ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ, 2022, том 506, № 1, с. 50–59

———— ВУЛКАНОЛОГИЯ ——

УДК 548.4

БАЗАЛЬТОВЫЕ ЛАВЫ ТОЛЕИТОВОЙ И ЩЕЛОЧНОЙ СЕРИЙ ВУЛКАНОВ ВАН-ТЯНЬ И ЧАНБАЙШАНЬ (СЕВЕРО-ВОСТОЧНЫЙ КИТАЙ): К ВОПРОСУ О ПОСЛЕДОВАТЕЛЬНОСТИ ИХ ИЗЛИЯНИЙ И ГЕНЕТИЧЕСКОЙ ВЗАИМОСВЯЗИ

© 2022 г. О. А. Андреева^{1,*}, академик РАН В. В. Ярмолюк¹, В. М. Саватенков², И. А. Андреева¹, В. А. Лебедев¹, Дж.-Ч. Джи³, С. Жоу³

Поступило 31.05.2022 г. После доработки 02.06.2022 г. Принято к публикации 02.06.2022 г.

Вулканы Чанбайшань и Ван-Тянь Чанбайшаньского ареала (Северо-Восточный Китай) возникли с незначительным разрывом во времени в интервале последних 4 млн лет. Вулкан Ван-Тянь сформировался в интервале 3.8–2.7 млн лет, вулкан Чанбайшань начал свою активность на этапе Байшань около 1.6 млн лет назад. В отличие от трахибазальт–пантеллеритовой бимодальной ассоциации вулкана Чанбайшань, породы вулкана Ван-Тянь представлены преимущественно толеитовыми базальтами, существенно реже — трахитами и щелочными риолитами. На северном и северо-восточном склонах вулкана Ван-Тянь зафиксирован также щелочнобазальтовый поток. Проведенные петролого-геохимические и геохронологические исследования показали, что проявления толеитового и щелочного базальтового магматизма не были синхронными, и продукты извержения двух вулканов принадлежат разным петрохимическим сериям. Породы собственно вулкана Ван-Тянь представляют собой продукты эволюции толеитовых магм. Поток щелочных базальтов на северном и северовосточном и северо-восточном склонах существенно более "молодой" (<1.3 млн лет) и возник на этапе формирования щитового основания вулкана Чанбайшань. Щелочнобазальтовые лавы на северовосточном склоне вулкана Ван-Тянь распространялись вниз по долине, образуя с одновозрастными породами вулкана Чанбайшань общий вулканический плащ в его основании.

Ключевые слова: внутриплитный магматизм, кайнозойский вулканизм, толеитовые базальты, щелочные базальты

DOI: 10.31857/S2686739722600874

введение

В Северо-Восточном Китае на границе с Кореей располагается группа вулканов, возникших в плиоцене—голоцене. Они образуют Чанбайшаньский вулканический ареал, входящий в состав позднекайнозойской вулканической провинции Центральной и Восточной Азии. Провинция сложена преимущественно продуктами основного вулканизма повышенной щелочности [1]. На этом фоне вулканы Чанбайшаньского ареала выделяются тем, что в их строении помимо основ-

петрографии, минералогии и геохимии

Российской академии наук, Москва, Россия

ных участвуют также кислые вулканиты, а лавы основных пород отвечают разным петрохимическим сериям. Ярким примером этому служат два рядом расположенных вулкана – Чанбайшань и Ван-Тянь. Первый из них сложен породами трахибазальт-пантеллеритовой бимодальной ассоциации, а второй – преимущественно толеитовыми базальтами и ассоциирующими с ними трахитами и щелочными риолитами. Вулканы возникли с незначительным разрывом во времени в интервале последних 4 млн лет, поэтому различия в составе слагающих их вулканических ассоциаций вызывают ряд вопросов о природе процессов, определивших разный характер магматизма в пространственно ограниченной части вулканической провинции в узком возрастном интервале ее развития. Для ответа на эти вопросы были изучены петрогеохимические характеристики пород, определяющие различия в составе магматических ассоциаций обоих вулканов, и получены геохронологические данные, позволившие уточнить

¹ Институт геологии рудных месторождений,

² Институт геологии и геохронологии докембрия Российской академии наук, Санкт-Петербург, Россия ³ School of Earth and Space Sciences Peking University, Beijing, China

^{*}E-mail: oandreeva@igem.ru

возрастные границы их формирования. На основе полученных результатов сделан вывод, что проявления толеитового и щелочного магматизма не были синхронными и, скорее всего, были связаны с изменениями состава источников в области мантийного плавления.

