ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ, 2022, том 504, № 1, с. 22–27

УДК 552.13

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ОБРАЗОВАНИЯ Ва-Cr-ТИТАНАТОВ В СИСТЕМАХ ХРОМИТ-РУТИЛ/ИЛЬМЕНИТ С УЧАСТИЕМ ФЛЮИДА ПРИ *Т* 1000–1200°С И *Р* 1.8–5.0 ГПа

© 2022 г. В. Г. Бутвина^{1,*}, О. Г. Сафонов^{1,2}, Г. В. Бондаренко¹, член-корреспондент РАН Ю. Б. Шаповалов¹

> Поступило 21.01.2022 г. После доработки 22.01.2022 г. Принято к публикации 26.01.2022 г.

Приведены результаты экспериментального исследования кристаллизации хромсодержащих Ватитанатов (редлежеита, линдслейита и хоторнеита) в системе хромит-рутил/ильменит в присутствии флюида H₂O-CO₂-BaCO₃ при давлениях 1.8, 3.5 и 5.0 ГПа и температурах 1000-1200°С, моделирующих процессы образования этих фаз в ходе метасоматоза перидотитов верхней мантии. Эксперименты показали, что Ba-Cr-титанаты образуются во всем исследованном диапазоне давлений, а также подтвердили возможность совместного образования титанатов. Однако редледжеит образуется лишь в бедной железом системе хромит-рутил-H₂O-CO₂-BaCO₃, а в системе с ильменитом предпочтительнее кристаллизуются минералы магнетоплюмбитовой группы. Линдслейит не обнаружен при давлении 1.8 ГПа. Выявлена прямая зависимость содержания Cr в титанатах от давления. Представлены спектры комбинационного рассеяния редлежеита, линдслейита и хоторнеита.

Ключевые слова: мантийный метасоматоз, минералы прайдеритовой группы, линдслейит-матиаситовый твердый раствор, хоторнеит-имэнгитовый твердый раствор, эксперимент при высоких температурах и давлениях

DOI: 10.31857/S2686739722050061

Мантийный метасоматоз - это процесс преобразования мантийных пород под воздействием внешних флюидов и расплавов вне зависимости от их происхождения и состава [1]. В подавляющем числе случаев этот процесс выражается в образовании не характерных для пород мантии минералов, таких как амфиболы, флогопит, апатит, разнообразные карбонаты и сульфиды, титанит, ильменит, рутил и другие более редкие минералы. Последовательное и закономерное образование ассоциаций с участием этих минералов указывает на то, что метасоматоз пород мантии не является одноактным процессом, а осуществляется в несколько стадий с возрастающим эффектом. Он прежде всего выражается в росте активности К и/или Na, что на начальных стадиях процесса

обусловлены активным разложением богатых Al фаз (граната, шпинели) с образованием флогопита. Усиление метасоматоза приводит к дальнейшим реакциям пироксенов с появлением калиевого рихтерита [2]. Образование фаз, где К и Na (и другие крупноионные литофильные элементы, LILE) связаны с Cr, Ti, Fe³⁺, обычно знаменует наиболее продвинутые стадии метасоматических преобразований [2]. Индикаторными минералами этих стадий являются хромсодержащие титанаты, обогащенные К и Ва (в отдельных случаях Na, Ca), высокозарядными (HFSE), легкими редкоземельными (LREE) элементами, U и Th. Это минералы прайдеритовой группы супергруппы голландита [7] – твердые растворы К(Ti₇Cr)O₁₆ (K-Cr прайдерит)-К(Ті₇Fe³⁺)О₁₆ (прайдерит)-Ва(Ti₆Cr)O₁₆ (редледжеит)-Ва(Ti₆Fe³⁺)O₁₆ (Ва-прайдерит); минералы группы кричтонита – твердого раствора К(Ti, Cr, Fe,..)₂₁O₃₈-Ba(Ti, Cr, Fe,..)₂₁O₃₈ (матиасит-линдслейит, далее LIMA) и минералы магнетоплюмбитовой группы – твердого раствора K(Ti, Cr, Fe,..)₁₂O₁₉-Ba(Ti, Cr, Fe,..)₁₂O₁₉ (имэнгит-хоторнеит, далее НАҮІ). Эти минералы описаны в метасоматизированных перидотитах в ассоциациях с флогопитом, калиевым рихтеритом, низкоглиноземистым клинопироксеном, где

