———— ГЕОЭКОЛОГИЯ ——

УДК 621.039.7

КРИСТАЛЛОХИМИЧЕСКИЙ ФАКТОР ВЫБОРА МАТРИЦ РЗЭ-АКТИНИДОВ

© 2022 г. Член-корреспондент РАН С. В. Юдинцев^{1,2,*}, М. С. Никольский¹, О. И. Стефановская², Б. С. Никонов¹

Поступило 01.03.2022 г. После доработки 09.03.2022 г. Принято к публикации 10.03.2022 г.

Титанаты легких редких земель (P3Э): P3Э₂TiO₅, P3Э₂Ti₂O₇ и P3Э₄Ti₉O₂₄ – потенциальные матрицы для иммобилизации P3Э-актинидной фракции высокоактивных отходов переработки облученного ядерного топлива. Проанализированы данные о вхождении примесных элементов (цирконий, уран, кальций) в эти фазы. В них проявлен ограниченный изоморфизм в отношении данных элементов, в том числе согласно реакции: $2P3Э^{3+} = Ca^{2+} + U^{4+}$, обычной для природных минералов и их синтетических аналогов. Рассмотрены причины низкой растворимости примесей в структурах титанатов P3Э. Проанализирована роль кристаллохимического фактора при выборе оптимальных типов матриц для иммобилизации P3Э-актинидной фракции.

Ключевые слова: радиоактивные отходы, РЗЭ-актинидная фракция, иммобилизация, титанаты РЗЭ, кристаллохимия

DOI: 10.31857/S2686739722060159

В России реализуется стратегия двухкомпонентной ядерной энергетики с реакторами на медленных и быстрых нейтронах с переработкой отработавшего ядерного топлива [1]. В результате образуются радиоактивные отходы, в том числе высокого уровня активности (ВАО). Ключевая задача повышения безопасности ядерной энергетики — это разработка способов обращения с долгоживущими трансурановыми актинидами, которые представлены Ри и малыми актинидами – Np, Am и Cm. Малые актиниды могут быть выделены из ВАО в виде РЗЭ-МА-фракции (МА = = Am, Cm) и включены в емкие фазы с низкой растворимостью в воде для захоронения [2]. В составе РЗЭ-МА-фракции доминируют крупные лантаниды (La, Ce, Pr, Nd, Sm), на Ат и Ст приходится до 10 мас. % [3]. Перспективными матрицами для фракции РЗЭ-актинидов служат титанаты и цирконаты РЗЭ [1, 2, 4]. При их изучении много внимания уделялось оксидам со структурой пирохлора и флюорита [2, 4, 5], меньше дан-

¹Институт геологии рудных месторождений, петрографии, минералогии и геохимии

Российской академии наук, Москва, Россия

²Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук, Москва, Россия ных имеется о свойствах титанатов РЗЭ, в основном они касаются влияния типа РЗЭ на структуру фаз состава $P39_2TiO_5$ и $P39_2Ti_2O_7$ и изучения их поведения при ионном облучении [6, 7].

Аналог Am^{3+} и Cm^{3+} – это Nd^{3+} , поэтому наибольший интерес при поиске матриц РЗЭ-МАфракции вызывают соединения неодима. В системе Nd_2O_3 -TiO₂-ZrO₂ имеются (рис. 1a) фазы [8]: $Nd_2(Ti,Zr)_2O_7$ со структурой пирохлора (далее кратко LnTZ), TiO₂ (T, рутил), ZrTiO₄ (ZT, шриланкит) и тетрагональный ZrO₂ (Z_t). Титанаты Nd представлены: Nd_2TiO_5 (LnT), $Nd_2Ti_2O_7$ (LnT₂), $Nd_2Ti_4O_{11}$ (LnT₄), $Nd_4Ti_9O_{24}$ (Ln₂T₉). Исследовались и другие титанатные и цирконатные системы с P3Э: La₂O₃-TiO₂-ZrO₂ [9], Y_2O_3 -TiO₂-ZrO₂ [10], Nd_2O_3 -TiO₂ [11]. В работе [11] доказана идентичность $Nd_2Ti_4O_{11}$ и $Nd_4Ti_9O_{24}$ и найдена фаза $Nd_2Ti_3O_9$ (LnT₃).

