ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ, 2021, том 498, № 1, с. 23–30

——— ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ ——

УДК 550.42

НОВЫЕ СВИДЕТЕЛЬСТВА ПОЛИЦИКЛИЧНОСТИ ПЛАТИНОМЕТАЛЛЬНЫХ РОССЫПЕОБРАЗУЮЩИХ ФОРМАЦИЙ ЩЕЛОЧНО-УЛЬТРАОСНОВНОГО МАССИВА КОНДЁР: РЕЗУЛЬТАТЫ ¹⁹⁰Pt-⁴He-ДАТИРОВАНИЯ

© 2021 г. А. Г. Мочалов^{1,*}, О. В. Якубович^{1, 2}, Ф. М. Стюарт³, академик РАН Н. С. Бортников⁴

Поступило 09.01.2021 г. После доработки 05.02.2021 г. Принято к публикации 08.02.2021 г.

Изложены результаты ¹⁹⁰Pt-⁴He-датирования минералов группы самородной платины из уникального россыпного месторождения платиновых металлов рек Кондёр-Уоргалан и сколков дунитов щелочно-ультраосновного массива Кондёр. Полученные результаты измерений ¹⁹⁰ Рt и ⁴ Не в 75 образцах не только определяют возраст самих минералов, но и датируют рудообразующие процессы, чем подтвердили ранее развиваемую модель полицикличного образования россыпеобразующих формаций минералов платиновой группы (МПГ), и тем самым проливают свет о длительности становления щелочно-ультраосновного массива Кондёр. Выделены: (а) 190 Pt $^{-4}$ He-возраст 143 ± 7 млн лет отражает время становления самого массива и ранних этапов образования МПГ магматогенного платинового (Pt) и магматогенно-флюидно-метасоматических Pt и осмисто-платинового (Pt > Os) типов, а также МПГ флюидно-метаморфогенного иридисто-платинового (Pt > Ir) типа: (б) ¹⁹⁰Pt- 4 Не-возраст 128 \pm 6 млн лет — время возникновения ранних этапов магматогенно-флюидно-метасоматического палладисто-платинового (Pt > Pd) типа и поздних этапов Pt, Pt > Os и Pt > Iг-типов; (в) 190 Pt- 4 He-возраст 115 ± 6 млн лет – время поздних этапов формирования Pt > Pd-типа. Хорошее соответствие этих возрастов с геолого-минералогическими наблюдениями позволяет сделать вывод о полицикличности образования россыпеобразующих МПГ и их формаций в щелочно-ультраосновном массиве Кондёр в течение около 30 млн лет.

Ключевые слова: минералы платиновой группы, минералого-геохимические типы, генезис, ультраосновные породы, щелочные породы, Pt–He-датирование, массив Кондёр, Алданский щит **DOI:** 10.31857/S2686739721050108

Оценка возраста, периодичности (цикличности) и длительности минералообразующих процессов — ключевой вопрос в учении о происхождении рудных месторождений. Его решение имеет не только фундаментальное значение, но и играет важную практическую роль, так как сведения о возрасте месторождений позволяют установить связи между рудообразующими процессами и геологическими событиями, а следовательно, улучшить критерии прогноза перспективных территорий. Разработка новых изотопных методов датировки рудных минералов дала возможность значительно продвинуться в решении этого вопроса. В сообщении изложены результаты ¹⁹⁰Pt-⁴Не-датирования минералов группы самородной платины уникального россыпного месторождения платиновых металлов рек Кондёр-Уоргалан, которые, как оказалось, не только определяют возраст самих минералов, но и датируют рудообразующие процессы, чем подтвердили ранее развиваемую модель полицикличного образования россыпеобразующих формаций минералов платиновой группы (МПГ), и тем самым проливают свет о длительности становления шелочно-ультраосновного массива Кондёр.

Представления о последовательности платинометалльного рудообразования пород ультрамафитовых формаций основаны на результатах изучения онтогении агрегатов МПГ с силикатами,

¹ Институт геологии и геохронологии докембрия Российской академии наук, Санкт-Петербург, Россия ² Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

³ Центр изотопных исследований при центре изучения окружающей среды при университетах Шотландии, Восточный Килбрайд, Великобритания

⁴ Институт рудных месторождений, петрографии, минералогии и геохимии Российской академии наук, Москва, Россия

^{*}E-mail: mag1950@mail.ru

оксидами и сульфидами. Установленная последовательность зарождения, развития и уничтожения МПГ, как правило, соответствовала времени образования и преобразования вмещающих руды пород.