¹Институт экспериментальной минералогии им. Д.С. Коржинского Российской академии наук, Черноголовка, Россия

²Московский государственный университет имени М.В. Ломоносова, кафедра петрологии и вулканологии, Геологический факультет, Москва, Россия

^{*}E-mail: butvina@iem.ac.ru

NºNº	Минеральный состав, мас. %	Флюид, мас. %	Сод-е флюида в системе, %	<i>Р</i> , ГПа	T, ℃	Выдержка, час.	Синтез редледжеита, хоторнеита, линдслейита
Ba-1	Хромит: ильменит (1:1)	ВаСО ₃ : щ.к. (9:1)	20	5	1200	24	_, +, +
Ba-2	Хромит: ильменит (1:1)	ВаСО ₃ : щ.к. (9:1)	10	5	1200	48	_, +, +
Ba-Ti	Хромит: рутил (1:1)	ВаСО ₃ : щ.к. (9:1)	10	5	1200	24	+, -, +
3Ba-1	Хромит: ильменит (1:1)	ВаСО ₃ : щ.к. (9:1)	10	3.5	1200	1	_, +, +
3Ba-Ti	Хромит: рутил (1:1)	ВаСО ₃ : щ.к. (9:1)	10	3.5	1200	1	+, -, +
Ba-1.8	Хромит: ильменит (1:1)	BaCO ₃ : щ.к. (9:1)	10	1.8	1000	25	+,+,-

Таблица 1. Условия и результаты экспериментов по синтезу Ва–Сг-титанатов в системе хромит–ильменит/рутил с флюидом H₂O–CO₂–BaCO₃

отсутствует (или присутствует лишь в виде реликтов) гранат, а шпинель характеризуется высокой магнезиальностью и хромистостью (см. табл. 1 в работе [3]). Их образование связывают с реакциями перидотитов с флюидами или расплавами с низкой активностью SiO₂, обогащенными щелочами и LILE [4–6]. Тесные ассоциации титанатов с хромитом, ильменитом и рутилом убеждают в том, что эти минералы являются источниками Сг и Ті для образования титанатов. Известны случаи, когда различные К–Ва-титанаты сосуществуют друг с другом или замещают друг друга в зависимости от степени проявления процессов метасоматоза.

Экспериментальные данные по стабильности К—Ва-титанатов ограничены несколькими работами [9, 10]. Синтез К—Ва-прайдерита, содержащего Fe³⁺ и Fe²⁺, из смесей оксидов и простых титанатов показал, что этот минерал стабилен при давлениях 3.5 и 5 ГПа до температур порядка 1500°С [9]. Эксперименты по синтезу Ва–Сгпрайдерита не известны. Хоторнеит и линдслейит были синтезированы в системе TiO₂–ZrO₂– Cr₂O₃–Fe₂O₃–MgO–BaO–K₂O при 7–15 ГПа и температурах 1300–1500°С [10].

Результаты экспериментов по образованию К—Сг-миналов титанатов (К—Сг-прайдерита, матиасита и имэнгита) за счет ассоциаций хромит рутил и хромит—ильменит в присутствии флюида $H_2O-CO_2-K_2CO_3$ были опубликованы нами ранее [3, 8]. В данной работе приведены результаты экспериментов по совместной кристаллизации Ва—Сг-крайних членов твердых растворов титанатов (редледжеита, хоторнеита и линдслейита) при взаимодействии этих ассоциаций с флюидом H₂O−CO₂−BaCO₃ при 5 ГПа, 1200°С; 3.5 ГПа, 1200°С и 1.8 ГПа, 1000°С.

Эксперименты проводились в ИЭМ РАН на установках "наковальня с лункой" НЛ-13Т при 5 ГПа, НЛ-40 при 3.5 ГПа и "цилиндр-поршень" ЦП-40 при 1.8 ГПа (табл. 1). В качестве исходных веществ использовались природный состава $(Mg_{0.49-0.54}Fe_{0.50-0.54}Mn_{0.01-0.02})$ хромит $Zn_{0.01-0.02})(Al_{0.17-0.20}Cr_{1.55-1.61}Fe_{0.10-0.22}Ti_{0.03-0.07})O_4$ из ксенолита гранатового лерцолита ИЗ кимберлитовой трубки Пионерская (Архангельская область), ильменит состава $Fe_{0.98}Mg_{0.01}Mn_{0.06}Ti_{0.93}Al_{0.01}Nb_{0.01}O_3$, представленный ксенокристаллом из кимберлита трубки Удачная (Якутия), и синтетический порошок ТіО2. Флюидная составляющая готовилась из смеси синтетического ВаСО3 и щавелевой кислоты. Фугитивность кислорода в экспериментах не буферировалась. Следуя прежним выводам [3, 8], соотношения Fe³⁺/Fe²⁺ в хромите в продуктах опытов соответствуют значениям $\Delta \log f_{\Omega_2}$ на 1.1–1.6 логарифмическую единицу ниже буфера FMQ.