В системе La_2O_3 -TiO₂-ZrO₂ имеются (рис. 16) фазы: La_2TiO_5 (LnT), $La_4Ti_3O_{12}$ (Ln₂T₃), $La_2Ti_2O_7$ (LnT₂), $La_4Ti_9O_{24}$ (Ln₂T₉), $La_2Zr_2O_7$ (LnZ₂), ZrTiO₄ (ZT), ZrO₂ (Z), TiO₂ (T). Системы с Nd₂O₃ и La₂O₃ близки по набору фаз, однако ассоциации фаз в них различны, в основном из-за намного меньшей области La-Zr-пирохлора (LnZ₂). Характерная черта титанатов Nd (La) – слабые вариации состава, отношения Ti : РЗЭ в них близки к значениям в формулах, что отражено в узких полях фаз на диаграммах. При 1350°C в LnT₂, Ln₂T₃ и LnT

^{*}*E*-mail: yudintsevsv@gmail.com

Рис. 1. Строение систем $NdO_{1.5}$ -TiO₂-ZrO₂ (a), 1450°C), La_2O_3 -TiO₂-ZrO₂ (б), 1350°C) и YO_{1.5}-TiO₂-ZrO₂ (в), 1500°C): 1 и 2 – поля оксидов со структурой пирохлора или флюорита [8–10].

входит менее 2 мол. % ZrO₂ [9], содержание ZrO₂ в Ln₂T₉ выше и равно 4 мол. % (табл. 1). Пирохлор La₂Zr₂O₇ (LnZ₂) содержит до 35 мол. % La₂O₃ и 69 мол. % ZrO₂ при идеальных значениях 33 и 67 мол. %. Изоморфизм La³⁺ в ZrO₂ и ZrTiO₄ ограничен 1 мол. % La₂O₃. Высокие содержания (12– 14 мол. %) наблюдаются для ZrO₂ в (Ti,Zr)O₂ и TiO₂ в (Zr,Ti)O₂, в широких пределах, от 1.4 до 0.9, меняется отношение Zr : Ti в ZrTiO₄. Замена крупных P3Э³⁺ (La, Nd) на Y³⁺ ведет к переменам в строении диаграммы (рис. 1в). Структура Y₂Ti₂O₇ становится кубической (как у пирохлора) и появляется большое поле (Zr,Y)O_{2-x} с флюоритовой структурой. Остаются оксиды TiO₂, ZrO₂ и ZrTiO₄, имеется Y_2TiO_5 с кубической структурой (пр. группа $Fm\overline{3}m$), тогда как фазы Nd₂TiO₅ и La₂TiO₅ обладают ромбической симметрией (пространственная группа *Pnma*).

Изменение радиуса $P3\Im^{3+}$ в системах $P3\Im_2O_3$ — TiO₂ и $P3\Im_2O_3$ —ZrO₂ сопровождается полиморфными превращениями. Соединения $P3\Im_2Ti_2O_7$ и $P3\Im_2Zr_2O_7$ кристаллизуются в трех структурных типах — флюорита, пирохлора и перовскитоподобного моноклинного титаната [3, 5–7]. Области стабильности пирохлора отвечают значениям отношений ионных радиусов (по Шеннону) P3Э и Ti (Zr) от 1.46 до 1.78, за ее пределами образуются анионно-дефицитная структура флюорита у

Фаза и ее обозначение	La ₂ O ₃	TiO ₂	ZrO ₂		
La ₂ Ti ₂ O ₇ , LnT ₂	32.3 ± 0.3	66.2 ± 0.2	1.5 ± 0.3		
	31.7 ± 0.9	67.2 ± 1.0	1.1 + 0.2		
$La_4Ti_9O_{24}, Ln_2T_9$	17.7 ± 1.0	81.1 ± 1.1	2.2 + 0.3		
	16.7 ± 0.5	78.9 ± 0.6	4.4 ± 0.2		
ZrTiO ₄ , ZT	< п. о.	53.1 ± 0.4	46.9 ± 0.3		
	< п. о.	41.6 ± 0.3	58.4 ± 0.3		
ZrO_2, Z_t	< п. о.	13.5 ± 0.6	86.5 ± 0.7		
TiO ₂ , T	< п. о.	88.6 ± 0.5	11.4 ± 0.3		

Таблица 1. Составы фаз (мол. %) в системе La_2O_3 -Ti O_2 -Zr O_2 , данные работы [9]

Примечание. < п. о. — не обнаружен, меньше предела обнаружения методом СЭМ/ЭДС.

цирконатов РЗЭ и слоистая перовскитоподобная структура для титанатов РЗЭ. Структурой пирохлора обладают титанаты средних и тяжелых РЗЭ $(Ln_2Ti_2O_7, Ln = Sm-Yb, Y)$ и цирконаты средних и легких РЗЭ ($Ln_2Zr_2O_7$, Ln = La-Gd). Фазы РЗЭ $_2TiO_5$ с РЗЭ от La до Sm обладают ромбической структурой, от Er до Lu и для Sc – кубической, от Eu до Но и у У они имеют гексагональную структуру [7]. Сохранение структуры при вариациях состава – важная характеристика матриц. Если при синтезе целевой фазы образуются соединения с большей растворимостью в воде, это может вызвать ухудшение изоляционных свойств. Нами [12-16] получены данные о содержании примесей (Ca, Zr, U) в титанатах РЗЭ. Образшы готовили спеканием (ХПС), плавлением индукционным нагревом в "холодном" тигле (ИПХТ) или в электропечах (ЭП), результаты суммированы в табл. 2-4 и на рис. 2. Изучен ряд новых образцов, содержащих U (NTC-1, NTC-2, NTU-4, NTZ-1, NTZ-2, NTZ-3).

