———— ОКЕАНОЛОГИЯ ———

УДК 553.981; 551.35

ГАЗОГЕОХИМИЧЕСКИЕ АНОМАЛИИ УГЛЕВОДОРОДНЫХ ГАЗОВ В ДОННЫХ ОСАДКАХ ХРЕБТА ЛОМОНОСОВА И КОТЛОВИНЫ ПОДВОДНИКОВ СЕВЕРНОГО ЛЕДОВИТОГО ОКЕАНА

© 2021 г. А. В. Яцук^{1,*}, А. И. Гресов¹, академик РАН В. И. Сергиенко², Ю. П. Василенко¹, Д. А. Швалов¹

Поступило 30.03.2021 г. После доработки 21.07.2021 г. Принято к публикации 31.08.2021 г.

Представлены новые данные о составе углеводородных газов донных осадков Лаптево-Восточносибирской окраинно-шельфовой переходной зоны, континентального склона хребта Ломоносова и котловины Подводников Северного Ледовитого океана. Установлены аномальные концентрации метана и углеводородных газов (до С₅ включительно). Определены газогеохимические показатели восьми генетических групп углеводородных газов. На основании полученных материалов выполнен прогноз нефтегазоносности района исследований.

Ключевые слова: донные осадки, углеводородные газы, газогеохимические аномалии, Лаптево-Восточносибирская переходная зона, хребет Ломоносова, котловина Подводников, Северный Ледовитый океан, газогидраты, нефтегазоносность

DOI: 10.31857/S2686739721120161

В настоящее время одной из актуальных задач в Арктическом регионе является изучение аномальных углеводородных газогеохимических полей лонных осалков Северного Леловитого океана (СЛО) и газоматеринских источников их формирования. Лаптево-Восточносибирская окраинношельфовая переходная зона, котловина Подводников и хребет Ломоносова СЛО являются объектами пристального внимания ученых российского и мирового научного сообщества с позиций высоких перспектив нефтегазоносности и потенциальной гидратоносности акватории [1-6]. В представленной работе приведены новые данные газогеохимических исследований, позволяющие определить источники углеводородных газов (УВГ) в донных отложениях и оценить перспективы нефтегазоносности.

МАТЕРИАЛЫ И МЕТОДЫ

Материалом для исследования являются донные осадки, отобранные в процессе проведения ТОИ ДВО РАН трех российско-китайских экспедиций по проекту "Arctic Silk Way" на НИС "Академик М.А. Лаврентьев" (2016, 2018 и 2020 г., рис. 1). Длина поднятых колонок составляет от 52 до 590 см. Отбор осадочного материала осуществлялся прямоточными ударными трубками большого диаметра с пластиковыми вкладышами внутри. Дополнительно в ходе экспедиций коробчатыми пробоотборниками (бокскорерами) отбирались поверхностные осадки (интервал 0– 30 см). Всего в районе исследования выполнено 26 донных станций, поднято 49 кернов и 11 бокскореров (глубина моря 75–2565 м).

Газогеохимические исследования донных осадков проводились двумя методами — методом "Headspace" и методом термовакуумной и вакуумной дегазации (ТВД). Для анализа методом "Headspace" пробы осадка отбирались с фиксацией объема обрезанными пластиковыми шприцами (12 мл) в стеклянные емкости, объемом 43 мл. Водная фаза — насыщенный солевой раствор. Газовая фаза — 11 мл, ОСЧ гелий марки 6.0. Всего отобрано 298 проб "Headspace".

