———— МИНЕРАЛОГИЯ ———

УДК 548.736+549.73 (460.33)

ГРУППА ПСЕВДОБРУКИТА: КРИСТАЛЛОХИМИЧЕСКИЕ ОСОБЕННОСТИ ЖЕЛЕЗИСТОГО АНАЛОГА АРМОЛКОЛИТА

© 2021 г. О. Н. Кажева^{1,*}, Н. В. Зубкова², К. Шефер³, Н. В. Чуканов^{1,2}, член-корреспондент РАН И. В. Пеков², С. Н. Бритвин⁴, академик РАН Д. Ю. Пущаровский²

Поступило 23.12.2020 г. После доработки 23.12.2020 г. Принято к публикации 24.12.2020 г.

Изучена кристаллическая структура потенциально нового минерала – железистого аналога армолколита с идеализированной формулой $Fe^{2+}Ti_2O_5$ из пневматолитовой минеральной ассоциации минералов, генетически связанной с лампроитовым комплексом ЮВ Испании. Изученный минерал ромбический, пространственная группа *Стст*, параметры элементарной ячейки: *a* = 3.7325(1), *b* = 9.7649(4), *c* = 9.9902(3) Å, *V* = 364.12(2) Å³. Кристаллохимическая формула $^{M1}(Mg_{0.19}Fe_{0.25}^{2+}Fe_{0.26}^{3+}Ti_{0.30})^{2.86+}[^{M2}(Ti_{0.65}Fe_{0.27}^{3+}Fe_{0.08}^{2+})^{3.57+}]_2O_5$ (*Z* = 4) находится в хорошем согласии с химическим составом минерала.

Ключевые слова: двойные оксиды, группа псевдобрукита, железистый аналог армолколита, рентгеноструктурный анализ, катионная упорядоченность, лампроит, Альхорра, Испания **DOI:** 10.31857/S2686739721040095

Двойные оксиды, относящиеся к структурному типу псевдобрукита, а именно, псевдобрукит (Fe³⁺, Fe²⁺)(Ti, Fe³⁺)₂O₅ и армолколит (Mg, Fe²⁺)Ti₂O₅ – достаточно характерные минералы высокотемпературных, низкобарических формаций, включая обогащенные титаном базальты, андезиты, риолиты, лампроиты и некоторые типы лунных пород [1–3]. Описаны аналогичные фазы техногенного происхождения из шлаков и продуктов горения отвалов, содержащих бурый vголь [4, 5]. Результаты синтеза соединений такого типа приведены в ряде публикаций [1, 6]. Исследования природных двойных оксидов, относящихся к структурному типу псевдобрукита, интересны еще и ввиду хорошо сбалансированной анизотропии термического расширения, что открывает перспективы их использования в качестве термисторов, электропроводящих, оптических и магнитных материалов, катализаторов,

¹ Институт проблем химической физики Российской академии наук, Черноголовка, Россия

1 оссийской икиоемий ниук, черноголовки, 1 оссия

² Московский государственный университет

им. М.В. Ломоносова, Москва, Россия

фотокатализаторов, дешевых термически стабильных фильтров для дизеля, термостойких пигментов для красок, пластиков, резины, энергосберегающих материалов (охлаждающие пигменты), а также огнеупорной керамики с низким коэффициентом термического расширения. Характер катионного упорядочения/разупорядочения и собственно состав этих минералов, включая валентное состояние Fe, определяют их основные кристаллохимические особенности, а также влияют на термическую стабильность.

В кристаллической структуре минералов группы псевдобрукита с общей формулой $M(1)M(2)_2O_5$ [5, 7] катионы *M* (Mg²⁺, Fe²⁺, Fe³⁺ и Ti⁴⁺) занимают две кристаллографически независимые позиции M(1) и M(2) (позиции Уайкова 4c и 8f соответственно). Эти катионы имеют октаэдрическую координацию, и их позиции, как правило, характеризуются смешанной заселенностью, причем в позиции M(2) всегда доминирует титан, а в M(1) – Fe³⁺ (в псевдобруките) или Mg (в армолколите). Атомы кислорода занимают три кристаллографически независимые позиции. Все позиции в структуре частные. Октаэдры через общие ребра объединены в триады, в центре которых находится M(1)-центрированный октаэдр, а внешние октаэдры заполняют катионы M(2). Соединяясь через общие вершины октаэдров $M(2)O_6$, триады образуют цепочки, вытянутые вдоль оси с (рис. 2, 3). В свою очередь, цепочки объединяются между