Разработанные модели происхождения месторождений МПГ служат основанием их достоверных поисков и разведок [2-6]. Разработка методов изотопного ¹⁸⁷Re-¹⁸⁷Os- и ¹⁹⁰Pt-¹⁸⁶Os-датирования ([1, 9, 11] и др.) позволила определить возраст месторождений, но полученные результаты в целом не соответствовали данным геологии ультраосновных массивов и вмещающих их тектонических структур и минералогии. Важный шаг в решении проблемы датирования МПГ был сделан в ИГГД РАН Ю.А. Шуколюковым с коллегами, благодаря разработке метода ¹⁹⁰Pt-4He-изотопного датирования [8]. Предварительные точечные измерения ¹⁹⁰Pt-⁴He-возраста изоферроплатины размером более 0.1 мм достаточно точно совпадали с известным возрастом продуцирующих их ультраосновных массивов [8]. В дальнейшем этот метод был усовершенствован и проверен при изучении россыпеобразующих минералов платины (РМП) – изоферроплатины, самородной платины, тетраферроплатины и их криптоагрегатов - из уникального россыпного месторождения рек Кондёр-Уоргалан и его коренного источника шелочно-ультраосновного массива Кондёр на Алданском щите (Аяно-Майский район Хабаровского края) с детально изученной минералогией [2-6].

Дуниты массива Кондёр являются продуктами многократного полициклического кумулятивного образования. Каждые последующие серии проходящего пикритового расплава приводили ранее образованные дуниты к синмагматическому метасоматическому и метаморфическому преобразованию в различные фациальные разновидности. Наиболее поздними кумулятивными ультраосновными породами являются мелкозернистые дуниты, верлиты и пироксениты периферии массива. В дальнейшем ультраосновные породы были подвергнуты инъекциям монцоидоидных, щелочных и гранитоидных магматических образований, что привело и к широкому распространению метасоматитов. Это выразилось и в формировании пяти самостоятельных минералого-геохимических и генетических типов МПГ (рис. 1) [4, 6]. Выделены: 1) платиновый магматогенный тип в мелкозернистых дунитах и пироксенитах (Pt); 2) платиновый магматогенно-флюилно-метасоматический тип в крупнозернистых дунитах с "черным оливином", цвет которого обусловлен микровключениями хромшпинелида, магнетита и клинопироксена (Pt); 3) магматогенно-флюидно-метасоматический осмисто-платиновый тип в шлирах и линзовидных жилах клинопироксенитов в дунитах (Pt > Os); 4) флюидно-метаморфогенный иридисто-платиновый тип в светлых средне-, крупнозернистых дунитах, клинопироксенитах и хромититах (Pt > Ir); 5) магматогенно-флюиднометасоматический палладисто-платиновый тип в метасоматитах по дунитам (Pt > Pd). Главными МПГ всех типов являются РМП (рис. 1). Детальное изучение онтогении МПГ массива Кондёр позволило, с одной стороны, предложить и, с другой стороны, развить [4, 6] модель полициклического формирование россыпеобразующих формаций минералого-геохимических типов в многофазном кумулятивном габбро-пироксенит-дунитовом массиве Гальмоэнан Олюторского аккреционного комплекса Корякско-Камчатской складчатой области [3].