При анализе данных можно отметить широкие вариации составов фаз в отношении трехвалентных РЗЭ (табл. 3). Это связано с тем, что титанаты лантанидов ($Ln^{3+} = La$, Ce, Nd) одинаковой стехиометрии (LnT, LnT_2 , Ln_2T_9) изоструктурны. Однако, в отличие от других соединений РЗЭ (пирохлора, цирконолита, монацита, браннерита и др.), титанаты обладают низкой растворимостью в отношении четырехвалентных (U, Zr) и двухвалентных (Ca) элементов.

Концентрация ZrO_2 в фазе Ln_2T_9 (обр. МПМ-2) составляет 2.0 мас. %, в рутиле она возрастает до 8.5 мас. %. Содержание урана в 1.3 мас. % отмечено для Ln_2T_9 (табл. 3), в LnT и LnT₂ оно ниже предела обнаружения, равного 0.3–0.5 мас. % (табл. 3–4). Самые высокие содержания урана и циркония (10 мас. % и более) наблюдаются в пирохлоре (табл. 4). Эти особенности состава данных фаз обусловлены их кристаллохимическими характеристиками.

Титанаты и цирконаты РЗЭ кристаллизуются в нескольких структурных типах. В большинстве случаев атомы Ті и Zr окружены шестью атомами кислорода в виде октаэдра. Для крупных РЗЭ (La–Sm) доминируют координационные числа (к.ч.) VII (одношапочная тригональная призма, усеченный куб), VIII (куб, искаженный куб, двухшапочная антипризма) или IX (трехшапочная тригональная призма). С уменьшением радиуса РЗЭ³⁺ растет роль к.ч., равного VI. Описание структуры фаз с Nd³⁺ приведено в табл. 5 и на рис. 3.

 Φ аза $Nd_2Zr_2O_7$ имеет кубическую симметрию (рис. 3а), пространственная группа $Fd\overline{3}m$. В элементарной ячейке восемь формульных единиц,

Образец	Состав (валовая формула) образца	Условия синтеза	Основные фазы
LT2	$La_{0.5}Nd_{1.4}Sm_{0.1}Ti_2O_7$	ХПС: 1400°С, 4 ч	LnT_2 , Ln_2T_9
36	$Ln_{1.8}Ca_{0.1}U_{0.1}Ti_2O_7$	ИПХТ: 1600°С, 1 ч	LnT_2 , UT_2 , O
4	$Ln_{3.6}Ca_{0.2}U_{0.2}Ti_9O_{24}$	То же	Ln_2T_9 , UT_2 , O
МПМ-2	$0.5 \text{ Ln}_4 \text{Zr}_{0.5} \text{Ti}_{8.5} \text{O}_{24} + 0.5 \text{ TiO}_2$	То же	Ln_2T_9, T
NTC-1	$0.5 (Ca_{0.5}NdU_{0.5})ZrTiO_7 + 0.5 Nd_2TiO_5$	ЭП: 1500°С, 1 ч	LnZT, O
NTC-2	$(Ca_{0.25}Nd_{1.5}U_{0.25})(Zr_{0.5}Ti_{1.5})O_7$	То же	LnZT, O
NTU-4	$0.95 \text{ Nd}_2 \text{TiO}_5 + 0.05 \text{ UO}_2$	То же	LnT_2 , Ln_2T_9 , O
NTZ-1	$0.4Nd_2TiZrO_7 + 0.4Nd_2TiO_5 + 0.2UO_2$	То же	LnZT, LnT ₂ , O
NTZ-2	$0.4Nd_2TiZrO_7 + 0.4Nd_2Ti_2O_7 + 0.2 \text{ UO}_2$	То же	LnT ₂ , O
NTZ-3	$0.4Nd_{2}TiZrO_{7} + 0.3Nd_{4}Ti_{9}O_{24} + 0.3 UO_{2}$	То же	UT, Ln_2T_9 , T

Таблица 2. Состав, условия получения образцов и слагающие их фазы по данным РФА

Примечание: Ln – смесь РЗЭ состава La_{0.12} + Ce_{0.25} + Pr_{0.12} + Nd_{0.41} + Sm_{0.07} + Eu_{0.02} + Gd_{0.01}. Обозначения: LnT₂ – Ln₂Ti₂O₇, Ln₂T₉ – Ln₄Ti₉O₂₄, UT₂ – браннерит, UTi₂O₆, LnZT – пирохлор состава (Ln,Ca,U)₂(Zr,Ti)₂O₇, O – оксид, (Ln,U)O_{2 – x}, T – рутил, TiO₂.