³ Gustav Stresemann-Strasse 34, 74257 Untereisesheim, Germany

⁴ Санкт-Петербургский университет,

Санкт-Петербург, Россия

^{*}E-mail: koh@icp.ac.ru

КАЖЕВА и др.

Рис. 1. Кристаллы Fe²⁺-аналога армолколита (*1*) в ассоциации с энстатитом (*2*) и санидином (*3*). Ширина изображения 3 мм. Фотограф Марко Буркхардт.

Рис. 2. Кристаллическая структура армолколита в проекции вдоль оси a. Черные октаэдры — $M1O_6$, серые октаэдры — $M2O_6$.

собой через общие ребра и вершины октаэдров с образованием трехмерного псевдокаркаса.

Для синтетического Fe^{2+} -аналога армолколита $Fe^{2+}Ti_2O_5$ на основе данных по мессбауэровским спектрам и дифракции нейтронов показано, что при высоких температурах синтеза (выше 1700°С) позиция *M*2 полностью заселена титаном, тогда как в продуктах более низкотемпературного синтеза (при температурах 1200°С и ниже) титан распределяется между двумя катионными позициями [6]. Однако из цитированной работы неясно, были ли синтезированные соединения термодинамически равновесными в условиях их синтеза, или же речь идет о метастабильных фазах.

Изоморфизм и некоторые кристаллохимические закономерности минералов группы псевдобрукита из лампроитов Испании рассмотрены в [8]. В частности, показано, что вариации содержаний различных компонентов в этих минералах находятся в пределах $Mg_{0.2-0.7}Fe_{0-0.6}^{2+}Fe_{0.2-1.6}^{3+}Ti_{1.2-1.9}O_5$, а основная схема изоморфизма — $Ti^{4+} + 3Fe^{2+} \leftrightarrow$ $\leftrightarrow 2Mg^{2+} + 2Fe^{3+}$. Однако в этой работе не обсуждается распределение разновалентных ионов железа по позициям кристаллической структуры.

В настоящей работе изучена кристаллическая структура минерала по составу, отвечающему промежуточному члену трехкомпонентной си-

Рис. 3. Кристаллическая структура армолколита в проекции вдоль оси c. Черные октаэдры — $M1O_6$, серые октаэдры — $M2O_6$.

стемы твердых растворов псевдобрукит-армолколит-Fe²⁺-аналог армолколита (последний, у которого конечный член отвечает формуле Fe²⁺Ti₂O₅, не имеет минералогического названия). Образцы с этим минералом, собранные в заброшенном карьере по добыче строительного камня близ деревни Лос Ниетос (Los Nietos), муниципалитет Альхорра (Aljorra), автономная область Мурсия (Murcia), ЮВ Испания, представляют собой фрагменты кавернозного лампроита, содержащего фенокристы серпентинизированного форстерита [9, 10]. Пневматолитовая ассоциация представлена санидином, пироксеном, фторфлогопитом и минералами группы псевдобрукита, кристаллы которых нарастают на стенки миароловых полостей. Железистый аналог армолколита образует коричневые досковидные кристаллы длиной до 3 мм с удлинением вдоль (010), уплощенные по (100).