Чанбайшаньский вулканический ареал расположен в северной краевой части архейско-протерозойского Сино-Корейского кратона в зоне пересечения рифтовой системы Таньлу северо-восточного простирания с Пэктусанской системой разломов северо-западного направления [2-4]. В его строении вулканы Чанбайшань и Ван-Тянь формировались на общем платобазальтовом основании, находясь друг от друга на расстоянии 30 км. Особенности состава пород вулканов Ван-Тянь и Чанбайщань были рассмотрены в ряде публикаций [2-7], в которых была подчеркнута их принадлежность щелочной серии пород. Ниже приведены характеристики пород этих вулканов, свидетельствующие об их принадлежности разным петрохимическим сериям.

ОБЪЕКТЫ ИССЛЕДОВАНИЙ

Вулкан Ван-Тянь представляет собой крупный стратовулкан, продукты извержения которого распространены на территории площадью в 4000 км² (рис. 1). В истории его активности выделяют 3 этапа [5]: 1) трещинные излияния базальтовых лав щитовой постройки Чанбай, 2) этап становления конуса вулкана Ван-Тянь, отвечающий извержениям, главным образом, базальтов, 3) этап Хонгтоушань, ознаменовавшийся формированием некков и экструзивного купола трахит-щелочнориолитового состава.

В развитии вулкана Чанбайшань (рис. 1) выделяют 4 этапа [3, 4, 6]: 1) трещинные излияния щелочнобазальтовых лав щитовой платформы; 2) излияния трахит-комендитовых лав конуса; 3) извержения пирокластического материала трахит-комендит-пантеллеритового состава с образованием кальдеры; 4) посткальдерный этап, к которому относится череда исторических извержений пирокластического материала трахит-комендитового состава.

ПЕТРОГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА

Во время полевых работ в Северо-Восточном Китае нами были опробованы разрезы северного, южного и восточного склонов конуса вулкана Ван-Тянь, а также его щитовой постройки. В их строении преобладают базальты, демонстрирующие сходство в петрографическом отношении и представляющие собой массивные крупнопорфировые породы темно-серого цвета. Они являются высокожелезистыми (9.6–15.1 мас. % Fe₂O₃), высокотитанистыми (2.4–3.6 мас. % TiO₂) низкомагнезиальными (2.4–4.1 мас. % MgO) породами с высокими концентрациями P₂O₅, достигающими 0.7 мас. %, при содержаниях SiO₂ 48.7–51.2 мас. %. Содержания суммы щелочей в них варьируют от 4.3 до 5.5 мас. % (табл. 1), что позволяет отнести их к умеренно-щелочным базальтам. В качестве вкрапленников во всех образцах базальтов установлен плагиоклаз, как правило, отвечающий по составу битовниту (An_{74.3–79.0}Ab_{20.0–25.5}Or_{0.2–1.3}). Среди минералов основной массы установлены железистый оливин (*Fo* = 43.2–56.4), клинопироксен, представленный титанавгитом (#Mg = 0.64-0.70), ильменит, титаномагнетит и фторапатит [8].

Среди пород вулкана Ван-Тянь нами были выявлены также щелочные базальтоиды, их распространение ограничено северным и северо-восточным склонами вулканического конуса, обращенными к вулкану Чанбайшань. Эти базальтоиды представляют собой массивные афировые породы, которые характеризуются трахиандезибазальтовым составом и содержат 7.0-7.9 мас. % (Na₂O + + K₂O) с преобладанием Na₂O над K₂O, 2.3-2.8 мас. % TiO₂, до 11.7 мас. % Fe₂O₃, 17.4–18.9 мас. % Al₂O₃, 0.6-0.8 мас. % P₂O₅ при содержании SiO₂ в 49.6-51.5 мас. % (табл. 1). Минеральный состав шелочных базальтоидов включает оливин (Fo = 55.6-71.4), клинопироксен, представленный салитом (#Mg = 0.64-0.73), плагиоклаз (An_{65.8-70.2}Ab_{28.4-32.6}Or_{1.4-1.9}), санидин, анортоклаз, ильменит и титаномагнетит.

Кислые породы вулкана образуют некки и лавовый купол в центральной кальдерной его части. Они сложены преимущественно трахитами, характеризующимися широким полем составов (рис. 2). Концентрации (Na₂O + K₂O) в них варьируют в интервале 8.0-9.2 мас. %, с преобладанием Na₂O над K₂O, в диапазоне SiO₂ 62.3–68.5 мас. %.