Состав фаз (табл. 2 и 3) определялся методом рентгеноспектрального микроанализа на растровом электронном микроскопе "Tescan" Vega-II XMU, оснащенном системой регистрации рентгеновского излучения и расчета состава образца "INCA" Energy 450 в режиме EDS при ускоряющем напряжении 20 кВ, токе 400 пА и диаметре электронного пучка 157–180 нм (для анализа химического состава) или 60 нм (для получения изображений). КР-спектры (комбинационного рассеяния) титанатов получены с помощью раман-спектрометра Renishaw RM1000, оснащен-

Tanbio nong termine benerewe kpowini "hibiketini"/pytini e quitoridow 1120 002 buoo3											
NºNº	Ba-Ti	3Ba-Ti	Ba-1.8	Ba-Ti	3Ba-Ti	Ba-2	Ba-2	Ba-1.8			
Минерал	Red	Red	Red	Ldy	Ldy	Ldy	Hwt	Hwt			
TiO ₂	55.09	56.35	58.78	59.57	64.81	66.27	25.96	33.30			
Cr ₂ O ₃	19.84	16.68	12.67	19.30	11.65	10.85	27.12	16.90			
FeO*	1.72	2.18	5.07	6.43	6.89	7.03	22.24	21.66			
Al_2O_3	1.82	2.19	0.88	2.24	2.16	2.10	4.91	3.76			
BaO	20.74	20.57	20.85	8.74	0.29	8.37	15.26	14.75			
MnO	0.00	0.23	0.34	0.08	5.56	0.00	1.05	2.12			
MgO	0.77	2.25	0.39	3.74	8.62	5.45	2.41	5.02			
Nb_2O_5	0.00	0.00	0.00	0.00	0.00	0.35	0.59	1.03			
Сумма	99.98	100.45	98.98	100.10	99.98	100.42	99.54	98.54			
Пересчет 16 О			38 O			19 O					
Ti	4.96	5.07	5.29	13.00	14.15	14.47	3.35	4.37			
Cr	1.88	1.58	1.20	4.43	2.67	2.49	3.68	2.33			
Fe ³⁺	0.15	0.20	0.46	_	_	—	0.49	_			
Fe ²⁺	—	—	—	1.56	1.67	1.71	2.65	3.16			
Al	0.26	0.31	0.12	0.77	0.74	0.72	0.99	0.77			
Ba	0.97	0.97	0.98	0.99	0.98	0.95	1.03	1.01			
Mn	0.00	0.02	0.03	0.02	0.07	0.00	0.15	0.31			
Mg	0.14	0.40	0.07	1.62	2.41	2.36	0.62	1.31			
Nb ⁵⁺	0.00	0.00	0.00	0.00	0.00	0.05	0.05	0.08			

Таблица 2. Представительные анализы Ba–Cr-титанатов (редледжеита, хоторнеита и линдслейита), экспериментально полученные в системе хромит–ильменит/рутил с флюидом H₂O–CO₂–BaCO₃

*FeO = FeO + Fe_2O_3 .

ного микроскопом "Leica". Использовался твердотельный лазер с диодной накачкой с длиной волны излучения 532 нм и мощностью 20 мВт. Спектры регистрировались при 50-кратном увеличении в течение 100 с.

В системе хромит-рутил-H₂O-CO₂-BaCO₃ при 3.5 и при 5 ГПа и 1200°С образуются редледжеит и линдслейит (табл. 2). Они сопровождаются перекристаллизованными хромитом и рутилом (рис. 1 а). Редледжеит образует отдельные ксеноморфные и гипидиоморфные (субоктаэдрические) кристаллы размером от нескольких до 40 мкм (максимум до 100 мкм) (рис. 1 а), а также включения в преобразованном хромите. Такие формы нахождения редледжеита известны в природных ассоциациях (например, в хромититах Верблюжьегорского массива, Россия [11]). Линдслейит образует мелкие ксеноморфные зерна размером до 10 мкм, включения в хромите, рутиле и новообразованном редледжеите.