Химический состав минерала определен методом рентгеноспектрального микроанализа с применением растрового электронного микроскопа "Tescan" Vega-II XMU (режим EDS, ускоряющее напряжение 20 кВ, ток 400 пА, диаметр электронного зонда 160 нм) и использованием системы регистрации рентгеновского излучения и расчета состава образца "INCA Energy" 450. В качестве стандартов использовались MgO и чистые Ті и Fe (предварительные измерения показали, что содержания остальных элементов ниже порога обнаружения электронно-зондовым методом). Изученный кристалл довольно однороден по составу. Содержания компонентов (средние значения по трем локальным анализам; в скобках приведены пределы; все железо дано в форме FeO, мас. %): MgO 3.40 (3.01-3.75), FeO 37.87 (37.20-38.04), TiO₂ 55.74 (55.20–56.38), сумма 97.01. Эмпирическая формула, рассчитанная на 3 катиона и 5 атомов кислорода: $Mg_{0.19}Fe_{0.41}^{2+}Fe_{0.80}^{3+}Ti_{1.60}O_5$. Формульные коэффициенты для Fe^{2+} и Fe^{3+} определены с учетом условия баланса зарядов и соответствуют 12.83 мас. % FeO и 27.83 мас. % Fe₂O₃. Сумма анализа в этом случае составляет 99.80 мас. %, что косвенно подтверждает корректность такого расчета.

Рентгенограмма порошка, полученная на дифрактометре "Rigaku" R-AXIS Rapid II с цилиндрическим IP детектором (монохроматизированное Со $K\alpha$ -излучение, геометрия Дебая—Шеррера, d = 127.4 мм, экспозиция — 15 мин), однозначно подтверждает принадлежность изученного минерала к структурному типу псевдобрукита. Рассчитанные по порошковым данным

Таблица 1. Координаты (*x*, *y*, *z*), параметры тепловых смещений ($U_{_{3KB}}$, Å²) атомов, кратность позиций (*Q*) и заселенности атомных позиций (s.o.f.)

Позиция	x	У	z	$U_{ m eq}$	Q	s.o.f.
<i>M</i> (1)	0	0.18945(6)	0.75	0.0072(2)	4	Fe _{0.51} Mg _{0.19} Ti _{0.30}
<i>M</i> (2)	0	0.13558(4)	0.43583(4)	0.0067(1)	8	$Ti_{0.65(1)}Fe_{0.35(1)}$
O(1)	0	0.3112(2)	0.5699(2)	0.0088(4)	8	1
O(2)	0.5	0.2654(3)	0.75	0.0092(5)	4	1
O(3)	0	0.0472(2)	0.6158(2)	0.0101(4)	8	1

Таблица 2. Локальный баланс валентностей [14] (для каждого из трех вариантов приведены валовая и кристаллохимическая формулы)

	Fe _{1.}	$_{21}Mg_{0.19}Ti_{1.6}$	$_{50}O_5$	
	$(Fe_{0.51}Mg_{0.1})$	$_{9}I_{0.30})(I_{0.30})$	$_{65}$ Fe _{0.35}) ₂ O ₅	
	O (1)	O(2)	O(3)	Σ
<i>M</i> (1)	0.34→x2	0.49 ^{→x2}	0.60 ^{→x2}	2.86
		\downarrow_{x2}		
<i>M</i> (2)	$0.67^{\rightarrow x2}$	0.46	0.82	3.57
	↓x2	↓x2	0.58	
	0.37			
Σ	2.05	1.90	2.00	
	Fe ₁	.14Mg _{0.2} Ti _{1.6}	₆ O ₅	
	$(\mathrm{Fe}_{0.5}\mathrm{Mg}_{0.5}$	$_{2}\text{Ti}_{0.3}$)(Ti $_{0.68}$	$_{3}Fe_{0.32})_{2}O_{5}$	
	O(1)	O(2)	O(3)	Σ
<i>M</i> (1)	0.34 ^{→x2}	$0.49^{\rightarrow x2}$	$0.60^{\rightarrow x^2}$	2.86
		\downarrow_{x2}		
<i>M</i> (2)	0.68 ^{→x2}	0.46	0.83	3.62
	↓x2	↓x2	0.59	
	0.38			
Σ	2.08	1.90	2.02	
	Fe ₀	.86Mg _{0.2} Ti _{1.9}	4O5	
	$(Fe_{0.4}Mg_$	$_{2}\text{Ti}_{0.4})(\text{Ti}_{0.77})$	$_{7}Fe_{0.23})_{2}O_{5}$	
	O (1)	O(2)	O(3)	Σ
<i>M</i> (1)	$0.35^{\rightarrow x2}$	$0.50^{\rightarrow x2}$	$0.61^{\rightarrow x2}$	2.92
		↓x2		
<i>M</i> (2)	$0.70^{\rightarrow x2}$	0.47	0.85	3.70
	↓x2	\downarrow_{x2}	0.60	
	0.38			
Σ	2.13	194	2.06	

параметры ромбической элементарной ячейки таковы: a = 3.7331(6), b = 9.768(1), c = 9.991(1) Å, V = 364.3(1) Å³.