ЮДИНЦЕВ и др.

	05 (05)				
Образец "36"			Образец "4"		
LnT ₂	UT ₂	$(Ln,U)O_{2-x}$	Ln ₂ T ₉	UT ₂	$(Ln,U)O_{2-x}$
1.2	< п. о.	< п. о.	0.7	< п. о.	0.6
34.2	45.9	< п. о.	52.8	44.5	0.9
8.7	2.4	< п. о.	5.9	2.1	3.1
18.3	14.3	16.8	12.2	10.9	18.7
7.2	2.0	3.2	4.8	1.9	2.9
24.7	8.6	12.6	17.2	8.4	11.4
4.7	2.1	4.5	3.4	2.1	2.9
< п. о.	< п. о.	< п. о.	0.8	0.7	1.0
1.0	< п. о.	1.2	0.9	1.0	1.5
< п. о.	24.7	61.7	1.3	28.4	57.0
	LnT ₂ 1.2 34.2 8.7 18.3 7.2 24.7 4.7 5. n. o. 1.0 5. n. o.	LnT_2 UT_2 1.2 $< \pi. o.$ 34.2 45.9 8.7 2.4 18.3 14.3 7.2 2.0 24.7 8.6 4.7 2.1 7.0 $< \pi. o.$ 1.0 $< \pi. o.$ 1.0 < 1.0	LnT_2 UT_2 $(Ln,U)O_{2-x}$ 1.2 $< \pi. o.$ $< \pi. o.$ 34.245.9 $< \pi. o.$ 37.72.4 $< \pi. o.$ 18.314.316.87.22.03.224.78.612.64.72.14.5 $<\pi. o.$ $< \pi. o.$ 1.0 $< \pi. o.$ 1.2 $<\pi. o.$ 24.761.7	LnT_2 UT_2 $(Ln,U)O_{2-x}$ Ln_2T_9 1.2 $< \pi. o.$ $< \pi. o.$ 0.7 34.2 45.9 $< \pi. o.$ 52.8 8.7 2.4 $< \pi. o.$ 5.9 18.3 14.3 16.8 12.2 7.2 2.0 3.2 4.8 24.7 8.6 12.6 17.2 4.7 2.1 4.5 3.4 31.0 $< \pi. o.$ $< \pi. o.$ 0.8 1.0 $< \pi. o.$ 1.2 0.9 6.7 24.7 61.7 1.3	LnT_2 UT_2 $(Ln,U)O_{2-x}$ Ln_2T_9 UT_2 1.2 $< \pi. o.$ $< \pi. o.$ 0.7 $< \pi. o.$ 34.245.9 $< \pi. o.$ 52.8 44.58.72.4 $< \pi. o.$ 5.9 2.1 18.314.316.812.210.97.22.0 3.2 4.81.924.78.612.617.28.44.72.14.5 3.4 2.1 $\pi. o.$ $< \pi. o.$ $< \pi. o.$ 0.8 0.7 1.0 $< \pi. o.$ 1.2 0.9 1.0 $\pi. o.$ 24.7 61.7 1.3 28.4

Таблица 3. Составы фаз образцов "36" и "4", содержащих уран и смесь редких земель

Примечание. п. о. – предел обнаружения (0.3–0.5 мас. %).

Таблица 4. Составы (мас. %) фаз в образцах с ураном, сумма приведена к 100 мас. %

Образец	Фаза	CaO	TiO ₂	ZrO ₂	Nd_2O_3	UO ₂
NTC-1	Пирохлор	2.5 (0.17)*	28.4 (0.38)	11.0 (0.48)	50.0 (0.48)	8.1 (0.58)
	$(Nd,Zr,U)O_{2-x}$	< п. о.	< п. о.	4.1	26.5	69.4
NTC-2	Пирохлор	2.1	25.6	11.7	49.3	11.3
	$(Nd,Zr,U)O_{2-x}$	< п. о.	< п. о.	4.6	18.8	76.6
NTU-4	Nd ₂ TiO ₅	< п. о.	19.3	< п. о.	80.7	< п. о.
	$Nd_2Ti_2O_7$	< п. о.	32.1	< п. о.	67.9	< п. о.
	$(Nd,U)O_{2-x}$	< п. о.	1.3	61.6	< п. о.	37.1
NTZ-1	Пирохлор	Нет	12.5	21.8	54.9	9.7
	$Nd_2Ti_2O_7$	Нет	32.1	< п. о.	65.5	1.2
	$(Nd,Zr,U)O_{2-x}$	Нет	< п. о.	6.5	38.9	54.6
NTZ-2	Nd ₂ Ti ₂ O ₇	Нет	32.3	0.7	66.3	0.7
	$(Nd,Zr,U)O_{2-x}$	Нет	1.2	9.5	21.8	67.5
	(U,Nd)TiO ₆	Нет	41.9	3.4	18.9	35.8
NTZ-3	$(Ti,Zr)O_2$	Нет	94.7	5.3	< п. о.	< п. о.
	Nd ₄ Ti ₉ O ₂₄	Нет	49.5	1.9	46.4	2.2

Примечание. * – величина σ, п.о. – предел обнаружения (0.3–0.5 мас. %). Нет – не вводился.