Отличия щелочных базальтоидов от базальтов вулканического конуса достаточно значимые – в целом, они содержат больше щелочей и глинозема, меньше Fe_2O_3 . В то же время эти базальтоиды близки к базальтам вулкана Чанбайшань (4). Отмеченные черты сходства и различия особенно выразительно прослеживаются на классификационных диаграммах (рис. 2, 3). На классификационной диаграмме SiO_2 – (Na₂O + K₂O) (рис. 2) породы вулкана Ван-Тянь образуют три группы составов: к первой относятся умеренно-щелочные базальты щитовой постройки и вулканического конуса, ко второй – трахиты некков и экструзивного купола. Отдельную группу составов формируют трахиандезибазальты, установленные на северном и северо-восточном склонах вулкана (рис. 2). На диаграмму также нанесены

Рис. 1. Геологическая схема строения вулканов Ван-Тянь и Чанбайшань Чанбайшаньского ареала (составлена с использованием [4–7] и космических снимков Google). Возраст приведен по [4, 6, 7] и данным этой статьи: 1 – вмещающие породы; 2 – плато-базальты ареала Чанбайшань, этап Куанянь (4.50–4.00 млн лет); 3 – толеитовые базальты щитовой постройки вулкана Ван-Тянь, этап Чанбай (3.82–2.83 млн лет); 4 – толеитовые базальты конуса вулкана Ван-Тянь, этап Ван-Тянь, этап Ван-Тянь (2.76–2.67 млн лет); 5 – купол и некки вулкана Ван-Тянь, этап Хонгтоушань (2.76–2.69 млн лет); 6 – щелочные базальтоиды щитовой постройки вулкана Чанбайшань, этап Байшань, этап Тоудао (2.77–1.99 млн лет); 7 – щелочные базальтоиды щитовой постройки вулкана Чанбайшань, этап Байшань (1.64–1.11 млн лет); 8 – трахиты, комендеты и пантеллериты конуса вулкана Чанбайшань, этап Байтоушань (1.12–0.81 млн лет); 9 – игнимбриты, пемзы и пеплы кальдеры вулкана Чанбайшань, этап Байгоушань (7854–825 лет до н.э.); 10 – разломы; 11 – государственная граница; 12 – точки отбора образцов и их номера.

точки составов щелочных базальтоидов щитовой платформы вулкана Чанбайшань [4]. Как видно на рис. 2, щелочные базальтоиды вулкана Чанбайшань образуют единое поле составов с трахиандезибазальтами, сформировавшимися на северном и северо-восточном склонах вулкана Ван-Тянь.

На AFM-диаграмме (рис. 3) составы умеренно-щелочных базальтов щита и конуса вулкана Ван-Тянь лежат выше линии Ирвина-Барагара, что дает основание отнести их к толеитовой серии пород. Точки составов щелочных базальтоидов, сформировавшихся на северном и северо-восточном склонах вулкана Ван-Тянь, располагаются ниже линии Ирвина-Барагара (рис. 3), попадая на тренд пород вулкана Чанбайшань. В геохимическом отношении толеитовые базальты представляют слабо дифференцированную серию пород. Они имеют близкие по конфигурации спектры распределения редкоземельных элементов (рис. 4), характеризующиеся величиной (La/Yb)_N = 7.0-8.4 и незначительной положительной европиевой аномалией (Eu/Eu* = = 1.04-1.13).

Щелочные базальтоиды вулкана Ван-Тянь (рис. 4) отличаются от толеитовых базальтов более крутым наклоном спектра ((La/Yb)_N = 14–16) и повышенными содержаниями элементов-примесей левой части спайдер-диаграммы (Ba, Nb, Ta, Pb, Zr, Hf и легкие РЗЭ), в них отмечается отрицательная Sr-аномалия. В то же время они имеют большое сходство в содержании и распределе-

	блица 1. Химический (мас. %) и микроэлементный (ppm) состав представительных пород вулканов Ван-Тянь и Чанбайшань с результатами их К-	-датирования
--	--	--------------