Трехмерный набор дифракционных отражений получен для монокристалла с размерами 0.17 × × 0.11 × 0.08 мм при комнатной температуре с использованием монокристального дифрактометра "Xcalibur" S CCD на Мо*К* α -излучении (λ = 0.71073 Å) для полной сферы обратного пространства в интервалах углов θ от 4.08 до 30.40°. Обработка экспериментальных данных производилась с помощью пакета программ CrysAlis v. 1.171.39.46.

Параметры ромбической элементарной ячейки, уточненные с использованием 1710 отражений: a = 3.7325(1), b = 9.7649(4), c = 9.9902(3) Å, V = 364.12(2) Å³, Z = 4. Кристаллическая структура определена на основе прямых методов в рамках пространственной группы *Стст* и уточнена в анизотропном приближении тепловых колебаний атомов с использованием комплекса программ SHELX-97 [11]. Заключительный фактор расходимости составил 0.0183 для 301 независимого отражения с $I > 2\sigma(I)$. Координаты атомов и параметры их тепловых смещений приведены в табл. 1.

В исследованном нами образце наиболее вероятное распределение катионов соответствует структурной формуле $^{M(1)}(\text{Fe}_{0.51}\text{Mg}_{0.19}\text{Ti}_{0.30})^{M(2)}(\text{Ti}_{0.65}\text{Fe}_{0.35})_2\text{O}_5$. M(2)-октаэдр искажен сильнее, чем M(1)-октаэдр. Длины связей M(1)–О находятся в диапазоне 1.930(2)–2.156(2) Å, диапазон длин связей M(2)–О составляет 1.858(2)–2.176(2) Å. Средние длины связей в октаэдрах $M(1)\text{O}_6$ и $M(2)\text{O}_6$ составляют 2.032 и 2.000 Å соответственно.

В табл. 2 приведены результаты расчета сумм валентных усилий для различных составов: первый блок табл. 2 соответствует финальному составу, уточненному с использованием данных электронно-зондового анализа, второй и третий – границам диапазона уточнения, в котором *R*-фактор имеет практически постоянное минимальное значение, близкое к 0.018. Так как отношение Fe^{2+} : Fe^{3+} в позициях *M*(1) и *M*(2) изначально неизвестно, при расчете сумм валентных усилий использовалось усредненное значение $R_0 = 1.712$ Å.

Из сравнения данных, приведенных в табл. 2, видно, что оптимальным является состав, соответствующий эмпирической формуле, рассчитанной по электронно-зондовым данным: для этого состава сумма валентных усилий на всех катионах формулы, рассчитанной на Z = 4, строго равна теоретической величине общего заряда на этих катионах (+10 в сбалансированной по зарядам формуле с пятью атомами кислорода), тогда как остальные варианты дают завышенные суммы валентных усилий.

Сбалансированная по зарядам кристаллохимическая формула, рассчитанная в предположении о том, что средний заряд катионов в позиции M(2) равен сумме валентных усилий на этой позиции, следующая:

$$\begin{split} ^{M1} & (Mg_{0.19}Fe_{0.25}^{2+}Fe_{0.26}^{3+}Ti_{0.30})^{2.86+} \\ & [^{M2} & (Ti_{0.65}Fe_{0.27}^{3+}Fe_{0.08}^{2+})^{3.57+}]_2O_5. \end{split}$$