Для РМП из коренных и россыпных проявлений, приуроченных к массиву Кондёр, был установлен 190 Pt- 4 He-возраст 129 ± 6 млн лет (24 измерения) [7]. Изученные зерна относились к минералого-геохимическим типам: Pt > Ir, Pt > Os и Pt > Pd. Изотопное ¹⁹⁰ $Pt-^4He$ -датирование зерен РМП Рt-типов (рис. 1) в коренных породах не проводилось из-за их незначительных размеров. менее 0.1 мм [4, 6]. Определение возраста МПГ Pt-типов представляет особое значение, так как они относятся к "прародителям" всех остальных россыпеобразующих формаций. В месторождении рек Кондёр-Уоргалан запасы РМП двух Рtтипов составляют несколько тонн [12], а расчетное их количество в эрозионном срезе только дунитов почти в 20 раз превышает запасы россыпи (120 т) [2]. Установлено, что самое большое относительное количество РМП Рt-типов распространено в наиболее удаленной части россыпного месторождения от щелочно-ультраосновного массива Кондёр, в аллювии р. Уоргалан. Здесь богатая часть россыпи МПГ залегает в самых древних плиоцен-нижнеплейстоценовых осадках [2, 4, 12]. Естественно, что большая часть РМП Pt-типов в аллювии р. Уоргалан представлена продуктами эрозии головной части мезозойской купольной морфоструктуры, в основании которой были производные щелочно-ультраосновного плутона Кондёр [12]. Кроме того установлено, что в аллювии р. Уоргалан и низовье р. Кондёр "шлиховую платину" составляют наименьшие количества РМП Pt > Pd типа относительно всего россыпного месторождения Кондёр. Следовательно, в пределах верхнего эрозионного среза мезозойской купольной морфоструктуры породы были в меньшей степени подвержены влиянию монцонитовых, шелочных и кислых расплавов [4, 6]. Таким образом, геолого-минералогические наблюдения однозначно указывают на то, что известные на месторождении генетические типы РМП образовались в разное время. В этой связи датирование МПГ из различных участков россыпи позволит усовершенствовать модель эволюции россыпеобразующих формаций в эрозионных срезах массива

Рис. 1. Соотношения атомарных количеств Ir, Rh и Pd в РМП россыпных месторождений массива Кондёр. 143 млн лет, 128 млн лет, 115 млн лет – обозначения образцов, по которым выделен соответствующий ¹⁹⁰Pt-⁴He-возраст. Остальные знаки образцов соответствуют минералого-геохимическим типам (расшифровка их названий в тексте); в скобках приведены содержания Ir в мас. %.

Кондёр. Для этого было проведено ¹⁹⁰ Pt—⁴ He-изотопное датирование минералов из разных типов.

Было проведено ¹⁹⁰ Pt-⁴ He-датирование 51 образца РМП и включены 24 ранних измерения (табл. 1, рис. 1) из работы [7]. Новая 51 проба РМП отобрана по всей длине россыпного месторождения из геологоразведочных линий буровых скважин за пределами кольцевой морфоструктуры Кондёр и геологоразведочных траншей в пределах щелочно-ультраосновного массива Кондёр. В пробах из траншей, кроме зерен РМП, так же исследованы образцы небольших самородков (табл. 1). Зерна РМП изучены визуально и микроскопически в полированных шлифах, их полный химический состав установлен с помошью РСМА Е.Н. Горячевой (СВКНИИ ДВО РАН), Н.Н. Кононковой (ГЕОХИ РАН) и О.Л. Галанкиной (ИГГД РАН). Гелий был определен в зернах, выделенных из полированных шлифов (табл. 1). Эти зерна характеризуют все минералого-геохимические типы месторождения (рис. 1).

Концентрация радиогенного гелия определялась на магнитном секторном масс-спектрометрическом комплексе МСУ-Г-01-М (ИГГД РАН) и на Helix-SFT (SUERC). При анализе на МСУ-Г-01-М зерна РМП заворачивались в танталовую фольгу с добавлением чистой меди. Парал-

лельно готовился холостой образец, представляющий собой танталовую фольгу и медь без зерен РМП. В условиях фор-вакуума специальным шлюзом образцы помещались в рениевый цилиндр, где они в несколько этапов нагревались до 1400°С. На каждом этапе нагрева выделяющиеся газы H₂, N₂, O₂, H₂O, CO₂ и др. очищались с помощью двух геттерных насосов SAES. Так же определялись значения на холостом опыте с пустой танталовой фольгой; они не превышали 1×10^{-10} см^{3 4}He. Если доля гелия, выделившаяся из зерен РМП при температуре ниже 1000°С составляла более 5% от общего количества гелия, то такие образцы не были использованы для расчета Pt-He-возраста. Гелий, выделившийся из зерен ниже 1000°С, не учитывался при расчете Pt-He-возраста. При анализе Helix-SFT нагрев зерен РМП осуществлялся диодным лазером (808 нм; 75 Вт; [10]). Зерна помещались в 3-мм углубления, сделанные в предварительно отожженной медной подложке, и накрывались сапфировым стеклом. В течение 12 ч эта сборка дегазировалась при температуре ~150°С в условиях высокого вакуума. Выделение гелия (плавление зерна) осуществлялось прямым нагревом образца [14]. Полнота плавления контролировалась по изменению формы зерна с неправильной на сферическую. Выде-