д	Аг-датирования										
ЭКЛ А						Вулкан I	Зан-Тянь				
ады	Компонент			1						3	
POC		B-15	B-17	B-19	BTE-9	BTE-4	BTE-11	BTE-22	BTE-23	B-13	B-108
СИЙ	Возраст (млн. лет ±2s)	3.82 ± 0.13	I	3.3 ± 0.6	2.83 ± 0.09	I	2.76 ± 0.09	2.67 ± 0.20	I	2.76 ± 0.07	I
іско	SiO ₂	48.66	49.38	48.66	51.19	48.57	50.88	48.92	51.04	64.49	68.47
ОЙ А	TiO ₂	3.30	3.22	2.44	3.22	3.60	3.59	3.56	3.24	0.90	0.41
кал	Al_2O_3	15.80	15.39	18.51	13.58	14.35	13.09	14.66	13.67	14.06	13.88
ĮEMI	Fe_2O_3	13.14	12.73	9.62	14.15	14.44	15.13	14.49	13.24	6.77	5.44
ии	MnO	0.17	0.17	0.13	0.194	0.168	0.180	0.174	0.154	0.12	0.101
НАУ	MgO	2.74	2.40	2.98	3.45	4.11	3.57	3.80	3.35	0.58	0.07
К. І	CaO	8.17	8.54	9.62	7.22	8.31	7.09	8.07	7.63	2.40	1.24
ТАУ	Na_2O	3.68	3.20	3.17	3.71	3.25	3.38	3.51	3.40	4.48	4.53
ки (K_2O	1.54	1.48	1.09	1.82	1.33	1.83	1.33	1.67	3.86	4.71
) 3E	P_2O_5	0.71	0.36	0.36	0.73	0.52	0.63	0.66	0.53	0.22	0.06
мле	Сумма	97.91	96.87	96.58	99.26	98.65	99.37	99.17	97.92	97.88	98.91
3	ШПП	1.26	2.34	2.66	0.46	1.06	0.34	0.55	1.79	1.27	0.69
том	$Na_2O + K_2O$	5.22	4.68	4.26	5.53	4.58	5.21	4.84	5.07	8.34	9.24
506	V	168	210	154	183	255	197	191	197	3.7	3.0
N	Cr	27.0	29.4	38.8	5.5	31.7	6.1	6.9	21.9	5.9	15.0
2 1	Co	31.9	35.6	30.7	33.9	45.3	34.3	33.6	35.8	3.1	1.1
202	Ni	19.4	21.0	42.2	7.8	47.4	5.8	13.5	25.0	1.6	4.9
22	Cu	27.7	36.1	18.1	53.0	83.1	57.1	53.6	60.3	5.0	18.6
	Zn	124	112	84.4	152	166	147	148	142	137	116
	Ga	22.2	21.2	20.4	22.9	22.3	23.1	22.7	21.9	24.1	25.6
	Rb	28.4	28.2	16.5	27.0	20.0	30.8	13.2	26.4	70.5	121.7
	Sr	545	489	650	458	465	399	451	435	224	130

БАЗАЛЬТОВЫЕ ЛАВЫ ТОЛЕИТОВОЙ И ЩЕЛОЧНОЙ СЕРИЙ ВУЛКАНОВ

53

		B-108	60.3	575	62.6	2.6	1312	61	125	16	65	15	3.7	13.5	2.1	12.3	2.2	5.8	0.8	5.1	0.7	14.2	3.7	16.8	10.4	2.2
	3	B-13	48.0	537	46.9	0.9	1033	39.9	90.5	12.2	53.5	12.7	3.3	12.4	1.9	10.3	1.9	5.4	0.7	4.5	0.7	15.2	3.1	13.1	7.8	1.4
		BTE-23	26.3	210	20.7	0.3	449	24.1	55.6	7.1	31.0	8.0	2.8	7.2	1.1	5.8	1.0	2.4	0.3	2.1	0.3	5.2	1.2	5.3	2.4	0.5
		BTE-22	30.5	204	22.9	0.2	508	25.2	57.0	7.7	36.0	10.0	3.2	9.0	1.2	6.7	1.3	3.0	0.4	2.4	0.4	5.5	1.5	6.9	2.5	0.4
ан-Тянь	2	BTE-11	30.1	222	23.6	0.3	479	26.2	53.0	7.7	33.0	7.9	2.8	8.0	1.1	6.2	1.1	2.9	0.4	2.3	0.3	5.6	1.4	4.2	2.6	0.5
Вулкан Ва		BTE-4	34.7	204	20.9	0.4	447	27.7	48.8	7.5	32.5	8.5	3.1	8.2	1.2	6.7	1.2	3.3	0.4	2.2	0.3	5.2	1.2	6.7	2.1	0.4
		BTE-9	33.4	236	25.4	0.3	559	31.0	60.8	8.9	37.9	9.1	3.2	8.9	1.4	6.8	1.2	3.3	0.4	2.6	0.4	6.6	1.6	9.3	3.0	0.6
		B-19	18.9	151	16.8	0.2	359	15.9	38.2	4.9	22.6	5.6	2.0	5.5	0.8	4.1	0.7	1.9	0.2	1.4	0.2	4.1	1.1	3.5	1.7	0.3
	1	B-17	28.1	219	25.8	0.3	520	22.9	51.3	7.1	32.5	7.9	2.7	7.8	1.1	6.0	1.1	2.8	0.4	2.2	0.3	6.1	1.5	4.9	2.5	0.5
		B-15	35.4	206	22.3	0.3	546	27.2	64.8	9.0	43.0	10.5	3.7	10.3	1.4	7.3	1.3	3.4	0.4	2.5	0.3	5.7	1.5	4.9	2.4	0.5
	Компонент		Y	Zr	Nb	Cs	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Та	Pb	Th	D
			Д	ЭКЛ	АДЬ	J PC)CC]	ИЙС	СКО	ЙА	КАД	EM	ии	НАУ	'К. Н	НАУ	КИ	0 3E	ЕМЛ	Е	том	r 506		№ 1	2	022