Таблица 5. Кристаллографические характеристики фаз неодима в системе Nd_2O_3 -Ti O_2 -Zr O_2

Формула	Простр. группа	Структурный тип	Форма полиэдра неодим – кислород, в скобках – координационное число Nd ³⁺	Ссылка
$Nd_2Zr_2O_7$	$Fd\overline{3}m$	$Ca_2Nb_2O_7$	искаженный куб (VIII)	[5, 17]
Nd ₂ TiO ₅	Pnma	La ₂ TiO ₅	одношапочная тригональная призма (VII)	[18]
$Nd_2Ti_2O_7$	P12 ₁ 1	$La_2Ti_2O_7$	искаженная одно- (VII) — двух- (VIII) — трех- шапочная (IX) тригональная призма	[17]
Nd ₄ Ti ₉ O ₂₄	Fddd	Nd ₄ Ti ₉ O ₂₄	искаженная двухшапочная антипризма (VIII) – куб (VIII) – октаэдр (VI)	[19]

Рис. 2. СЭМ-изображения образцов: (a) LT2 $(1 - LnT_2, 2 - Ln_2T_9)$; (b) 36 $(1 - LnT_2; 2 - UT_2, 6panheput; 3 - (Ln,U)O_{2-x}; 4 - титано-силикат P3Э)$; (b) 4 $(1 - Ln_2T_9; 2 - UT_2, 6panheput; 3 - (Ln,U)O_{2-x}; 4 - титано-силикат P3Э)$; (r); МПМ-2 $(1 - T, pyтил, 2 - Ln_2T_9)$, (д) NTC-2 $(1 - пирохлор, 2 - (Ln,U)O_{2-x})$; (е) NTU-4 $(1 - LnT_2, 2 - Ln_2T_9, 3 - (Ln,U)O_{2-x})$. Черное – поры. Метка равна 50 (а, г-е), 20 (б) или 10 (в) микрон. Составы фаз сведены в табл. 3 и 4.

Рис. 3. Структуры фаз стехиометрии $Nd_2Zr_2O_7$ (а), $Nd_2Ti_2O_7$ (б), Nd_2TiO_5 (в) и $Nd_4Ti_9O_{24}$ (г). Зеленым цветом показаны полиэдры Ti и Zr, коричневым – полиэдры Nd.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 504 № 2 2022

Рис. 4. Кристаллические структуры цирконолита CaZrTi₂O₇ (a): серые – слои октаэдров Ti, атомы Ca и Zr (синие и зеленые) и браннерита UTi₂O₆ (б): октаэдры U, желтое, образуют колонны параллельно оси b; и октаэдры Ti, серое, формирующие слои вдоль плоскости (001) и имеющие общие вершины с колоннами из соединенных вершинами урановых октаэдров).

полиэдр Nd – скаленоэдр (искаженный куб), содержит 8 атомов О – шесть равноудаленных и еще два на большем расстоянии. Катионы Zr окружают 6 атомов О, находящихся в вершинах тригональной антипризмы (искаженного октаэдра). Структуру пирохлора можно описать через взаимопроникающие каркасы из октаэдров ВО₆ и А₂Х. Эта структура производна от решетки окси-

дов флюоритового типа AO₂ (пр. гр. $Fm\overline{3}m$).

Структура $Nd_2Ti_2O_7$ производна от структуры перовскита (рис. 36): октаэдры TiO₆, соединяясь вершинами, формируют в направлениях а и b пластины толщиной в 4 октаэдра (около 12 Å), между которыми расположены одношапочные тригональные призмы NdO₇. Трехшапочные тригональные призмы полиэдров NdO9 выполняют полости октаэдрических блоков. Двухшапочные призмы NdO₈ находятся внутри и между октаэдрическими блоками.