N п.п.	Место отбора	Тип	Проба Pt, в мас. %	Навеска, мг	${}^{4}\text{He} \times 10^{10} \text{ at.}$	1	Рt-He-возраст, млн лет	lσ
1	Руч. Распадок, р.л. 2	Ol	86.3	2.670	15.3	0.3	112	4
2	Руч. Распадок, р.л. 2	"	85.3	3.980	24.2	0.4	121	3
3	Руч. Распадок, р.л. 1	Spl	84.9	7.32	49.4	0.6	135	3
4	Руч. Распадок, р.л. 1	"	85.1	2.35	16.8	0.3	142	5
5	Руч. Распадок, р.л. 1	"	85.1	3.99	26.6	0.4	133	4
6	Руч. Распадок, р.л. 1	"	85.1	10.26	63.8	0.6	124	3
7	Руч. Распадок, р.л. 1	"	85.1	3.99	26.6	0.4	129	3
8	Руч. Распадок, р.л. 4	Срх	85.6	4.195	26.0	0.4	123	3
9	Руч. Коротыш, р.л. 8	N Ol > Spl	84.4	0.96	5.28	0.18	112	6
10	Руч. Распадок, р.л. 0	"	85.0	2.35	16.8	0.3	138	4
11	Руч. Распадок, р.л. 0	"	84.4	2.756	17.93	0.22	130	3
12	П. скл. руч. Бегун, р.л. 10	"	80.3	3.707	26.2	0.5	149	4
13	Л. скл. руч. Южный, р.л. 12	"	82.3	2.347	13.9	0.3	122	4
14	П. скл. руч. Бегун, р.л. 8	N Spl	84.8	1.22	7.70	0.18	126	5
15	Л. скл. руч. Малый, р.л. 8	"	84.4	1.173	7.06	0.29	121	7
16	Л скл. руч. Малый, р.л. 8	"	84.4	3.174	18.9	0.4	119	4
17	Л. скл. руч. Малый, р.л. 4	N Spl > Ol	85.5	1.13	6.35	0.20	111	5
18	Л. скл. руч. Малый, р.л. 4	"	85.5	1.37	7.87	0.23	114	5
19	Л. скл. руч. Малый, р.л. 4	"	85.5	1.6	9.59	0.25	119	5
20	Руч. Безымянный, р.л. 4	N Cpx	83.8	4.152	25.2	0.4	122	3
21	Руч. Аномальный, р.л. 8	С	87.6	2.94	21.3	0.4	137	4
22	Руч. Аномальный, р.л. 8	"	89.6	11.58	77.2	0.7	126	2
23	П. скл. руч. Прямой, р.л. 8	"	86.9	2.59	15.5	0.3	116	4
24	П. скл. руч. Прямой, р.л. 8	"	90.6	3.082	18.9	0.3	114	3
25	Руч. Аномальный, р.л. 8	Т	88.3	7.69	52.9	0.6	132	3
26	Руч. Аномальный, р.л. 8	"	88.4	14.19	93.8	0.8	127	2
27	Руч. Аномальный, р.л. 8	ΝT	87.9	2.621	15.5	0.4	114	4
28	Руч. Малый, р.л. 4	Ш.п.	87.4	1.388	8.61	0.21	120	4
29	Руч. Южный, р.л. 4	"	85.6	1.842	11.17	0.29	120	5
30	Руч. Трезубец, р.л. 4	"	83.9	1.389	8.80	0.28	128	6
31	Руч. Аппендикс, р.л. 4	"	86.8	1.078	6.29	0.18	114	5
32	Руч. Коротыш, р.л. 8	"	85.8	2.16	12.94	0.25	118	4
33	П. скл. р. Кондёр, р.л. 208	Spl	86.7	7.44	52.3	0.6	137	3
34	П. скл. р. Кондёр, р.л. 208	"	86.4	8.42	58.6	0.6	136	3
35	П. скл. р. Кондёр, р.л. 208	N Spl > Ol	85.5	1.7	9.65	0.25	112	4
36	Р. Кондёр, р.л. 212	Ш.п.	85.3	1.044	6.86	0.10	130	4
37	Р. Кондёр, р.л. 192	"	84.4	2.371	14.7	0.4	125	5
38	Р. Кондёр, р.л. 176	"	86.2	1.04	6.25	0.15	118	5
39*	Р. Кондёр, р.л. 176	"	88.0	4.432	26.5	0.3	115	3