В системе хромит–ильменит–H₂O–CO₂–BaCO₃ при давлениях 3.5 и 5.0 ГПа и 1200°С формируются хоторнеит и линдслейит, которые сосуществуют с перекристаллизованным хромитом, ильменитом и Nb-содержащим рутилом. Хоторнеит кристаллизуется в виде идиоморфных октаэдрических и субидиоморфных зерен размером до 40 мкм, но встречаются отдельные ксеноморфные зерна размером более 100 мкм. Линдслейит образует ксеноморфные включения в хоторнеите размером менее 10 мкм (рис. 16). При 1.8 ГПа и 1000°С в продуктах опытов обнаружены редледжеит и хоторнеит, которые сопровождаются хромитом, ильменитом и фазой, по составу близкой к бариевой слюде – феррокиноситалиту [12] (K₂O–0.62; BaO–22.55; MgO–8.71; Al₂O₃–16.87; FeO + Fe₂O₃–12.54; SiO₂–23.62; Cr₂O₃–3.55; H₂O–3.05). Для хоторнеита характерны угловатые изометричные зерна размером до 150 мкм, а редледжеит представлен в виде включений размером менее 30 мкм в перекристаллизованном хромите.

Составы синтезированных хромсодержащих Ва-титанатов незначительно варьируют в продуктах отдельных опытов (рис. 3). Исключение составляет хоторнеит, синтезированный при 5 ГПа. Эта фаза показывает тренд изоморфизма Ti + Fe ↔ Cr. Этот тренд совпадает с тенденцией увеличения содержания Cr в этой фазе с давлением от 3.5 до 5 ГПа (рис. 3). Содержание Cr в линдслейите и редлежеите также проявляет прямую зависимость от давления, особенно для фаз, синтезированных при 3.5 и 5 ГПа (рис. 3). Однако, в отличие от хо-

Рис. 1. Фотографии в отраженных электронах продуктов опытов в системе: а – хромит–рутил с флюидом H₂O–CO₂– BaCO₃, оп. Ba-Ti; б – хромит–ильменит с флюидом H₂O–CO₂–BaCO₃, оп. 3Ba-1 (см. табл. 1). Chr – хромит, Hwt – хоторнеит, Ldy – линдслейит, Red – редледжент, Rt – рутил.

торнеита, для этих фаз рост содержания Cr сопровождается увеличением содержания Fe по схеме Ti \leftrightarrow Fe + Cr. Таким образом, с повышением давления все Ba-титанаты проявляют тенденцию к обогащению хромом. Эти результаты согласуются с данными [10] для давлений 7–15 ГПа, которые показывают для фаз хоторнеит-имэнгитового ряда слабую обратную зависимость содержания Ti от давления, а для фаз линдслейитматиаситового ряда — обратную зависимость между Ti + Mg и Cr, что также косвенно указывает

Рис. 2. Спектры комбинационного рассеяния (КР): редледжеита (красная линия), линдслейита (зеленая линия), хоторнеита (синяя линия). Значения пиков указаны в тексте.

на прямую зависимость содержания Сг в титанатах от давления.

Присутствие Ва-титанатов подтверждено посредством КР-спектроскопии. Интенсивные пики на спектре редледжеита (красный спектр на рис. 2) на 179, 354 и 693 см⁻¹ и пики меньшей интенсивности на 276 и 549 см⁻¹ близки к пикам в спектрах синтетического К—Сг-прайдерита [13].

Смещение первого пика в спектре редледжеита в область более высоких волновых чисел может быть обусловлено присутствием более тяжелого катиона Ва при отсутствии К. КР-спектр линдслейита (зеленый спектр на рис. 2) характеризуется интенсивными пиками на 213, 275, 384, 679 см⁻¹ и характерным для всех титанатов плечом на ~580 см $^{-1}$. Интенсивные пики на 204, 353 и 685 см⁻¹ в спектре хоторнеита (синий спектр на рис. 2) сопоставимы с пиками в спектрах богатого Al имэнгита из ксенолита гранатового лерцолита из кимберлитовой трубки Обнаженная, Якутия [3]. Смещение последнего пика в область более низких волновых чисел у синтетического хоторнеита в сравнении с природным имэнгитом связано с более высоким содержанием Ті.