Для анализа методом ТВД пробы осадка отбирались с фиксацией объема обрезанными пластиковыми шприцами (20 мл) в стеклянные и герметичные емкости, объемом 116 мл. Всего было отобрано 69 проб осадка (из них 46 — в нижнем интервале колонок), на разных стадиях дегазации извлечено 138 проб газа. Таким образом, всего в

¹ Тихоокеанский океанологический институт им В.И. Ильичева Дальневосточного отделения Российской академии наук, Владивосток, Россия ² Институт химии Дальневосточного отделения Российской академии наук, Владивосток, Россия *E-mail: yatsuk@poi.dvo.ru

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ

том 501

Nº 2

2021

220

ходе исследований отобрано 367 проб осадка и выполнено 436 газовых анализов. Определение компонентного состава углеводородных газов (C1-C5) проводилось хроматографическим методом на газовом хроматографе "КристалЛюкс-4000M" (ООО НПФ "Мета-хром", Россия) в соответствии с действующими нормативными документами по аттестованной Росстандартом методике лаборатории газогеохимии ТОИ ДВО РАН (Свидетельство № 41, ПС 1.047–18). Газовый анализ проводился в судовой лаборатории в день отбора. В целом методика отбора, извлечения газов и обработки результатов соответствовала действующему руководству [12].

Изотопные-геохимические исследования выполнены в лаборатории стабильных изотопов ЦКП ДВГИ ДВО РАН и ВСЕГЕИ на масс-спектрометрах Finnigan MAT-253, Deltaplus XL и GC Combustion III по аттестованным для выполнения исследований методикам.

Для определения генезиса УВГ донных осадков использовался комплекс количественных геохимических показателей: молекулярной массы УВ-фракции ($M_{\rm VB}$) [13], весовых концентраций индивидуальных УВ [13] и их отношений коэффициентов преобразованности УВ-фракции (Кпр) [13, 14] и "влажности" (Квл) [15]. Коэффициенты Кпр и Квл представлены соотношениями: (C2 × C4)/C3 [13, 14] и Σ C2–C5/ Σ C1–C5 × × 100% [15], где C1–C5 – весовые концентрации УВ в долях на 1000.

РЕЗУЛЬТАТЫ

Исследованные керны донных отложений представлены алеврит-пелитовыми и пелит-алевритовыми осадками. Прослеживается тенденция к огрублению состава осадков и возрастанию содержания псаммитовой фракции ближе к материковому шельфу, а также в интервалах, накопившихся во время "теплых" (нечетных) морских изотопно-кислородных стадий (МИС). В структуре осадков наблюдается чередование темно-коричневых, желто-коричневых, оливково-серых и серых слоев. Для колонок, отобранных на континентальном склоне и шельфе моря Лаптевых, преобладает окраска оттенков серого цвета. Предварительные стратиграфические корреляции и сопоставление с опубликованными данными указывают на поздне-среднеплейстоценовый возраст нижнего интервала большинства колонок, для континентального склона и шельфа моря Лаптевых раннеголоценовый-позднеплейстоценовый возраст [16, 17].

В процессе предыдущих исследований донных отложений шельфовых акваторий Восточноарктических морей (BAMP) установлены значения, соответствующие аномальным концентрациям метана и УВГ, превышающие 0.0500 и 0.0010 см³/кг, фоновые концентрации, как правило, в среднем на порядок ниже данных значений [2, 18–20]. Региональные газогеохимические исследования в глубоководном секторе ВАМР до настоящего времени не проводились.

В составе углеводородных газов донных отложений обнаружены: метан, этилен, этан, пропилен, пропан, изобутан, н-бутан, неопентан, изопентан и н-пентан. Преобладающим компонентом во всех пробах является метан, содержание которого в интервале опробования 0-590 см варьирует в пределах 0.0001-0.1732 см³/кг. Минимальными концентрациями характеризуются поверхностные горизонты донных осадков (0-30 см), отобранные коробчатыми дночерпателями, в кометанонасыщенность не превышает торых 0.0042 см³/кг. В пределах верхнего интервала осадка (до 50 см), по-видимому, соответствующему наиболее активной биохимической зоне, концентрации метана не превышают 0.01 см³/кг (рис. 2). В вертикальном распределении содержание метана плавно растет, с максимумами в нижней части колонок. Максимальные значения метанонасыщенности (более 0.05 см³/кг) определены на поддонной глубине свыше 400 см (рис. 2).