Таблица 1. Содержание платины и гелия в РМП и ее расчетный Рt-He-возраст из сколков дунитов и россыпей щелочно-ультраосновного массива Кондёр

Таблица 1. Окончание

N п.п.	Место отбора	Тип	Проба Pt, в мас. %	Навеска, мг	${}^{4}\text{He} \times 10^{10} \text{ at.}$	1	Рt-He-возраст, млн лет	1σ
40*	Р. Кондёр, р.л. 176	"	85.2	4.245	25.6	0.3	120	3
41*	Р. Кондёр, р.л. 176	"	84.3	4.593	28.1	0.4	123	3
42*	Р. Кондёр, р.л. 176	"	86.4	7.498	45.7	0.6	119	3
43	Р. Кондёр, р.л. 136	"	86.6	0.921	5.26	0.27	112	7
44	Р. Кондёр, р.л. 128	"	83.9	1.553	10.24	0.19	133	4
45*	Р. Кондёр, р.л. 56	"	87.2	1.718	10.55	0.25	119	4
46*	Р. Кондёр, р.л. 56	"	87.2	6.554	40.2	0.5	119	3
47*	Р. Кондёр, р.л. 56	"	82.5	1.628	10.28	0.13	129	3
48*	Р. Кондёр, р.л. 56	"	86.1	1.258	8.09	0.10	126	3
49*	Р. Кондёр, р.л. 56	"	88.0	0.832	4.86	0.07	112	3
50*	Р. Кондёр, р.л. 56	"	86.3	1.911	12.07	0.15	124	3
51*	Р. Кондёр, р.л. 56	"	83.1	0.515	3.23	0.05	128	4
52*	Р. Кондёр, р.л. 32	"	87.7	0.416	2.49	0.03	115	4
53*	Р. Кондёр, р.л. 32	"	88.7	0.330	2.02	0.03	117	5
54*	Р. Кондёр, р.л. 32	"	83.2	0.207	1.23	0.02	121	6
55	Р. Кондёр, р.л. 32	"	86.9	8.42	58.6	0.6	135	3
56	Р. Уоргалан, р.л.180	"	86.7	2.19	14.7	0.3	130	4
57	Р. Уоргалан, р.л.180	"	88.0	1.044	7.97	0.24	147	7
58	Р. Уоргалан, р.л.180	"	89.0	1.876	14.6	0.4	148	6
59	Р. Уоргалан, р.л.180	"	85.7	1.106	8.79	0.21	157	6
60	Р. Уоргалан, р.л.180	"	89.1	0.628	4.75	0.06	144	4
61	Р. Уоргалан, р.л.180	"	80.7	0.1464	2.64	0.05	122	8
62	Р. Уоргалан, р.л.164	"	83.9	1.148	7.75	0.19	136	5
63	Р. Уоргалан, р.л.164	"	87.7	0.979	7.28	0.18	144	6
64*	Р. Уоргалан, р.л.164	"	89.2	0.621	4.45	0.16	136	7
65*	Р. Уоргалан, р.л.164	"	80.5	2.178	13.0	0.3	126	4
66*	Р. Уоргалан, р.л.164	"	81.6	1.106	7.04	0.09	132	4
67*	Р. Уоргалан, р.л.164	"	86.4	2.053	13.24	0.15	126	3
68*	Р. Уоргалан, р.л.164	"	88.8	1.544	11.01	0.13	136	3
69*	Р. Уоргалан, р.л.164	"	85.5	1.109	7.20	0.09	128	3
70	Р. Уоргалан, р.л.24	"	85.5	0.489	3.26	0.13	132	8
71*	Р. Уоргалан, р.л.24	"	84.6	1.726	11.06	0.13	128	3
72*	Р. Уоргалан, р.л.24	"	84.2	1.430	8.76	0.10	123	3
73*	Р. Уоргалан, р.л.24	"	84.3	1.334	8.67	0.10	130	3
74*	Р. Уоргалан, р.л.24	"	85.7	0.896	5.84	0.07	129	4
75*	Р. Уоргалан, р.л.24	"	86.5	0.750	4.81	0.16	125	6

