#### **———— ГЕОЛОГИЯ**

УЛК 549.08:550.4.02

# ВОЗРАСТ И ТЕРМАЛЬНАЯ ИСТОРИЯ ЭКЛОГИТОВ ТУЛЕПСАЙСКОГО КОМПЛЕКСА ВОСТОЧНЫХ МУГОДЖАР (ЗАПАДНЫЙ КАЗАХСТАН)

© 2022 г. А. В. Рязанцев<sup>1,\*</sup>, Б. Г. Голионко<sup>1</sup>, член-корреспондент РАН А. Б. Котов<sup>2</sup>, А. В. Скобленко<sup>1</sup>, М. В. Стифеева<sup>2</sup>, Ю. В. Плоткина<sup>2</sup>, Е. Б. Сальникова<sup>2</sup>, М. Ю. Корешкова<sup>3</sup>, Ф. Мачев<sup>4</sup>

Поступило 23.05.2022 г. После доработки 01.06.2022 г. Принято к публикации 02.06.2022 г.

В Восточно-Мугоджарской зоне среди толщи амфиболитов находятся линзы эклогитов (тулепсайский комплекс), сформированных на пике метаморфизма P=15 кбар,  $T=700-750^{\circ}\mathrm{C}$ , испытавших декомпрессию при 12 кбар (гранулитовая фация метаморфизма). Отсутствие значимой разницы между возрастом цирконов, образовавшихся, как мы полагаем, в условиях эклогитовой фации метаморфизма (374  $\pm$  4 млн лет) на глубинах 50–60 км (?) и возрастом их оболочек (372  $\pm$  6 млн лет), образование которых, скорее всего, связано с изотермическим падением давления до 12 кбар (25–35 км?), может указывать на быстрый подъем эклогитов со значительных глубин. Рутил, выделенный из эклогитов, отражает более поздний этап преобразования породы при 630–690  $\pm$  40°C, значение его U—Pb-возраста соответствует 360  $\pm$  2 млн лет. Максютовский эклогит-глаукофансланцевый и тулепсайский комплексы являются близкими по возрасту структурными аналогами, слагая нижние аллохтоны на разных крыльях Магнитогорской синформы. Комплексы сформированы в близкой геодинамической обстановке коллизии дуга—континент.

*Ключевые слова:* метаморфизм, эклогиты, гранулиты, U-Pb-возраст, циркон, рутил, скорость эксгумации, Урал, Казахстан

**DOI:** 10.31857/S2686739722600916

На западе Восточно-Мугоджарской зоны Восточно-Уральской мегазоны находится Талдыкская антиформа, перекрытая на западе аллохтоном Магнитогорской синформы, а на востоке комплексами Балкымбайского грабена (рис. 1). В строении Талдыкской антиформы принимают участие метаморфические породы южномугоджарской и талдыкской серий [1, 3-6]. Южномугоджарская серия представлена мигматизированными амфиболитами, биотитовыми гнейсами и эклогитами. Некоторые авторы относят амфиболиты и эклогиты этой серии к тулепсайскому комплексу. Талдыкская серия сложена кварцитами, кварц-слюдяными и кианитовыми сланцами, гнейсами и лептинитами. Узкие линейные тела на западе района на площади распространения

талдыкской серии представлены ультрабазитами с линзами эклогитоподобных гранатовых амфиболитов [3, 8]. Возраст южномугоджарской и талдыкской серий рассматривается как рифейский [3, 6].

Для определения возраста эклогитов тулепсайского комплекса и их последующих метаморфических преобразований нами были выполнены геохронологические исследования.

Эклогиты тулепсайского комплекса наблюдаются в виде согласных тел мощностью 0.5-1.5 м среди амфиболитов южномугоджарской серии. По химическому составу амфиболиты отвечают низко- и умеренно-калиевым базальтам и андезибазальтам толеитовой серии. Эклогиты отличаются от них меньшими содержаниями  $K_2O$ ,  $SiO_2$ ,  $P_2O_5$  (табл. 1). Распределение редкоземельных элементов в эклогитах имеет слабодифференцированный характер ( $La_n/Yb_n=0.7-2.0$ ). Состав эклогитов близок к N-MORB с признаками коровой контаминации.