Суммарные концентрации гомологов метана $(C_2 - C_5)$ в донных отложениях района исследований варьируют в пределах 0.00001-0.0054 см³/кг. Минимальными концентрациями характеризуются поверхностные горизонты донных осадков (0-30 см) с содержанием УВГ менее $0.00042 \text{ см}^3/\text{кг}$. В пределах верхнего интервала осадка (до 50 см), углеводородонасыщенность не превышает 0.0005 см³/кг (рис. 2). В вертикальном распределении содержание УВГ растет с глубиной опробования пикообразно, с максимумами в средней и нижней части колонок. Максимальная углеводородонасыщенность (более 0.001 см³/кг) определена на поддонной глубине свыше 100 см (рис. 2). В компонентном составе УВГ обнаружены: этилен – от 0.000007 до 0.00112 см³/кг, этан – от 0.000008 до 0.00219, пропилен от 0.000002 до 0.00006, пропан – от 0.000002 до 0.00153, изобутан – от 0.000002 до 0.000256, н-бутан – от 0.000002 до 0.0030, неопентан – 0.00299 (в единичной пробе), изопентан – от 0.00006 до 0.00108 и н-пентан – от 0.00001 до 0.00015 см³/кг соответственно. В большинстве проб отмечается преобладание предельных гомологов метана (этан, пропан) над непредельными (этилен, пропилен), а также превышение содержания изобутана и изопентана по сравнению с н-бутаном и н-пентаном.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Поскольку донные станции расположены по редкой сети опробования, все полученные дан-

Рис. 2. Вертикальное распределение содержания в донных осадках, см³/кг: а – метана; $\delta - YB\Gamma$ (C₂-C₅).

ные были сгруппированы в 6 районах, согласно их географическому расположению — котловина Подводников (юго-западная и юго-восточная часть), хребет Ломоносова (западный склон, центральная часть, восточный склон), район сочленения хребта Ломоносова с континентальным шельфом (табл. 1). В связи с тем, что максимальная интенсивность окислительных аэробных и биохимических процессов происходит в верхних интервалах (до 0.5–2 м) донных осадков [1], для дальнейшего газогенетического анализа использовались пробы ТВД (46 проб) самых нижних интервалов опробования колонок.

Исходя из установленных значений M_{yB} (16.09–23.78 г/моль), Кпр (0.7–340), Квл (0.4– 55%) и данных [13, 18–20], было выделено восемь генетических групп УВГ предполагаемых газоматеринских источников (табл. 2).

Анализ данных табл. 2 позволяет сделать вывод, что УВГ первой группы по геохимическим показателям близки к показателям для газогидратов преимущественно биогенного и биохимического происхождения ($M_{\rm VB} - 16.11$ г/моль, Кпр – 1.7, Квл – 0.7%), второй – полигенезисной смеси газов с доминированием УВГ, образованных в процессе катагенеза органического вещества (OB). В остальных шести группах доминируют миграционные эпигенетические газы различных газоматеринских источников, образование которых связано с процессами катагенеза OB; в ряде случаев – магматизма – в областях развития маг-

матических образований. В целом геохимические показатели УВГ генетических групп достаточно близки по значениям к их аналогам, изученных геоструктур и осадочных бассейнов Восточно-Сибирского моря (ВСМ) [18–20] и нефтегазоносных бассейнов Востока России [13].

Максимальной метанонасышенностью (в среднем 0.0735 см³/кг), а также минимальными показателями Мув, Кпр и Квл характеризуются донные отложения в областях развития предполагаемых газогидратов в пределах восточного и западного склонов ХЛ (станции 12, 13, 22, рис. 1, табл. 2) и Лаптевоморского континентального склона (станции LV83-11, LV83-12, рис. 1, табл. 2). Содержание Сорг в нижних интервалах данных колонок не превышает 0.70%. Единичное определение изотопного состава $\delta^{13}C - CH_4$, CO₂ (табл. 2) по станции LV90-12 и компонентный состав УВГ указывают на смешанный полигенетический состав УВГ. Минимальной метанонасыщенностью (в среднем 0.0030-0.0053 см³/кг) характеризуются районы предполагаемых нефтегазовых, газонефтяных, нефтяных скоплений и залежей. Повышенные значения метанонасыщенности (в среднем 0.0128-0.0201 см³/кг) установлены в осадках на площадях распространения предполагаемых магматических образований и газовых скоплений мезозойского возраста. Промежуточные значения метанонасыщенности (в среднем 0.0061-0.0062 см³/кг) установлены в осадках на площадях распространения предполагаемых