Примечание. Pt-He-возраст рассчитан исходя из распространенности изотопа ¹⁹⁰Pt – 0.0001296 [13]. * – содержание гелия в пробах было определено на масс-спектрометре Helix SFT в SUERC, в остальных – на масс-спектрометре MCУ-Г-01-М в ИГГД РАН. Сколки: Ol – в срастании с оливином; Spl – в срастании с хромшпинелидом; Cpx – в срастании с клинопироксеном; N Ol > Spl – самородок, в котором оливин преобладает над хромшпинелидом; С – кристалл; Т – двойник; ш.п. – "шлиховая платина"; р.л. 24 – разведочная линия и ее номер; п. скл. – правый склон долины или левый (л.).

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 498 № 1 2021

Рис. 2. ¹⁹⁰Pt—⁴He-"изохроны" россыпных месторождений платиновых металлов щелочно-ультраосновного массива Кондёр. Для образцов РМП (табл. 1) соответственно: 115 млн лет, 128 млн лет, 143 млн лет, и ш.п. ("шлиховая платина") 128 млн лет – общая для всех.

лившиеся газы очищались с помощью геттерных насосов SAES и охлажденным до температуры жидкого азота углем. Содержание гелия измерялось на приборе "Thermo" Helix-SFT. Фоновое содержание гелия в приборе, определенное в эксперименте с плавлением платиновой фольги, 3×10^{-11} см^{3 4}He.

Обработка полученных результатов (табл. 1, рис. 2) дала три ¹⁹⁰Pt-⁴He изохроны, соответствующие значениям 143 ± 7 , 128 ± 6 и 115 ± 6 млн лет. Различия в этих значениях лежат практически в пределах погрешности определений. Однако хорошее соответствие их геолого-минералогическим наблюдениям позволяет нам с большой долей уверенности сделать вывод о полицикличности образования РМП месторождения Кондёр в течение около 30 млн лет. Псевдоморфозы МПГ массива Кондёр связывают между собой все выделенные минералого-геохимические и генетические типы россыпеобразующих формаций [4-6]. Это также подтверждает достоверность каждой из ¹⁹⁰Pt-⁴Не-датировки РМП. Тем самым можно констатировать омоложение ¹⁹⁰Pt-⁴He-возрастов существенной(?) части ранних минеральных индивидов и агрегатов РМП с возрастом 143 ± 7 млн лет соответственно до 128 ± 6 млн лет или до 115 ± 6 млн лет.

Результаты датирования магматогенных МПГ $(143 \pm 7 \text{ млн лет})$ указывают на то, что массив Кондёр древнее, чем считался ранее (120–127 млн лет) на основании изотопного датирования породообразующих минералов. Такое несоответствие может быть обусловлено нарушением изотопных систем этих минералов ("омоложением") при наложении последующих процессов при становлении многофазного массива. Интересно также отметить, что результаты по 75 определениям (табл. 1, рис. 1) можно представить одной изохроной, тангенс угла наклона которой соответствует значению возраста — ш.п. 128 ± 6 млн лет (рис. 2). Этот результат полностью соответствует ранее опубликованному измерению [7], но как показало настоящее исследование, представляет "усредненный возраст" всех РМП, но не время образования их различных минералого-геохимических типов.

Таким образом, впервые с помощью ¹⁹⁰Pt-⁴Не-датирования получено подтверждение полициклической модели образования РМП месторождения Кондёр, предложенной на основании тщательного минералогического анализа распространения, онтогении и генезиса МПГ [2, 4–6].

