитоидов и метаморфических комплексов Чуя-Нечерского палеоподнятия фрагмента выступа фундамента Сибирского кратона в структуре Байкало-Патомского складчатого пояса. Эти образования являются источником детритового циркона для хомолхинской свиты, вмещающей месторождение Сухой Лог [7], и эдиакарских осадочных серий Патомского прогиба [15], и также могут рассматриваться в качестве источника для гранитоидов Константиновского штока.

Таким образом, в основании сдвиговой зоны латеральных деформаций, контролирующей золоторудное месторождение Сухой Лог, выявлены палеопротерозойские и девонские гранитоиды, типичные для палеоподнятий Чуя-Нечерской и Мамско-Бодайбинской структур Байкало-Патомского пояса (см. рис. 1). Новые данные позволяют полагать, что сдвиговая зона является граничной между этими структурами древней коры Сибирского кратона, претерпевшими масштабные процессы внутриплитной тектоно-термальной переработки в палеозое.

БЛАГОДАРНОСТИ

Авторы признательны за внимание к работе Л.А. Неймарку и Н.Г. Бережной, а также благодарят Г.П. Плескач за выполненный рисунок.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Исследования выполнены в рамках тем НИР ИГГД РАН 0153-2019-0001, ИГЕМ РАН лаборатории редкометального магматизма и при поддержке РФФИ (грант № 18-05-00724).

СПИСОК ЛИТЕРАТУРЫ

- Буряк В.А., Хмелевская Н.М. Сухой Лог одно из крупнейших золоторудных месторождений мира (генезис, закономерности размещения оруденения, критерии прогнозирования). Владивосток: Дальнаука, 1997. 156 с.
- Коробейников А.Ф., Митрофанов Г.Л., Немеров В.К., Колпакова Н.А. // Геология и геофизика. 1998. Т. 39. № 4. С. 432–444.
- 3. *Рундквист И.К., Бобров В.А., Смирнова Т.Н. и др. //* Геол. рудных месторождений. 1992. Т. 34. № 6. С. 3–15.
- 4. Кузьмин М.И., Ярмолюк В.В., Спиридонов А.И. и др. // ДАН. 2006. Т. 407. № 6. С. 793–797.
- 5. *Неймарк Л.А., Рыцк Е.Ю., Гороховский Б.М. и др.* / В кн.: Изотопное датирование эндогенных формаций. М. Наука, 1993. С. 124–146.
- 6. Лаверов Н.П., Чернышев И.В., Чугаев А.В. и др. // ДАН. 2007. Т. 415. № 2. С. 236-241.
- Юдовская М.А., Дистлер В.В., Родионов Н.В. и др. // Геол. рудных месторождений. 2011. Т. 53. № 1. С. 32–64.
- Ковач В.П., Сальникова Е.Б., Рыцк Е.Ю. и др. // ДАН. 2012. Т. 444. № 2. С. 184–189.
- 9. Цыганков А.А., Бурмакина Г.Н., Хубанов В.Б., Буянтуев М.Д. // Геотектоника. 2017. Т. 25. № 3. С. 1–25.
- Перевалов О.В., Срывцев Н.А. Очерки по региональной геологии России. Выпуск 9. М. ГЕО-КАРТ: ГЕОС. 2013. 276 с.
- 11. Лишневский Э.Н., Дистлер В.В. // Геол. рудных месторождений. 2004. Т. 46. № 1. С. 88–104.
- Williams I.S., et al. // Applications in Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology. 1998. 7. P. 1–35.
- Ludwig K.R. / Berkley Geochronology Center Sp. Publ. 2003. № 4. 70 p.
- Кондратенко А.К. Магматические комплексы центральной части Ленской провинции и их металлогеническая специализация. М.: Недра, 1977. С. 142.
- Powerman V., Shatsillo A., Chumakov N., et al. // Precambrian Res. 2015. № 267. P. 39–71.

RESULTS OF THE STUDY OF ZIRCON (SIMS) FROM GRANITOIDS OF THE KONSTANTINOVSKY STOCK (AREA OF THE SUKHOI LOG GOLD DEPOSIT): AGE, SOURCES AND GEOLOGICAL CONSEQUENCES

E. Yu. Rytsk^{*a*,[#]}, E. V. Tolmacheva^{*a*}, S. D. Velikoslavinsky^{*a*}, Corresponding Member of the RAS A. B. Kuznetsov^{*a*}, N. V. Rodionov^{*b*}, A. A. Andreev^{*c*}, and A. M. Fedoseenko^{*a*}

^a Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences, St. Petersburg, Russian Federation ^b Russian Geological Research Institute (VSEGEI), St. Petersburg, Russian Federation

^c Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences, Moscow, Russian Federation

[#]E-mail: ERytsk@geogem.spb.ru

This paper presents the results of U–Pb geochronological (SIMS) study on zircons of the Konstantinovsky stock granites, located 6 km from the Sukhoi Log gold deposit. The weighted average 206 Pb/ 238 U age for long-prismatic crystals, rims and cores of the early stage of zoned zircons crystallization is 303 ± 3 Ma (MSWD = 0.87). The Paleozoic, Paleoproterozoic and Archean ages of xenogenic cores of zoned zircons in studied granitoids indicate the consolidated basement of the Bodaibo epicratonic sedimentary basin and its intraplate tectono-thermal restructuring.

Keywords: U-Pb geochronological research, zircon, granitoids, Konstantinovsky stock, Sukhoi Log gold deposit