Структура Nd_2TiO_5 (рис. 3в) состоит из трехмерной сетки связанных ребрами семивершинников LnO_7 и цепочек квадратных пирамид TiO_5 , соединенных вершинами в направлении [010]. Наиболее сложная структура характерна для $Nd_4Ti_9O_{24}$: она состоит из титан-кислородного каркаса, в полостях которого расположены полиэдры Nd (рис. 3г). Атомы Nd занимают 3 позиции: полиэдр Nd(1) – искаженная квадратная антипризма, Nd(2) – октаэдр, Nd(3) – искаженная квадратная призма. Полиэдры Nd(1)O₈, объединяясь по ребрам и вершинам, формируют слои, параллельные плоскости (110). Полиэдры Nd(3) связываются ребрами со слоями Nd(1) с образованием слоев толщиной около 17.5 Å, в каналах которых расположены изолированные октаэдры Nd(2).

Координационные полиэдры ионов Zr⁴⁺ и Ti⁴⁺ меньшего размера во всех фазах имеют форму октаэдра (к.ч. = VI), кроме Nd_2TiO_5 , где к.ч. $Ti^{4+} = V$, а сам полиэдр имеет форму квадратной пирамиды. Именно этим объясняется разный изоморфизм элементов в этих фазах – широкое поле твердого раствора со структурой пирохлора и узкие поля составов фаз с близкими к их номинальной стехиометрии соотношениями элементов в остальных случаях. Низкой "растворимости" примесей (Ca, Zr, U) отвечают нечетные к.ч. неодима (VII и IX) в полиэдрах Nd-O, часть атомов Nd в структуре $Nd_4Ti_9O_{24}$ имеет к.ч. = VIII. Вероятно, с этим и связано повышенное содержание U и Zr в данной фазе по сравнению с $Nd_2Ti_2O_7$ или Nd₂TiO₅.

Узкие поля титанатов La³⁺ и Nd³⁺ (рис. 1a, 1б) контрастируют с большими вариациями составов пирохлора, цирконолита, браннерита, также рассматриваемых в качестве матриц РЗЭ-актинидной фракции. Для цирконатного и титан-цирконатного пирохлора характерна большая емкость структуры в отношении актинидов в степенях окисления, отличных от трех [3-5, 20]. В позиции Zr пирохлора $Nd_2Zr_2O_7$ входит до 20 ат. % U, от 10 до 20 ат. % U и Th входит в позиции Nd. Широкие области составов цирконолита и браннерита обусловлены особенностями их структуры [3, 4]. Цирконолит CaZrTi₂O₇ (рис. 4а) обладает моноклинной симметрией (C2/m), к.ч. Са и Zr равны VIII и VII соответственно. Катионы РЗЭ и актинидов могут замещать Ca, Zr и Ti по трем механизмам. Первый из них гетеровалентный: Са²⁺ + $+ Zr^{4+} \rightarrow 2M_1^{3+}$ (M₁ = лантаниды, Ln и актиниды, An). При высоких концентрациях катионов M₁

эта структура трансформируется в пирохлор, (M₁)₂Ti₂O₇. Второй вариант гетеровалентного изоморфизма: $Ca^{2+} + Ti^{4+} \rightarrow M_1^{3+} + M_2^{3+}$ ($M_1 = Ln$ и An = Pu, Am, Cm; $M_2 = Al$, Fe). Кроме того, воз-

том 504

Nº 2

2022

можно изовалентное замешение Zr⁴⁺ на катионы M_3^{4+} ($M_3 = Ce$, An). В цирконолите актиниды (U, Np, Pu) входят в позиции Са и Zr в количестве до ~0.3 атома в формуле, при полной замене циркония на актиниды образуется пирохлор CaAn⁴⁺Ti₂O₇. Браннерит кристаллизуется в моноклинной симметрии (пр. гр. C2/m), катионы U и Ti находятся в центре октаэдров. Слои из связанных вершинами и ребрами октаэдров TiO₆ параллельны плоскости (001), их скрепляют колонны октаэдров UO₆, вытянутые вдоль оси b (рис. 4б). Крупные позиции занимают ионы (Ce, Th, U, Np, Pu)⁴⁺ или катионы более высокого заряда (Np⁵⁺, U⁵⁺/U⁶⁺) с олновременным вхожлением в структуру Са²⁺ и РЗЭ³⁺ для его компенсации, например, по гетеровалентным обменам типа: $Ca^{2+} + U^{6+} \rightarrow 2U^{4+}$ или $P3\Theta^{3+} + U^{5+} \rightarrow 2U^{4+}.$