Главными минералами эклогитов являются гранат, амфибол (магнезиогастингсит, паргасит), клиноцоизит, плагиоклаз, рутил и кварц (рис. 2). Омфацит ( $\mathrm{Jd}_{24-39}$ ) сохраняется только в виде реликтов и в большинстве случаев замещен сим-

<sup>&</sup>lt;sup>1</sup> Геологический институт

Российской академии наук, Москва, Россия

<sup>&</sup>lt;sup>2</sup> Институт геологии и геохронологии докембрия Российской академии наук, Санкт-Петербург, Россия

<sup>&</sup>lt;sup>3</sup> Институт наук о Земле, Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

<sup>&</sup>lt;sup>4</sup> Sofia University St. Kliment Ohridski, Sofia, Bulgaria

<sup>\*</sup>E-mail: avryazan51@mail.ru



Рис. 1. Положение эклогитов в структуре Талдыкской антиформы, по [6] с изменениям (А) и схема основных структур Южного Урала (Б). 1 – нижне-среднепалеозойские карбонатные, терригенно-кремнистые и вулканогенные толши Балкымбайского грабена, 2 – девонские вулканогенные толщи и комплекс параллельных даек Западно-Мугоджарской зоны; 3 — борлинская и мамбеткульская свиты нерасчлененные, нижний палеозой (?), углеродистые сланцы, кварциты, филлиты; 4 — талдыкская серия, верхний рифей-венд (?), кварциты, кварц-мусковитовые сланцы, кианитовые сланцы, двуслюдяные гнейсы; 5 — южномугоджарская серия, рифей(?), амфиболиты, эклогиты; 6 — милысайский комплекс, венд-ранний кембрий(?), гранито-гнейсы; 7 – ащисайский комплекс, средний карбон, биотитовые и биотит-роговообманковые граниты; 8 — ультрабазиты; 9 — разрывные нарушения; 10 — зона с эклогитами среди амфиболитов; 11 — проба эклогитов 1856 (координаты —  $49^{\circ}01'49.2''$  с.ш.,  $59^{\circ}04'23.0''$  в.д.); На схеме (Б): 12 — флиш, молассы и карбонатные отложения нижнего карбона—верхней перми; 13— граувакковый флиш верхнего девона—нижнего карбона; 14 – вулканогенные и карбонатные комплексы среднего – верхнего палеозоя; 15 – вулканогенные терригенные и карбонатные комплексы нижнего-верхнего палеозоя; 16 - докембрийские и палеозойские метаморфические комплексы; 17 – докембрийские и палеозойские комплексы метаморфизованные; 18 – рифейские и вендские комплексы; максютовский эклогит-глаукофансланцевый комплекс; 19 — офиолиты и серпентинитовые меланжи; 20 — границы структурных зон; 21 — государственная граница Российской Федерации на севере и Республики Казахстан на юге. На рис. 1 Б прямоугольником показано положение территории рис. 1 А. В квадратах показаны номера структур: I – Предуральский краевой прогиб, II – Башкирский мегантиклинорий, западная часть, III – Башкирский мегантиклинорий, восточная часть, III6 – зона Уралтау, IV – Магнитогорская мегазона, V – Восточно-Уральская мегазона, VI — Зауральская мегазона.