В этой формуле средний заряд катионов в позиции M(1) (+2.86) в точности совпадает с суммой валентных усилий на этой позиции (+2.86), что подтверждает корректность полученных структурных данных. Полученное распределение титана между позициями M(1) и M(2) в природном железистом аналоге армолколита согласуется с литературными данными для трех синтетических образцов соединения Fe²⁺Ti₂O₅ со структурой псевдобрукита и кристаллохимическими формулами

$${}^{M(1)}(Fe_{0.68}^{2+}Ti_{0.32})^{M(2)}(Ti_{0.84}Fe_{0.16}^{2+})_2,$$

$${}^{M(1)}(Fe_{0.72}^{2+}Ti_{0.28})^{M(2)}(Ti_{0.86}Fe_{0.14}^{2+})_2 \varkappa$$

$${}^{M(1)}(Fe_{0.81}^{2+}Ti_{0.19})^{M(2)}(Ti_{0.905}Fe_{0.095}^{2+})_2 [1].$$

Во всех случаях титан распределяется между позициями M(1) и M(2), доминируя в последней.

В заключение остановимся на вопросе статуса изученного в настоящей работе Mg–Fe–Ti-оксида как минерального вида. В настоящее время приняты два критерия для определения доминирующего катиона в позиции кристаллической структуры [12, 13]. Согласно *критерию среднего заряда*, видообразующим компонентом является тот, заряд которого наиболее близок к среднему заряду катионов в данной позиции. Для позиции M(1) с составляется (Мд. $Eo^{2+} Eo^{3+} Ti$)

M(1) с заселенностью ($Mg_{0.19}Fe_{0.25}^{2+}Fe_{0.26}^{3+}Ti_{0.30}$) средний заряд (+2.86) близок к 3 и, следовательно, катион Fe³⁺ должен рассматриваться как видообразующий в данном минерале и, таким образом, этот минерал следовало бы рассматривать как разновидность псевдобрукита. С другой стороны, согласно *критерию преобладающей валентности* изученный минерал является $^{M(1)}M^{2+}$ -доминантным (суммы двух-, трех- и четырехвалентных катионов в позиции M(1) равны 0.44, 0.26 и 0.30 соответственно) при доминировании катиона Fe²⁺, который, таким образующий. Полученное противоречие показывает, что принятые в настоящее время принципы выделения минеральных видов нуждаются в уточнении.

Мы рассматриваем критерий преобладающей валентности как предпочтительный в данном случае, так как он приводит к идеализированной формуле $Fe^{2+}Ti_2O_5$, которая по содержанию титана (2 атома на формулу) ближе к эмпирической формуле (1.6 атома на формулу), чем идеализированная формула псевдобрукита $Fe_2^{3+}TiO_5$. Однако окончательное решение о статусе изученного минерала может быть принято только после того, как будут сформулированы правила выделения минеральных видов в подобных случаях.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Рентгенографическое исследование минерала осуществлено при поддержке Российского научного фонда (грант РНФ № 19-17-00050). Изучение его химического состава и кристаллохимический анализ выполнены по теме Государственного задания, номер государственной регистрации АААА-А19-119092390076-7. Рентгеновское изучение порошка минерала осуществлено на оборудовании ресурсного центра "Рентгенодифракционные методы исследования" СПбГУ.