54

Таблица 1. Продолжение

АНДРЕЕВА и др.

одолжение
Ъ
H
Таблица

B-7

B-5

айшань

цнб	5																									
Вулкан Ча		B-4a	1.40 ± 0.06	53.98	1.73	18.10	9.18	0.16	1.28	4.31	4.62	4.60	1.07	99.03	0.00	9.22	27.0	2.3	9.3	1.3	9.9	118	19.4	62.4	461	29.7
		B-4	I	52.85	1.84	18.22	9.44	0.16	1.46	4.52	4.54	4.34	1.17	98.54	0.40	8.88	33.1	2.2	10.1	1.8	9.7	125	19.1	54.5	525	30.3
		BTE-18	1.29 ± 0.05	50.42	2.54	17.51	10.97	0.160	3.88	6.07	4.61	2.61	0.74	99.51	0.08	7.22	129	5.24	24.2	5.82	44.6	132	23.4	55.7	812	26.1
	4	BTE-17a	I	50.03	2.58	17.37	11.40	0.163	3.85	6.11	4.57	2.67	0.78	99.52	0.05	7.24	125	7.35	25.4	9.45	46.1	123	23.3	54.0	814	25.5
Зан-Тянь	7	B-14	1.09 ± 0.04	51.49	2.29	18.66	9.77	0.16	2.09	5.99	4.95	2.98	0.77	99.15	0.00	7.93	74.5	2.1	19.4	1.4	13.3	83.2	18.5	43.1	885	27.5
Вулкан I		B-12	I	50.72	2.58	18.93	9.75	0.16	2.54	6.38	4.55	2.56	0.64	98.81	0.00	7.11	118	2.1	22.0	2.1	9.6	103	21.2	47.2	777	26.6
	3	BTE-19	2.73 ± 0.07	64.03	0.88	13.90	7.29	0.110	0.59	2.31	4.50	3.79	0.24	97.64	2.03	8.29	3.2	6.9	3.9	5.3	23.3	131	26.0	79.6	239	47.4
		BTE-6	2.69 ± 0.07	62.26	1.21	14.06	8.14	0.129	1.02	3.15	4.61	3.40	0.41	98.39	1.27	8.01	16.9	5.0	7.1	4.7	49.6	134	22.7	65.3	278	38.7
	Компонент		Возраст (млн. лет ± 2s)	SiO_2	TiO_2	Al_2O_3	Fe_2O_3	MnO	MgO	CaO	Na_2O	K ₂ O	P_2O_5	Сумма	ШПП	$Na_2O + K_2O$	Λ	Cr	Co	Ni	Cu	Zn	Ga	Rb	Sr	Y
док	ЛАД	ЫP	осс	СИЙ	ско	ЙAI	КАД	EM₽	1И F	IAY]	К. Н	АУК	ио	3EN	ИЛЕ	Т	ом 5	06	N⁰	1	202	2				