Показатели	Котловина П (К	Іодводников П)	Хребе	Район сочленения								
	Юго-западная часть	Юго- восточная часть	Западный склон	Центральная часть	Восточный склон	¬хр. Ломоносова с континен- тальным шельфом						
Глубина моря, м	1985-2546	369-2565	1136-2156	1357-1693	1612-2087	75-1282						
Горизонт отбора, см	496-530	320-420	470-560	500-590	530-550	52-500						
№/№ станций	7, 8, 9, 10	26, 27, 28, 29	20, 22, 23, 24, 25	15, 16, 17, 18, 19	11, 12*, 13, 14	6, LV83-10,						
						LV83-11, LV83-12						
Диапазон значений газонасыщенности (см ³ /кг) и газогеохимических показателей (от – до)												
CH_4 (C_1), см ³ /кг	0.0024-0.0147	0.0016-0.0102	0.0050- 0.0500	0.0016-0.0312	0.0034- 0.1732	0.0031– 0.0563						
$\Sigma C_2 - C_5$, см ³ /кг	0.0002-0.0004	0.0007- 0.0054	0.0002-0.0003	0.0003-0.0006	0.0002- 0.0014	0.0001-0.0006						
M_{yB} , г/моль	16.35-19.81	19.9-23.25	16.11-17.54	16.43-23.78	16.09-22.57	16.10-17.56						
Кпр	14.5-48.4	116.6-339.8	2.1-18.9	4.5-88.3	0.7-25.0	0.7-114.6						
Квл, %	3.1-27.2	36.8-55.0	0.7-11.9	3.3-44.8	0.4 - 40.7	0.7-16.2						
δ^{13} C-CH ₄ , VPDB ‰	_	-36.043.7	_	—	-60.8*	—						

Таблица 1. Результаты определения газогеохимических показателей и газонасыщенности нижней части колонок донных осадков

Прочерк – нет данных; * – единичное определение; полужирным шрифтом выделены аномальные значения.

-16.8...-19.4

-18.0...-20.8

0.2 - 0.52

твердых битумов, газоконденсатных скоплений и залежей.

 δ^{13} C-C₂H₆, VPDB ‰

δ¹³C-CO₂, VPDB ‰

Сорг, %

Максимальными значениями углеводородонасыщенности (в среднем 0.0027 см³/кг), а также максимальными показателями Мув, Кпр и Квл характеризуются отложения юго-восточной части КП на площадях распространения предполагаемых нефтяных скоплений и залежей (станции 26, 28, 29, рис. 1, табл. 2). Содержание Сорг в нижних интервалах данных колонок не превышает 0.52%. "Тяжелый" изотопный состав $\delta^{13}C - CH_4$, С₂Н₆, СО₂ (табл. 2) и компонентный состав УВГ указывают на преобладание эпигенетических УВГ термогенного генезиса. Минимальные значения углеводородонасыщенности (в среднем 0.0002-0.0003 см³/кг) установлены в осадках на площадях распространения магматических образований и газовых скоплений; промежуточные (в среднем 0.0004-0.0006 см³/кг) - остальные группы (см. табл. 2).

ЗАКЛЮЧЕНИЕ

Таким образом, восточный и локально западный склон ХЛ, а также Лаптевоморский континентальный склон характеризуются формированием в донных отложениях аномального метанового газогеохимического поля, предположительно, газогидратного происхождения; юго-восточная часть КП (Предвосточносибирского осадочного бассейна) – аномального углеводородного – газонефтяного и нефтяного (см. рис. 1); юго-западная часть КП – повышенного метанового – преимущественно газового и газоконденсатного. Важно отметить, что формирование аномальных газогеохимических полей в глубоководных донных отложениях СЛО до настоящего времени *не фиксировалось*.