СПИСОК ЛИТЕРАТУРЫ

- Bowles J.F.W. Definition and Range of Composition of Naturally Occurring Minerals with the Pseudobrookite Structure // Amer. Mineral. 1988. V. 73. P. 1377–1383.
- Anderson A.T., Bunch T.E., Cameron E.N., Haggerty S.E., Boyd F.R., Finger L.W., James O.B., Keil K., Prinz M., Ramdohr P., El Goresy A. Armalcolite: A New Mineral from the Apollo 11 Samples // Geochim. Cosmochim. Acta. 1970. V. 34. Supp. 1. P. 55–63.
- Pedersen A.K. Armalcolite-bearing Fe-Ti Oxide Assemblages in Graphite-equilibrated Salic Volcanic Rocks with Native Iron from Disko, Central West Greenland // Contr. Mineral. Petrol. 1981. V. 77. P. 307-324.
- 4. *Lapin V.V., Kurtzeva N.N., Ostrogorskaya O.P.* The Composition of Anosovite and of the Titanium Sesquioxide in Titanium-rich Slags // Doklady Akademii Nauk SSSR. 1956. V. 109. P. 824–827 (in Russian).
- 5. Соколова Е.В., Егоров-Тисменко Ю.К., Нишанбаев Т. Кристаллическая структура армалколита // Вестн. Моск. ун-та. сер.4. Геология. 1991. № 3. С. 82–86.
- Teller R.G., Antonio M.R., Grau A.E., Gueguin M., Kostiner E. Structural Analysis of Metastable Pseudobrookite Ferrous Titanium Oxides with Neutron Diffraction and Mössbauer Spectroscopy // J. Solid State Chem. 1990. V. 88 (2). P. 334–350.
- Shiojiri M., Sekimoto S., Maeda T., Ikeda Y., Iwauchi K. Crystal Structure of Fe₂TiO₅ // Phys. Stat. Sol. (a). 1984. V. 84. P. 55–64.
- Brigatti M.F., Contini S., Caperdi S., Poppi L. Crystal Chemistry and Cation Ordering in Pseudobrookite and Armalcolite from Spanish Lamproites // Eur. J. Mineral. 1993. V. 5. P. 73–84.
- Pellicer M.J. Estudio petrológico y geoquímico de un Nuevo yacimiento de rocas lamproíticas situado en las proximidades de Aljorra (Murcia) // Estudios Geológicos 1973. V. 29. P. 99–106 (in Spanish).
- Contini S., Venturelli G., Toscani L., Capedri S., Barbieri M. Cr-Zr-armalcolite-bearing Lamproites of Cancarix, SE Spain // Mineral. Mag. 1993. V. 57. P. 203–216.
- 11. *Sheldrick G.M.* A Short History of SHELX // Acta. Crystallogr. 2008. V. A64. P. 112–122.
- Bosi F., Hatert F., Hålenius U., Pasero M., Miyawaku R., Mills S. On the Application of the IMA–CNMNC Dominant-valency Rule to Complex Mineral Compositions // Mineral. Mag. 2019. V. 83. P. 627–632.
- Bosi F., Biagioni C., Oberti R. On the Chemical Identification and Classification of minerals // Minerals. 2019. V. 9(591), 12 p. https://doi.org/10.3390/min9100591
- Gagné O.C., Hawthorne F.C. Comprehensive Derivation of Bond-valence Parameters for Ion Pairs Involving Oxygen // Acta Crystallogr. 2015. V. B71. P. 562–578.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 497 № 2 2021

PSEUDOBROOKITE GROUP: CRYSTAL CHEMICAL FEATURES OF THE ARMALCOLITE Fe²⁺ ANALOGUE

O. N. Kazheva^{*a*,#}, N. V. Zubkova^{*b*}, Ch. Schäer^{*c*}, N. V. Chukanov^{*a*,*b*}, Corresponding Member of the RAS I. V. Pekov^{*b*}, S. N. Britvin^{*d*}, and Academician of the RAS D. Yu. Pushcharovskiy^{*b*}

^a Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russian Federation ^b Lomonosov Moscow State University, Moscow, Russian Federation ^c Gustav Stresemann-Strasse 34, 74257 Untereisesheim, Germany ^d Saint-Petersburg State University, Saint-Petersburg, Russian Federation

[#]E-mail: koh@icp.ac.ru

The crystal structure of a potentially new mineral, Fe^{2+} -dominant analogue of armalcolite with the idealized formula $Fe^{2+}Ti_2O_5$ has been solved. The sample studied originates from a pneumatolytic association related to the lamproite complex of SE Spain. The mineral is orthorhombic, space group *Cmcm*, the unit-cell parameters are: a = 3.7325(1), b = 9.7649(4), c = 9.9902(3) Å, V = 364.12(2) Å³. The crystal-chemical formula $^{M1}(Mg_{0.19}Fe_{0.25}^{2+}Fe_{0.26}^{3+}Ti_{0.30})^{2.86+}[^{M2}(Ti_{0.65}Fe_{0.27}^{3+}Fe_{0.08}^{2+})^{3.57+}]_2O_5$ (Z = 4) is in a good agreement with the chemical composition of the mineral.

Keywords: double oxides, pseudobrookite group, armalcolite Fe^{2+} analogue, X-ray structural analysis, cation ordering, lamproite, Aljorra, Spain