БАЗАЛЬТОВЫЕ ЛАВЫ ТОЛЕИТОВОЙ И ЩЕЛОЧНОЙ СЕРИЙ ВУЛКАНОВ

55

30.0

I				Вулкан Е	Зан-Тянь				Вулкан Ча	анбайшань	
	Компонент		~			4				5	
		BTE-6	BTE-19	B-12	B-14	BTE-17a	BTE-18	B-4	B-4a	B-5	B-7
, ,	Ir	398	484	344	351	300	307	307	308	315	312
∠ док	Jb	39.0	48.2	58.4	68.4	58.9	56.8	54.6	57.2	58.5	49.5
ЛАЛ	S	0.7	0.7	0.3	0.4	0.5	0.5	0.3	0.6	0.3	0.5
ш ы ғ	a	822	939	821	881	829	784	2806	2635	2964	951
 200	à	41.9	47.9	47.2	45.0	48.7	49.3	55.4	53.9	54.5	47.0
о сий	Ge	86.3	97.9	99.5	97.6	98.8	95.4	118	112	115	101
ц іско	r	10.6	12.5	12.4	12.5	11.3	11.9	15.2	14.4	14.5	12.9
∠ √ лй	Ŋ	45.7	53.1	49.6	50.7	45.7	45.8	60.8	58.3	58.8	55.7
∽ AKA	ш	11.8	13.7	9.4	9.7	8.66	9.84	11.2	10.9	10.9	11.6
ш ДЕМ	ĩu	3.3	3.2	2.9	3.0	2.97	2.98	4.4	4.2	4.3	3.7
о лии	þč	10.0	11.7	8.1	8.5	7.99	8.21	9.6	9.5	9.7	10.6
на	q	1.4	1.7	1.1	1.2	1.0	1.1	1.4	1.3	1.3	1.5
и УК)y	8.1	10.3	5.9	6.1	5.8	5.9	7.1	6.8	6.8	7.1
НА	Io	1.5	1.8	1.1	1.1	1.0	1.0	1.3	1.2	1.2	1.2
щ УКИ	ùr	4.2	5.0	2.9	2.9	2.6	2.7	3.3	3.3	3.2	3.1
н ГО 3	'n	0.6	0.7	0.4	0.4	0.4	0.3	0.4	0.4	0.4	0.4
≻ Bem	ą	3.5	4.3	2.3	2.4	2.1	2.1	2.5	2.5	2.5	2.2
ц ле	'n	0.4	0.6	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3
т	If	10.4	12.1	9.1	8.8	6.8	7.3	8.3	8.2	8.1	8.4
н м 50	à	2.1	2.7	4.1	4.3	3.6	3.6	3.7	3.8	3.7	3.2
<u>п</u>)6	1	9.6	13.5	7.3	6.6	4.9	5.8	11.5	9.5	9.4	7.1
L ₩	'n	6.1	7.7	5.7	6.0	5.6	5.9	6.8	6.5	6.3	5.7
ب 1	J	1.2	1.4	1.3	1.2	1.2	1.2	1.2	0.9	1.2	1.1
표 驳 챪 2022	2 ₂ O ₃ – железо общее. П <mark>1</mark> на Ван-Тянь (этап Ван- лкана Ван-Тянь (этап Б	рочерк – не оп Тянь); 3 – трау айшань); 5 – 1	ределялось. 1 - киты некков ву целочные база	- толеитовые (лкана Ван-Тян льтоиды щито	базальты щитс нь (этап Хонгт вой постройк	вой постройки оушань); 4 — ш и вулкана Чанб	1 вулкана Ван- целочные базал 5айшань (этап	Тянь (этап Ча втоиды на сен Байшань).	нбай); 2 — толе зерном и север	итовые базаль о-восточном с	гы конуса вул- клонах конуса

56

Таблица 1. Окончание

АНДРЕЕВА и др.

Рис. 2. Химический состав пород вулканов Ван-Тянь и Чанбайшань на классификационной диаграмме [9]. *1* – толеитовые базальты щитовой постройки вулкана Ван-Тянь; *2* – толеитовые базальты конуса вулкана Ван-Тянь; *3* – трахиты некков вулкана Ван-Тянь; *4* – щелочные базальтоиды, сформированные на северном и северо-восточном склонах вулкана Ван-Тянь; *5* – щелочные базальтоиды щитового вулкана Чанбайшань.

нии элементов-примесей с щелочными базальтоидами вулкана Чанбайшань.

В связи с разделением пород вулкана Ван-Тянь на разные петрохимические серии с разными геохимическими и петрохимическими характеристиками возникает вопрос об их принадлежности к продуктам общего для них магматического процесса. На подобное родство, помимо пространственного и структурного совмещения пород, должно указывать также общее для них время формирования. Для решения этого вопроса были выполнены геохронологические исследования главных типов пород вулкана Ван-Тянь, а также щитовых базальтоидов вулкана Чанбайшань и проведено их петролого-геохимическое сопоставление.

ГЕОХРОНОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

Согласно результатам К-Аг-датирования главных типов пород вулкана Ван-Тянь (табл. 1) нами установлено, что толеитовые лавы щитовой платформы (обр. В-15, В-19, ВТЕ-9) изливались $3.82 \pm 0.13 - 2.83 \pm 0.09$ млн лет назад. Потоки толеитовых базальтов (ВТЕ-11, ВТЕ-22), участвующих в строении конуса вулкана, формировались винтервале 2.76 ± 0.09-2.67 ± 0.20 млн лет (табл. 1). Некки трахитов (обр. В-13, ВТЕ-06, BTE-19) имеют тот же возраст 2.76 ± 0.07- 2.69 ± 0.07 млн. лет (табл. 1). Щелочным базальтоидам, зафиксированным нами на северном и северо-восточном склонах вулкана Ван-Тянь (обр. В-14, ВТЕ-18), отвечает возраст 1.29 ± 0.05 и

 1.09 ± 0.04 млн лет (табл. 1) соответственно. Также методом К-Аг-датирования был определен возраст щелочных базальтоидов щитовой постройки вулкана Чанбайшань (обр. В-4а), который составляет $1.40 \pm \pm 0.06$ млн лет (табл. 1).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Проведенные геохронологические и петролого-геохимические исследования пород вулкана Ван-Тянь позволили зафиксировать три этапа его формирования. Трещинные излияние базальтов (этап Чанбай) произошли в интервале между 3.82 ± $\pm 0.13 - 2.83 \pm 0.09$ млн лет назад; формирование толеитовых лав вулканического конуса (этап Ван-Тянь) – в интервале между 2.76 ± 0.09–2.67 ± ± 0.20 млн лет назад; и образование трахит-щелочнориолитовых экструзий (этап Хонгтоушань) практически в том же интервале - 2.76 ± 0.07- 2.69 ± 0.07 млн лет назад. Потоки шелочных базальтоидов на северном и северо-восточном склонах вулкана Ван-Тянь, характеризующиеся возрастом в $1.29 \pm 0.05 - 1.09 \pm 0.04$ млн лет, существенно более "молодые" и возникли после завершения образования бимодальной серии пород вулкана Ван-Тянь. С другой стороны, возраст этих шелочных базальтоидов согласуется со временем трещинных излияний щелочнобазальтовых лав (1.64-1.11 млн лет), сформировавших щитовую постройку вулкана Чанбайшань (этап Байшань) [6]. Это предположение хорошо согласуется с петролого-геохимическими характеристиками щелочных базальтоидов щита Чанбайшань и вулкана Ван-Тянь. Все изученные щелочные базиты

Рис. 3. Химический состав пород вулкана Ван-Тянь на классификационной диаграмме AFM. 1— толеитовые базальты щитовой постройки вулкана Ван-Тянь; 2— толеитовые базальты конуса вулкана Ван-Тянь; 3— щелочные базальтоиды, сформированные на северном и северо-восточном склонах вулкана Ван-Тянь; 4— щелочные базальтоиды щитового вулкана Чанбайшань. Пунктиром показана линия, разделяющая толеитовую и известково-щелочную серии, по 10]. Стрелками отмечены боуэновский и феннеровский тренды кристаллизационной дифференциации.

обладают схожим минеральным составом. Щелочные базальтоиды обоих вулканов обогащены Ba, Nb, Ta, Pb, Zr, Hf и легкими РЗЭ относительно состава базальтов океанических островов (OIB) и толеитовых базальтов вулкана Ван-Тянь. Геохимическое сходство шелочнобазальтовых лав вулкана Ван-Тянь с щелочными базальтоидами щита Чанбайшань, а также синхронность их излияний позволяют заключить, что появление шелочнобазальтовых потоков на склонах вулкана Ван-Тянь совпало с одним из этапов (этап Байшань) формирования щитового основания вулкана Чанбайшань. Образование этого основания характеризовалось ареальным типом излияний из многочисленных центров [2, 3, 7], один из которых возник на северо-восточных склонах вулкана Ван-Тянь. Из него сформировался поток (В-12 и ВТЕ-19), который распространялся вниз по долине (рис. 1), образуя с одновозрастными лавами вулкана Чанбайшань общий вулканический плащ в его основании.

Породы собственно вулкана Ван-Тянь, возникшие в интервале между 3.82 и 2.7 млн лет, представляют собой продукты эволюции толеитовых магм. Излияние щелочнобазальтовых лав происходило на склоне вулкана после замирания вулканической активности в его пределах и участвовало в образовании щитового основания вулкана Чанбайшань. Возрастные и структурные различия в распределении пород толеитовой и шелочной петрохимических серий в вулканическом районе позволяют предполагать, что их расплавы могли образовываться при различных потенциальных температурах плавления мантийного перидотита, либо в результате смешения продуктов плавления различных субстратов. Относительное обогашение толеитовых и шелочных расплавов такими флюидомобильными элемен-

Рис. 4. Спектры распределения содержаний редких и редкоземельных элементов в базальтоидах вулканов Ван-Тянь и Чанбайшань. *1* – толеитовые базальты щитовой постройки вулкана Ван-Тянь; *2* – толеитовые базальты конуса вулкана Ван-Тянь; *3* – щелочные базальтоиды, сформированные на северном и северо-восточном склонах вулкана Ван-Тянь; *4* – щелочные базальтоиды щитового вулкана Чанбайшань; *5* – Базальты ОІВ-типа. Нормирование относительно примитивной мантии и хондрита по [11].