Таблица 1. Химические составы эклогитов и амфиболитов Тулепсайского комплекса

| Образец           | 1856  | 1858/3 | 1959/3 | 1867/3 | 1874/2 | 1960  | 1858/1 | 1962/1 | 1963  | 1968/1 |
|-------------------|-------|--------|--------|--------|--------|-------|--------|--------|-------|--------|
| Породы            | E     | E      | E      | GrA    | GrA    | GrA   | A      | A      | A     | A      |
| SiO <sub>2</sub>  | 50.63 | 45.27  | 47.06  | 43.82  | 55.59  | 53.15 | 44.74  | 52.03  | 54.91 | 48.04  |
| $TiO_2$           | 1.53  | 1.03   | 1.85   | 1.01   | 0.70   | 1.93  | 1.26   | 0.55   | 0.39  | 2.06   |
| $Al_2O_3$         | 12.05 | 13.04  | 12.75  | 14.99  | 16.99  | 8.86  | 18.62  | 15.54  | 14.05 | 15.72  |
| $Fe_2O_3$         | 7.97  | 7.78   | 5.39   | 7.72   | 5.46   | 11.35 | 8.24   | 4.49   | 4.21  | 3.55   |
| FeO               | 9.38  | 8.37   | 8.81   | 6.71   | 5.22   | 12.72 | 6.86   | 5.68   | 7.16  | 9.25   |
| MnO               | 0.29  | 0.25   | 0.20   | 0.33   | 0.15   | 0.16  | 0.30   | 0.21   | 0.27  | 0.20   |
| MgO               | 4.68  | 9.05   | 6.88   | 5.15   | 3.03   | 2.26  | 3.77   | 4.62   | 5.93  | 5.20   |
| CaO               | 8.85  | 10.39  | 11.95  | 15.66  | 6.36   | 5.71  | 9.29   | 8.85   | 8.32  | 9.79   |
| $K_2O$            | 0.05  | 0.37   | 0.21   | 0.68   | 0.73   | 0.19  | 0.93   | 1.18   | 0.48  | 0.86   |
| Na <sub>2</sub> O | 3.10  | 2.71   | 3.17   | 1.91   | 3.83   | 1.03  | 3.64   | 4.14   | 2.45  | 3.27   |
| $P_2O_5$          | 0.28  | 0.25   | 0.20   | 0.20   | 0.17   | 0.87  | 0.56   | 0.69   | 0.09  | 0.36   |
| loi               | 0.16  | 0.56   | 0.96   | 1.08   | 1.19   | 0.95  | 1.05   | 1.20   | 0.80  | 0.97   |
| Sum               | 98.96 | 99.06  | 99.42  | 99.26  | 99.41  | 99.18 | 99.24  | 99.17  | 99.06 | 99.26  |
| Li                | 6.7   | 9.8    | 7.6    | 8.9    | 6.0    | 3.0   | 14.8   | 4.4    | 9.2   | 6.8    |
| Be                | 0.82  | 1.1    | 1.3    | 1.0    | 1.7    | 0.57  | 0.69   | 1.3    | 0.79  | 1.2    |
| Sc                | 54.3  | 50.2   | 47.0   | 47.0   | 29.5   | 63.2  | 37.7   | 39.3   | 56.7  | 46.3   |
| V                 | 392   | 297    | 371    | 276    | 222    | 64.6  | 184    | 227    | 256   | 243    |
| Cr                | 78.7  | 399    | 166    | 654    | 60.0   | 10.1  | 1105   | 214    | 191   | 279    |
| Co                | 45.5  | 58.3   | 40.9   | 41.1   | 25.9   | 21.6  | 50.1   | 28.0   | 37.0  | 53.3   |
| Ni                | 17.2  | 98.5   | 58.2   | 127    | 27.0   | 5.7   | 262    | 45.0   | 46.6  | 128    |
| Cu                | 30.1  | 76.9   | 29.3   | 119    | 14.1   | 38.6  | 14.2   | 110    | -     | 46.3   |
| Zn                | 78.1  | 132    | 98.1   | 167    | 92.9   | 117   | 136    | 109    | 121   | 82.9   |
| Ga                | 15.4  | 18.5   | 18.2   | 15.8   | 20.1   | 15.6  | 11.7   | 13.9   | 14.5  | 18.7   |
| As                | 4.5   | 0.51   | 3.8    | 3.6    | 2.6    | 3.6   | 1.4    | 3.2    | 2.2   | 2.3    |
| Rb                | 1.1   | 5.2    | 3.0    | 19.3   | 15.7   | 2.1   | 3.1    | 16.0   | 4.7   | 15.8   |
| Sr                | 84    | 275    | 150    | 598    | 410    | 96.3  | 205    | 440    | 171   | 391    |
| Y                 | 33.7  | 26.7   | 41.1   | 18.9   | 22.9   | 63.6  | 10.2   | 20.7   | 12.4  | 43.8   |
| Zr                | 11.2  | 10.8   | 14.3   | 23.2   | 6.5    | 28.2  | 9.1    | 10.9   | 9.3   | 14.4   |
| Nb                | 3.0   | 0.69   | 3.6    | 3.8    | 1.4    | 6.4   | 0.43   | 4.2    | 0.82  | 13.9   |
| Mo                | 1.2   | 0.84   | 0.21   | 1.2    | 1.4    | 0.81  | 0.70   | 0.48   | 0.24  | 0.53   |
| Cs                | 0.037 | 0.16   | 0.12   | 0.17   | 0.17   | 0.056 | 0.23   | 0.13   | 0.10  | 0.094  |
| Ba                | 20.1  | 46.2   | 17.2   | 74.7   | 97.2   | 16.0  | 40.4   | 325    | 223   | 164    |
| La                | 3.2   | 7.5    | 6.7    | 7.9    | 10.8   | 13.6  | 2.6    | 9.8    | 3.0   | 10.0   |
| Ce                | 8.4   | 21.7   | 18.4   | 17.4   | 25.4   | 33.3  | 6.5    | 26.2   | 6.9   | 25.3   |
| Pr                | 1.3   | 3.4    | 2.7    | 2.4    | 3.2    | 5.4   | 0.90   | 3.3    | 1.0   | 3.8    |
| Nd                | 6.4   | 17.6   | 14.9   | 10.7   | 15.0   | 25.6  | 4.5    | 15.9   | 4.5   | 20.0   |
| Sm                | 2.1   | 4.6    | 4.8    | 2.8    | 3.9    | 7.7   | 1.3    | 3.7    | 1.3   | 6.2    |