(а) ¹⁹⁰Pt-⁴He-возраст 143 \pm 7 млн лет отражает время становления самого массива и ранних этапов образования МПГ магматогенного Pt-типа и магматогенно-флюидно-метасоматических Pt- и Pt > Os-типов, а также МПГ флюидно-метаморфогенного Pt > Ir-типа (о чем в частности свидетельствуют анализы 3, 4, 10, 12, 33 в табл. 1, рис. 1).

(б) ¹⁹⁰ Pt-⁴ He-возраст 128 \pm 6 млн. лет — время возникновения раннего этапа магматогеннофлюидно-метасоматического Pt > Pd-типа и поздних этапов магматогенно-флюидно-метасоматических Pt- и Pt > Os-типов, а также флюидно-метаморфогенного Pt > Iг-типа (рис. 1).

(в) 190 Pt- 4 He-возраст 115 \pm 6 млн лет — время поздних этапов формирования магматогенно-флю-идно-метасоматического Pt > Pd-типа (рис. 1).

Следовательно, результаты ¹⁹⁰Pt—⁴He-датирования РМП соответствуют и развивают модель полициклического образования и распространения минералого-геохимических типов и их россыпеобразующих формаций щелочно-ультраосновного массива Кондёр.

БЛАГОДАРНОСТИ

Авторы выражают признательность А.Б. Котову, Е.М. Горячевой, Н.Н. Кононковой, О.Л. Галанкиной, Е.С. Ивановой и Б.М. Гороховскому, за практическую помощь в проведении исследований.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена при финансовой поддержке гранта РФФИ № 18-05-00718 а, SUERC и СПбГУ (трэвел-грант 41128295). Авторы благодарят грант МОН 13-1902-21-0018.

СПИСОК ЛИТЕРАТУРЫ

- Корякско-Камчатский регион новая платиноносная провинция России. СПб.: Картфабрика ВСЕГЕИ, 2002. 383 р.
- Мочалов А.Г. "Шлиховая платина" россыпей Дальнего Востока России / Дис. ... д-ра геол.-мин. наук. М.: ИГЕМ РАН, 2001. 296 с.
- 3. Мочалов А.Г. Модель развития минералов платиновой группы габбро-пироксенит-дунитовых кумулятивных комплексов Корякского нагорья (Россия) // Геология рудных месторождений. 2013. № 3. С. 171–188.
- Мочалов А.Г. Замечательные минералы платины массива Кондёр (Хабаровский край) // Минералогический Альманах. Серия: Знаменитые минералогические объекты России. 2019. Т. 23. Вып. 3. 128 с.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ

- Мочалов А.Г. Разработка типоморфных минералого-геохимических критериев распространения россыпеобразующих формаций и месторождений платиновых металлов щелочно-ультраосновных массивов // Породо-, минерало- и рудообразование: достижения и перспективы исследований. Труды к 90-летию ИГЕМ РАН. [Электронный ресурс]. М.: ИГЕМ РАН, 2020. С. 613–616.
- Мочалов А.Г., Галанкина О.Л. Особенности онтогении россыпеобразующих минералов платины в условиях полициклического формирования щелочно-ультраосновного массива Кондёр (Хабаровский край, Россия) // В кн. Эволюция вещественного и изотопного состава докембрийской литосферы. 2018. С. 459–499, 669–675.
- Мочалов А.Г., Якубович О.В., Бортников Н.С. ¹⁹⁰Pt-⁴He возраст платинометальных рудопроявлений щелочно-ультраосновного массива Кондёр (Хабаровский край, Россия) // ДАН. 2016. Т. 469. № 5. С. 602–606.
- Шуколюков Ю.А., Якубович О.В., Мочалов А.Г., Котов А.Б., Сальникова Е.Б., Яковлева С. З., Корнеев С.И., Гороховский Б.М. Новый изотопный геохронометр для прямого датирования самородных минералов платины (¹⁹⁰Pt-⁴He метод) // Петрология. 2012. Т. 20. № 6. С. 545–559.
- Cabri L.J., Stern R.A., Czamanske G.K. Osmium Isotope Measurements of Pt-Fe Alloy Placer Nuggets from the Konder Intrusion Using a SHRIMP II Ion Microprobe. // 8th Int. Platinum Symp. Johannnesburg: The South African Institute of Mining and Metallurgy. 1998. P. 55–58.
- Foeken J.P.T., Stuart F.M., Dobson K.J., Persano C., Vilbert D. A Diode Laser System for Heating Minerals for (U-Th)/He Chronometry // Geochemistry, Geophys. Geosystems. 2006. V. 7. № 4. https://doi.org/10.1029/2005GC001190
- Luguet A., Nowell G.M., Pushkarev E., Ballhaus C., Wirth R., Schreiber A., Gottman I. ¹⁹⁰Pt-¹⁸⁶Os Geochronometer Reveals Open System Behaviour of ¹⁹⁰Pt-⁴He Isotope System. // Geochemical Perspectives Letteres. 2019. V. 11. P. 44–48.
- 12. *Mochalov A.G., Khoroshilova T.S.* The Konder Alluvial Placer of Platinum Metals // International platinum. Athens: Theophrastus publications, 1998. P. 206–220.
- Walker R.J., Morgan J.W., Beary E S., Smoliar M.I., Czamanske G.K., Horan M.F. Applications of the ¹⁹⁰Pt-¹⁸⁶Os Isotope System to Geochemistry and Cosmochemistry // Geochimica et Cosmochimica Acta. 1997. V. 61 № 22. P. 4799–4807.
- Yakubovich O.V., Stuart F.M., Nesterenok A.V., Carracedo A. Cosmogenic ³He in Alluvial Metal and Alloy Grains: Assessing the Potential for Quantifying Sediment Transport Times // Chemical Geology. 2019. V. 517. P. 22–33.

№ 1

том 498

2021

NEW EVIDENCE OF POLYCYCLIC GENESIS OF PLATINUM PLACERFORMING FORMATIONS OF ALKALINE-ULTRAMAFIC MASSIF KONDYOR: ¹⁹⁰Pt-⁴He DATING RESULTS

A. G. Mochalov^{a,#}, O. V. Yakubovich^{a, b}, F. M. Stuart^c, and Academician of the RAS N. S. Bortnikov^d

^a Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, Saint-Petersburg, Russian Federation ^b Saint Petersburg State University, Saint-Petersburg, Russian Federation

^c Isotope Geosciences Unit, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, UK

^d Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences,

Moscow, Russian Federation

#E-mail: mag1950@mail.ru

This article presents the results of ¹⁹⁰Pt–⁴He dating of the native platinum group minerals from a unique placer deposit of platinum metals in the Kondyor-Uorganan rivers and dunite fragments of the Kondyor alkalineultramafic massif. As it turned out, the obtained results of measurements of ¹⁹⁰Pt–⁴He age in 75 samples not only determine the age of the minerals themselves, but also date the ore-forming processes, which confirmed the previously developed model of polycyclic genesis of placer-forming formations of platinum group minerals (PGM), and thus shed light on the duration of the formation of alkaline ultramafic massif Kondyor. Highlighted: (a) ¹⁹⁰Pt–⁴He age of 143 ± 7 Ma reflects the time of formation of the massif itself and early stages of formation of PGMs of magmatogenic platinum (Pt) and magmatogenic-fluid-metasomatic Pt and osmiumplatinum (Pt > Os) types, as well as PGM fluid-metamorphogenic iridium-platinum (Pt > Ir) type; (b) ¹⁹⁰Pt–⁴He age 128 ± 6 Ma - the time when the early stages of the magmatogenic-fluid-metasomatic palladium-platinum (Pt > Pd) type and the late stages of the Pt, Pt > Os and Pt > Ir types; (c) ¹⁹⁰Pt–⁴He, 115 ± 6 Ma – the time of the late stages of the formation of the Pt > Pd –type. Good agreement of these ages with geological and mineralogical observations allows us to conclude that the formation of placer-forming PGMs and their formations in the alkaline-ultramafic massif Kondyor was polycyclic for about 30 Ma.

Keywords: platinum group minerals, mineralogical-geochemical types, genesis, ultramafic rocks, alkaline rocks, Pt–He dating, massif Kondyor, Aldan shield