выводы

На примере фаз Nd, аналога актинидов (Am, Cm), рассмотрены вариации состава и кристаллохимия возможных матриц РЗЭ-МА в системе $Nd_2O_3 - TiO_2 - ZrO_2$. В ней имеются, по уменьшению полей стабильности на диаграмме (рис. 1а), фазы: Nd₂(Zr,Ti)₂O₇, Nd₄Ti₉O₂₄, ZrTiO₄, (Zr,Ti)O₂, (Ti,Zr)O₂, Nd₂Ti₂O₇, Nd₂TiO₅. Потенциальными матрицами для фракции РЗЭ-МА служат: $P3\Theta_2(Zr,Ti)_2O_{7-x}$ со структурой пирохлора, Nd₄Ti₉O₂₄, Nd₂Ti₂O₇ (перовскит), Nd₂TiO₅. Максимальная область устойчивости – у пирохлора Nd₂(Ti,Zr)₂O₇, в который входит 10 мас. % и более U и Zr. В титанатах Nd "растворимость" Са, Zr и U мала: от 2-3 мас. % в $Nd_4Ti_9O_{24}$, до ниже предела обнаружения (0.3-0.5 мас. %) в Nd₂TiO₅ и Nd₂Ti₂O₇. При повышенном содержании примесей в дополнение к титанатам РЗЭ в матрицах образуются оксид U и РЗЭ, титанат U (браннерит), титанат Са и Zr (цирконолит). Два последних соединения обладают высокой устойчивостью в растворах и их появление не приведет к ухудшению изоляционных характеристик матриц в отношении РЗЭ-МА. В системах $P3\Im_2O_3$ -TiO₂ и $P3\Im_2O_3$ -ZrO₂ со снижением радиуса РЗЭ³⁺ структура соединений РЗЭ₂Ті₂О₇ изменяется с моноклинной перовскитоподобной на кубическую пирохлоровую: граница полиморфного превращения проходит между Nd и Sm. Фазы P3Э₂Zr₂O₇ кристаллизуются в двух родственных структурных типах – пирохлора и флюорита. Первая образуется при большом различии радиусов РЗЭ³⁺ и Zr⁴⁺ (R_{РЗЭ}: R_{Zr} > 1.46). С уменьшением разницы в размерах ионов структура пирохлора трансформируется в дефицитную по анионам структуру флюорита (РЗЭ, Zr)₄O₇. Граница проходит по Gd³⁺ – цирконаты более легких и крупных РЗЭ группы Се кристаллизуются в пирохлоровом структурном типе, а тяжелые и меньшие по размеру РЗЭ группы Y обладают структурой типа флюорита. Для соединений $P3Э_2TiO_5$ ситуация более сложная: фазы P3Э от La до Sm имеют ромбическую симметрию, от Er до Lu и у Sc – кубическую, а фазы P3Э от Eu до Ho и Y – гексагональные.

Знание кристаллохимических особенностей фаз РЗЭ позволяет управлять фазовым составом получаемых матриц. Примеси (Zr, Fe, остаточные количества Pu, U) могут либо находиться в РЗЭ-МА-фракции, либо специально вводиться (CaO, Fe₂O₃, Al₂O₃) в шихту перед синтезом матрицы. В результате, наряду с титанатами РЗЭ-МА, можно получить фазы со структурой пирохлора, браннерита, цирконолита, наличие которых не ухудшает свойства матрицы в силу их высокой коррозионной устойчивости в воде.

БЛАГОДАРНОСТИ

Авторы благодарят члена-коррекспондента РАН С.В. Кривовичева и еще одного неизвестного рецензента за ценные замечания, позволившие существенно улучшить данную статью.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена по теме НИР государственного задания для ИГЕМ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Юдинцев С.В. Изоляция фракционированных отходов ядерной энергетики // Радиохимия. 2021. Т. 63. № 5. С. 403-430.
- Стефановский С.В., Юдинцев С.В. Титанаты, цирконаты, алюминаты и ферриты – матрицы для иммобилизации актинидов // Успехи химии. 2016. Т. 85. № 9. С. 962–994.
- 3. Spent Nuclear Fuel Reprocessing Flowsheet. Paris: OECD NEA, 2012. 120 p.
- 4. *Lumpkin G.R.* Ceramic Host Phases for Nuclear Waste Remediation // In: Experimental and Theoretical Approaches to Actinide Chemistry. J.K. Gibson, W.A. de Jong (Eds.). John Wiley & Sons Ltd. 2018. Ch. 7. P. 333–377.
- Ewing R.C., Weber W.J., Lian J. Nuclear Waste Disposal Pyrochlore (A₂B₂O₇): Nuclear Waste Form for the Immobilization of Plutonium and "Minor" Actinides // Journal of Applied Physics. 2004. V. 95. № 11. P. 5949–5971.
- Smith K.L., Blackford M.G., Lumpkin G.R., Zaluzec N.J. Radiation Tolerance of A₂B₂O₇ Compounds at the Cubic-monoclinic Boundary // Microscopy and Microanalysis. 2006. V. 12. S. 2. P. 1094–1095.