0.34 - 0.39

0.37 - 0.7

Результаты настоящей работы подтверждают предполагаемые различными исследователями высокие перспективы нефтегазоносности континентального склона и глубоководных структур СЛО [3, 5, 7, 8]. Достаточно интересным выглядит обнаружение показателей предполагаемых локальных газонефтяных и нефтегазовых залежей в пределах центральной (мощность осадочного чехла до 2–3 км) и восточной части хребта Ломоносова (4–5 км).

Исходя из проведенных ранее газогеохимических исследований [20] и материалов данных работ установлено, что наиболее высокой *нефтегазоперспективностью* характеризуются котловина Подводников и центральная часть хребта Ломоносова. В исследованных акваториях необходимо

······································										
Предполагаемые газоматеринские	СН ₄ , см ³ /кг	ΣC ₂ -C ₅ , см ³ /кг	Весовые концентрации (в долях целого на 1000)					M _{yb} ,	Геохимические коэффициенты	
источники (донные станции)			\mathbf{C}_1	C ₂	C ₃	\mathbf{C}_4	C ₅	г/моль	Кпр	Квл, %
1. Газогидраты? (12, 13, 22, LV83-11, LV83-12)	0.0735	0.0004	993	4	2	1	1	16.11	1.7	0.7
2. Газовые скопле- ния мезозойского возраста? (7, 8, 15)	0.0201	0.0003	966	10	4	12	8	16.41	27.5	3.4
 Магматические образования (20, 23, 24, LV83-10) 	0.0128	0.0002	943	22	15	5	16	16.62	9	6
4. Твердые битумы (6, 14, 25)	0.0062	0.0004	866	48	16	14	55	17.53	48	13
 Базоконденсат- ные скопления и залежи (10) 	0.0061	0.0004	812	35	15	6	132	18.50	14.5	18.8
 6. Нефтегазовые скопления и залежи (17, 9, 16) 	0.0052	0.0004	765	30	11	14	179	19.34	30.9	21.2
 Газонефтяные скопления и залежи (11, 18, 19, 27) 	0.0030	0.0006	609	102	44	36	209	21.87	75.2	39
 8. Нефтяные скоп- ления и залежи (26, 28, 29) 	0.0053	0.0027	464	247	137	137	15	23.20	267.8	53.6

Таблица 2. Средние значения газонасыщенности донных осадков и геохимических показателей различных генетических групп УВГ

проведение дополнительных региональных газогеохимических работ. также проекта National Program on Global Change and Air-Sea Interaction (Project № GASI-GEORGE-04).

БЛАГОДАРНОСТИ

Авторы выражают благодарность А.С. Астахову, А.А. Босину и Р.Б. Шакирову (ТОИ ДВО РАН) за поддержку в проведении экспедиционных газогеохимических исследований, В.В. Калинчуку, К.И. Аксентову (ТОИ ДВО РАН) за помощь в отборе проб донных осадков.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Газогеохимические исследования выполнены при финансовой поддержке гранта РФФИ № 18-05-70038 "Ресурсы Арктики", в рамках Гостемы ТОИ ДВО РАН 0211-2021-0006 (121021500055-0). Морские экспедиционные работы проведены при финансовой поддержке Министерства образования и науки РФ, Национального фонда естественных наук КНР NSFC-Shandong (гранты № U1606401 и № 41420104005), гранта Marine S&T Fund of Shandong Province (№ 2018SDKJ0104-3), а