Таким образом, эксперименты в системах хромит-рутил/ильменит-H₂O-CO₂-BaCO₃ показали, что Ba-Cr-титанаты образуются в широком диапазоне давлений 1.8–5.0 ГПа. В сопоставлении с данными, полученными по K-Cr-титанатам [3, 13] новые эксперименты показывают, что минералы голландитовой группы, K-Cr-прайдерит и редледжеит, образуются лишь в бедных железом системах хромит-рутил-H₂O-CO₂-BaCO₃/K₂CO₃,

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 504 № 1 2022

Рис. 3. Диаграмма Ti–Fe–Cr (ф.е.), иллюстрирующая вариации состава синтетических редледжеита, линдслейита и хоторнеита. Стрелками указано смещение точек при увеличении давления.

а в системах с ильменитом предпочтительнее кристаллизуются минералы магнетоплюмбитовой группы. При давлении менее 3 ГПа минералы кричтонитовой группы не обнаружены. В результате экспериментов получены пары фаз титанатов (редледжеит + хоторнеит и хоторнеит + линдслейит), аналогичные ассоциациям в системах хромит-рутил/ильменит- $H_2O-CO_2-K_2CO_3$ [3, 13]. Это подтверждает возможность совместного образования титанатов в результате метасоматоза верхнемантийных перидотитов в присутствии флюидов или расплавов, содержащих K и Ba (и другие LILE).

Прямая зависимость содержания Cr в Ва-титанатах от давления (рис. 3) может служить относительным маркером глубинности для природных ассоциаций, включающих К-Ва-титанаты. Однако для К-титанатов такая зависимость выявлена только для минералов магнетоплюмбитовой группы [3, 13]. Поэтому для использования этого эффекта необходимы дальнейшее изучение изоморфных взаимоотношений К и Ва и их влияния на изоморфизм Cr, Ti, Fe в титанатах в присутствии флюидов $H_2O-CO_2-K_2CO_3-BaCO_3$ с переменным отношением K/Ba.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена в рамках тем FMUF-2022-0001 (1021060708334-5-1.5.2;1.5.6;1.5.4) государственного задания ИЭМ РАН на 2022–2026 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Harte B.* Mantle Peridotites and Processes–The kimberlite Sample. (Eds. Hawkesworth C.J., Norry M.J.) 1983. In: Continental Basalts and Mantle Xenoliths, Shiva: Cheshire, UK. P. 46–91.
- 2. Сафонов О.Г., Бутвина В.Г. Реакции-индикаторы активности К и Na в верхней мантии: природные и экспериментальные данные, термодинамическое моделирование // Геохимия. 2016. № 10. С. 893–908.
- 3. Бутвина В.Г., Сафонов О.Г., Воробей С.С., Лиманов Е.В., Косова С.А., Ван К.В., Бондаренко Г.В., Гаранин В.К. Экспериментальное изучение реакций образования флогопита и калиевых титанатов – индикаторных минералов метасоматоза в верхней

мантии // Геохимия. 2021. Т. 66. № 8. С. 709–730. https://doi.org/10.31857/s0016752521080021

- Konzett J., Wirth R., Hauzenberger Ch., Whitehouse M. Two Episodes of Fluid Migration in the Kaapvaal Craton Lithospheric Mantle Associated with Cretaceous Kimberlite Activity: Evidence from a Harzburgite Containing a Unique Assemblage of Metasomatic Zirconium-phases // Lithos. 2013. V. 182–183. P. 165–184.
- Giuliani A., Kamenetsky V.S., Phillips D., Kendrick M.A., Wyatt B.A., Goemann K. Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle // Geology. 2012. V. 40 (11), P. 967–970.
- Konzett J., Krenn K., Rubatto D., Hauzenberger C., Stalder R. The Formation of Saline Mantle Fluids by Open-system Crystallization of Hydrous Silicate–rich Vein Assemblages–Evidence from Fluid Inclusions and Their Host Phases in MARID Xenoliths from the Central Kaapvaal Craton, South Africa // Geochim. Cosmochim. Acta. 2014. V. 147. P. 1–25.
- Biagioni C., Capalbo C., Pasero M. Nomenclature Tunings in the Hollandite Supergroup // European Journal of Mineralogy. 2013. V. 25. P. 85–90.
- Butvina V.G., Vorobey S.S., Safonov O.G., Bondarenko G.V. Formation of K-Cr Titanates from Reactions of Chromite and Ilmenite/rutile with Potassic Aqueous-carbonic Fluid: Experiment at 5 GPa and Applications to the Mantle Metasomatism // In: Advances in Experimental and Genetic Mineralogy: Special Publication to 50th Anniversary of DS Korzhinskii Institute of Experimental Mineralogy of the Russian Academy of Sciences (Eds. Litvin Y.A., Safonov O.G.). Chapter 9. Swit-