- Aughterson R.D., Lumpkin G.R., Ionescu M., de los Reyes M., Gault B., Whittle K.R., Smith K.L., Cairney J.M. Ion-irradiation Resistance of the Orthorhombic Ln₂TiO₅ (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) Series // Journal of Nuclear Materials 2015. V. 467. P. 683–691.
- Shoup S.S., Bamberger C.E., Tyree J.L., Anovitz L. Lanthanide-containing Zirconotitanate Solid Solutions // Journal of Solid-State Chemistry. 1996. V. 127. P. 231– 239.
- Skapin S.D., Kolar D., Suvorov D. Phase Equilibria and Solid Solution Relationships in the La₂O₃ – TiO₂ – ZrO₂ System // Solid State Sciences. 1999. V. 1. P. 245–255.
- Schaedler T.A., Fabrichnaya O., Levi C.G. Phase Equilibria in the TiO₂ YO_{1.5} ZrO₂ System // J. Eur. Ceram. Soc. 2008. V. 28. P. 2509–2520.
- Gong W., Zhang R. Phase Relationship in the TiO₂ Nd₂O₃ Pseudo-binary System // J. Alloys and Compd. 2013. V. 548. P. 216–221.
- 12. *Юдинцев С.В.* Титанаты лантанидов потенциальные матрицы для иммобилизации актинидных отходов // ДАН. 2015. Т. 460. № 4. С. 453–458.
- Юдинцев С.В., Стефановский С.В., Каленова М.Ю., Никонов Б.С., Никольский М.С., Кощеев А.М., Щепин А.С. Матрицы для иммобилизации отходов редкоземельно-актинидной фракции, полученные методом индукционного плавления в холодном тигле // Радиохимия. 2015. Т. 57. Вып. 3. С. 272– 282.

- 14. Юдинцев С.В., Стефановский С.В., Стефановская О.И., Никонов Б.С., Никольский М.С. Межфазовое распределение урана в матрицах для иммобилизации актинид-редкоземельной фракции высокорадиоактивных отходов // Радиохимия. 2015. Т. 57. Вып. 6. С. 547–555.
- Юдинцев С.В., Лившиц Т.С., Джанг Дж., Юинг Р.Ч. Поведение редкоземельных пирохлоров и перовскитов при ионном облучении // ДАН. 2015. Т. 461. № 1. С. 75–81.
- 16. Юдинцев С.В., Никольский М.С., Никонов Б.С., Мальковский В.И. Матрицы для изоляции актинидных отходов в глубоком скважинном хранилище // Доклады РАН. Науки о Земле. 2018. Т. 480. № 2. С. 217–222.
- Harvey E.J., Whittle K.R., Lumpkin G.R., Smith R.I., Redfern S.A.T. Solid Solubilities of (La,Nd,)₂(Zr,Ti)₂O₇ Phases Deduced by Neutron Diffraction // Journal of Solid State Chemistry. 2005. V. 178. № 3. P. 800–810.
- Mueller-Buschbaum H., Scheunemann K. Zurkenntnis von Nd₂TiO₅ // J. Inorg. Nucl. Chem. 1973. V. 35. № 4. P. 1091–1098.
- Hübner N., Gruehn R. Nd₄Ti₉O₂₄: Präparation und Struktur // Z. Anorg. Allg. Chem. 1992. V. 616. № 10. P. 86–94.
- Sun J., Zhou J., Hu Z., Chan T.-S., Liu R., Yu H., Zhang L., Wang J.-Q. Controllable Sites and High-capacity Immobilization of Uranium in Nd₂Zr₂O₇ Pyrochlore // J. Synchrotron Rad. 2022. V. 29. P. 37–44.

CRYSTAL-CHEMICAL FACTOR IN CHOICE OF MATRICES FOR REE-ACTINIDES

Corresponding Member of the RAS S. V. Yudintsev^{*a,b,#*}, M. S. Nickolsky^{*a*}, O. I. Stefanovsky^{*b*}, and B. S. Nikonov^{*a*}

^aInstitute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences, Moscow, Russian Federation

^b Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russian Federation

[#]E-mail: yudintsevsv@gmail.com

Light rare earth (REE) titanates: REE₂TiO₅, REE₂Ti₂O₇, and REE₄Ti₉O₂₄ are potential matrices for the REE-actinide fraction of high-level waste from the reprocessing of irradiated nuclear fuel. The data on the "solubility" of impurity elements (zirconium, uranium, calcium) in these phases are summarized. Their structures have limited isomorphism with respect to these elements, even at reaction: $2REE^{3+} = Ca^{2+} + U^{4+}$, which is common for natural minerals and their synthetic analogues. The crystal chemical reasons for the low "solubility" of these impurities in the of REE titanates are considered. The role of this factor in the selection of matrices for the immobilization of the REE-actinide fraction is analyzed.

Keywords: radioactive waste, REE-actinide fraction, immobilization, titanates of REE, crystal-chemistry