СПИСОК ЛИТЕРАТУРЫ

- Старобинец И.С., Петухов А.В., Зубайраев С.Л. и др. Основы теории геохимических полей углеводородных скоплений. М.: Недра, 1993. 332 с.
- 2. *Яшин Д.С., Ким Б.И.* // Геология нефти и газа. 2007. № 4. С. 24–35.
- 3. Хаин В.Е., Полякова И.Д., Филатова Н.И. Геология и геофизика. 2009. № 4. С. 443–460.
- Казанин Г.С., Барабанова Ю.Б., Кириллова-Покровская Т.А. и др. // Разведка и охрана недр. 2017. № 10. С. 51–55.
- 5. Полякова И.Д., Борукаев Г.Ч. // Нефтегазовая геология. Теория и практика. 2018. Т. 13. № 2. http://www.ngtp.ru/rub/5/17_2018.pdf.
- Miller C.M., Dickens G.R., Jakobsson M., et al. // Biogeosciences. 2017. V. 14. P. 2929–2953.
- Рекант П.В., Гусев Е.А., Черных А.А. и др. Геологическая карта. Масштаб 1:1000000. Серия Океанская. Лист U-53, 54, 55, 56 хребет Ломоносова. Объяснительная записка. СПб.: ВСЕГЕИ, 2011. 66 с.

- Геологическая карта масштаба 1:1000000. Серия Лаптево-Сибироморская, Океанская. Лист Т-57– 60 – остров Генриетты. Объяснительная записка. СПб.: ВСЕГЕИ, 2015. 84 с.
- Государственная геологическая карта России и прилегающих акваторий. Масштаб 1:2500000. СПб.: ВСЕГЕИ, 2016.
- Jakobsson M., Mayer L., Coakley B., et al. // Geophys. Res. Lett. 2012. V. 39. L12609.
- Sherwood K.W., Johnson P.P., Craig J.P., et al. // Geological Society of America. Boulder, CO, 2002. P. 39– 66. (Special Papers, 360).
- 12. Руководство по определению и прогнозу газоносности вмещающих пород при ведении геологоразведочных работ. Ростов-на-Дону: ВНИИГРИуголь, 1985. 96 с.

- 13. *Гресов А.И.* // Тихоокеан. геология. 2011. № 2. С. 85–101.
- 14. *Нестеров И.И.* Критерии прогнозов нефтегазоносности. М.: Недра, 1969. 334 с.
- 15. *Abrams M.A.* // Marine and Petroleum Geology. 2005. № 22. P. 457–477.
- O'Regan M., Backman J., Barrientos N., et al. // Clim. Past. 2017. V. 13. P. 1269–1284.
- Bauch H.A., Kassens H., Naidina O.D., et al. // Quat. Res. 2001. V. 55. P. 344–351.
- Гресов А.И., Обжиров А.И., Яцук А.В. и др. // Тихоокеан. Геология. 2017. № 4. С. 78–84.
- 19. *Гресов А.И., Яцук А.В.* // Геология и геофизика. 2021. № 2. С. 197-215.
- 20. Гресов А.И., Сергиенко В.И., Яиук А.В. и др. // ДАН. 2020. Т. 492. № 1. С. 113–117.

GAS GEOCHEMICAL ANOMALIES OF HYDROCARBON GASES IN THE BOTTOM SEDIMENTS OF THE LOMONOSOV RIDGE AND PODVODNIKOV BASIN OF ARCTIC OCEAN

A. V. Yatsuk^{a, #}, A. I. Gresov^a, Academician of the RAS V. I. Sergienko^b, Yu. P. Vasilenko^a, and D. A Shvalov^a

^a Il'ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation ^b Institute of Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation [#]E-mail: yatsuk@poi.dvo.ru

New data about composition of hydrocarbon gases of bottom sediments of Laptev-East Siberian marginal shelf transition zone, continental slope, Lomonosov ridge and Podvodnikov basin of the Arctic Ocean are presented. Anomalous concentrations of methane and hydrocarbon gases (up to C_5 inclusive) have been established. Gas-geochemical indicators of eight genetic groups of hydrocarbon gases have been determined. Based on the materials obtained, a forecast of the oil and gas content of the study area was made.

Keywords: bottom sediments, hydrocarbon gases, gas-geochemical anomalies, Laptev-East Siberian transition zone, Lomonosov ridge, Podvodnikov basin, Arctic Ocean, gas hydrates, oil and gas content