тами, как Ва и Рb, указывает на участие в их образовании метасоматически преобразованной литосферной мантии.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена в рамках темы государственного задания FMMN-2021-0006 и при финансовой поддержке проекта РФФИ № 20-05-00306.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ярмолюк В.В., Кудряшова Е.А., Козловский А.М. и др. // Петрология. 2011. Т. 11. № 4. С. 341–362.
- 2. *Сахно В.Г.* // Доклады РАН. 2007. Т. 412. № 2. С. 226-233.
- 3. *Андреева О.А., Ярмолюк В.В., Андреева И.А. и др. //* Доклады РАН. 2014. Т. 456. № 2. С. 200–206.

- 4. Андреева О.А., Ярмолюк В.В., Андреева И.А. и др. // Петрология. 2018. Т. 26. № 5. С. 535-566.
- Fan Q., Liu R., Li D., et al. // Chinese Sci. Bul. 1999. V. 44. № 7. P. 660–663.
- Wei H., Wang Y., Jin J., et al. // Lithos. 2007. V. 96. Iss. 1–2. P. 315–324.
- 7. *Tang H., Kong T., Wu Ch., et al.* // Acta Geologica Sinica. 2017. V. 91. № 5. P. 1717–1732.
- 8. Андреева О.А., Андреева И.А., Ярмолюк В.В. и др. // Петрология. 2020. Т. 28. № 4. С. 393-412.
- Le Bas M.J., Le Maitre R.W., Streckeisen A., et al. // J. Petrol. 1986. V. 27. P. 745–750.
- Irvine T.N., Baragar W.R.A. // Canad. J. Earth Sci. 1971. V. 8. P. 523–548.
- Sun S.-S., McDonough W.F. // Eds. A.D. Saunders and M.J. Norry. Geol. Soc. London. Spec. Publ. 1989. P. 313–345.

THOLEIITIC AND ALKALINE BASALTIC LAVAS OF WANG-TIAN'E AND CHANGBAISHAN VOLCANOES (NORTH-EASTERN CHINA): TIMING AND GENETIC RELATIONSHIP

O. A. Andreeva^{*a*,#}, Academician of the RAS V. V. Yarmolyuk^{*a*}, V. M. Savatenkov^{*b*}, I. A. Andreeva^{*a*}, V. A. Lebedev^{*a*}, J.-Q. Ji^{*c*}, and X. Zhou^{*c*}

^a Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences, Moscow, Russian Federation

^b Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, St.-Petersburg, Russian Federation ^c School of Earth and Space Sciences Peking University, Beijing, China

[#]E-mail: oandreeva@igem.ru

Changbaishan and Wang-Tian'e volcanoes of the Changbaishan area (Northeast China) were formed with a slight time gap in the last 4 million years. Wang-Tian'e volcano was formed at 3.8–2.7 Ma; the activity of Changbaishan began at the Baishan stage about 1.6 Ma ago. In contrast to the trachybasalt–pantellerite bi-modal association of Changbaishan volcano, Wang-Tian'e volcanic rocks are mainly tholeiitic basalts and much less often trachytes and alkaline rhyolites. An alkaline basalt flow has also been recorded on the northern and northeastern slopes of Wang-Tian'e volcano. Our petrological, geochemical and geochronological data show that the occurences of tholeiitic and alkaline basaltic magmatism in the Changbaishan volcanic area were not synchronous, and the eruptive products of Wang-Tian'e and Changbaishan belong to different petrochemical series. The rocks of Wang-Tian'e volcano itself are products of tholeiitic magmas. The alkaline basalt flow is much "younger" (<1.3 Ma) and appeared during the formation of the shield basement of Changbaishan volcano. The alkaline basaltic lavas on the northeastern slope of Wang-Tian'e spread down the valley as an extensive volcanic flow forming a single volcanic cover together with the coeval rocks of Changbaishan.

Keywords: intraplate magmatism, Cenozoic volcanism, tholeiitic basalts, alkaline basalts