zerland: Switzerland, 2020. P. 201–222. https://doi.org/10.1007/978-3-030-42859-4_9

- 9. *Foley S., Hofer H., Brey G.* High-pressure Synthesis of Priderite and Members of Lindsleyite-mathiasite and Hawthorneite-yimengite Series // Contrib. Mineral. Petrol. 1994. V. 117. P. 164–174.
- Konzett J., Yang H., Frost D.J. Phase Relations and Stability of Magnetoplumbite- and Crichtonite Series Phases under Upper-mantle P-T Conditions: An Experimental Study to 15 GPa with Implications for LILE Metasomatism in the Lithospheric Mantle // J. Petrol. 2005. V. 46 (4). P. 749–781.
- Алексеев А.В. Редледжеит в хромитовых рудах Верблюжьегорского месторождения (Южный Урал) // Проблемы геологии и освоения недр: Тр. VII Междунар. науч. симпоз. им. акад. М.А. Усова. Томск: Изд-во ТПУ, 2003 С. 80–82.
- Guggenheim S., Frimmel H.E. Ferrokinoshitalite, a New Species of Brittle Mica from the Broken Hill Mine, South Africa: Structural and Mineralogical Characterization, Locality: Broken Hill Mine, South Africa // The Canadian Mineralogist. 1999. V. 37. P. 1445– 1452.
- Бутвина В.Г., Воробей С.С., Сафонов О.Г., Варламов Д.А., Бондаренко Г.В., Шаповалов Ю.Б. Экспериментальное изучение образования хромистого прайдерита и имэнгита – продуктов модального мантийного метасоматоза // ДАН. 2019. Т. 486. № 6. С. 709–713. https://doi.org/10.31857/S0869-56524866709-713

EXPERIMENTAL STUDY OF THE FORMATION OF Ba-Cr TITANATES (REDLEDGEITE, LINDSLEYITE AND HAWTHORNEITE) IN THE ASSEMBLAGES CHROMITE-ILMENITE AND CHROMITE-RUTILE IN PRESENCE OF THE H₂O-CO₂-BaCO₃ FLUID

V. G. Butvina^{*a*,#}, O. G. Safonov^{*a*,*b*},

G. V. Bondarenko^a, and Corresponding Member of the RAS YU. B. Shapovalov^a

^aD.S. Korzhinskii Institute of Experimental Mineralogy Russian Academy of Sciences, Chernogolovka, Russian Federation ^bDepartment of Petrology and Volcanology, Geological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation

[#]E-mail: butvina@iem.ac.ru

Paper presents the results of an experimental study on the crystallization of chromium-bearing Ba-titanates (redlegeite, lindsleyite and hawthornite) in the chromite-rutile/ilmenite system in the presence of the H_2O-CO_2 -BaCO₃ fluid at pressures of 1.8, 3.5 and 5.0 GPa and temperatures of 1000–1200°C, simulating the formation of these phases during metasomatism of upper mantle peridotites. Experiments showned that Ba-Cr-titanates are formed in the entire studied pressure range, and the possibility of joint formation of titanates is also confirmed. However, redledgeite is formed only in the Fe-poor chromite-rutile- H_2O-CO_2 -BaCO₃ system, whereas in the system with ilmenite, minerals of the magnetoplumbite group are preferably crystallized. Lindsleyite was not detected at a pressure of 1.8 GPa. A direct dependence of the Cr content in the titanates on pressure has been revealed. The Raman spectra of redlegeite, lindsleyite and hawthornite are presented.

Keywords: mantle metasomatism, minerals of the pryderite group, lindsleyite-mathiasite solid solution, haw-thornite-imengite solid solution, experiment at high temperatures and pressures