Таблица 1. Окончание

| Образец | 1856 | 1858/3 | 1959/3 | 1867/3 | 1874/2 | 1960 | 1858/1 | 1962/1 | 1963  | 1968/1 |
|---------|------|--------|--------|--------|--------|------|--------|--------|-------|--------|
| Породы  | Е    | Е      | Е      | GrA    | GrA    | GrA  | A      | A      | A     | A      |
| Eu      | 0.85 | 1.4    | 1.9    | 1.3    | 1.4    | 3.5  | 0.56   | 1.1    | 0.7   | 2.5    |
| Gd      | 3.4  | 5.1    | 7.1    | 3.3    | 4.4    | 10.3 | 1.8    | 3.8    | 1.8   | 7.8    |
| Tb      | 0.60 | 0.72   | 1.1    | 0.48   | 0.63   | 1.6  | 0.25   | 0.51   | 0.25  | 1.2    |
| Dy      | 4.7  | 4.4    | 7.2    | 3.0    | 3.9    | 10.6 | 1.6    | 3.4    | 1.8   | 7.4    |
| Но      | 1.1  | 0.93   | 1.4    | 0.66   | 0.79   | 2.3  | 0.34   | 0.72   | 0.41  | 1.4    |
| Er      | 3.6  | 2.7    | 4.5    | 2.0    | 2.3    | 6.9  | 1.1    | 2.2    | 1.4   | 4.3    |
| Tm      | 0.49 | 0.37   | 0.60   | 0.28   | 0.30   | 1.0  | 0.14   | 0.33   | 0.22  | 0.62   |
| Yb      | 3.4  | 2.7    | 4.5    | 2.0    | 2.2    | 7.7  | 1.0    | 2.3    | 1.8   | 4.2    |
| Lu      | 0.47 | 0.36   | 0.62   | 0.31   | 0.30   | 1.1  | 0.15   | 0.33   | 0.26  | 0.59   |
| Hf      | 0.45 | 0.59   | 0.68   | 0.87   | 0.31   | 0.75 | 0.38   | 0.54   | 0.42  | 0.84   |
| Ta      | 0.16 | 0.038  | 0.25   | 0.16   | 0.094  | 0.39 | 0.02   | 0.27   | 0.044 | 0.71   |
| Pb      | 0.55 | 3.4    | 3.6    | 14.6   | 4.2    | 1.3  | 4.1    | 4.5    | 1.5   | 2.7    |
| Th      | 0.44 | 0.47   | 0.72   | 0.62   | 2.3    | 2.6  | 0.28   | 1.0    | 1.0   | 1.0    |
| U       | 0.15 | 0.24   | 0.30   | 0.42   | 0.31   | 1.0  | 0.37   | 0.57   | 0.17  | 0.24   |

Породообразующие оксиды (вес. %) определены в Лаборатории химических и аналитических исследований Геологического института РАН, редкоземельные и рассеянные элементы (ppm) — в Аналитическом Центре сертификации Института микроэлектроники и технологии ультрачистых материалов РАН. Породы: Е — эклогит, GrA — гранатовый амфиболит, А — амфиболит.

плектитовыми срастаниями диопсида и олигоклаза. Акцессорные минералы эклогитов представлены цирконом.

Гранат образует зональные порфиробласты размером 0.6-1 мм. Во внутренних частях порфиробластов он имеет состав  $\Pr_{23-33} \text{Alm}_{49-52} \text{Sps}_{1.8-2} \text{Adr}_4 \text{Grs}_{19-25}$ , а в каймах —  $\Pr_{20} \text{Alm}_{44-52} \text{Sps}_{1.8-2} \text{Adr}_{5-3} \text{Grs}_{26-21}$ . Исходя из предположения о равновесности омфацита и магнезиального граната из "ядер" порфиробластов, по геотермобарометрам [7, 14] рассчитаны максимальные параметры метаморфизма эклогитов, которые составляют P=15 кбар, T=700-750°C. Расчеты для низкомагнезиальных кайм граната и диопсида из симплектитовых срастаний указывает на то, что эклогиты, возможно, испытали изотермическое преобразование при снижении давления до 12 кбар.

U—Th—Pb-геохронологические исследования циркона из эклогитов выполнены в ЦИИ ВСЕГЕИ локальным анализом (SIMS SHRIMP II) по методике, описанной в [19]. Интенсивность первичного пучка молекулярных отрицательно заряженных ионов кислорода составляла  $\sim$ 2.5—4 нА, диаметр пятна (кратера) —  $\sim$ 15 × 10 мкм. Индивидуальные погрешности даны для интервала  $1\sigma$  (%), рассчитанные возрасты — $2\sigma$  (млн лет). Полученные данные обрабатывались с помощью программ SQUID [15] и ISOPLOT [16]. U—Pb-гео-

хронологические исследования (ID TIMS) рутила проведены в ИГГД РАН. Наиболее "чистые" кристаллы рутила подвергались предварительной многоступенчатой обработке 3N HCl в ультразвуковой ванне и на горячей плитке. После каждой ступени зерна промывались особо чистой водой. Разложение и последующее химическое выделение U и Рb осуществлялось в соответствии с модифицированными методиками [9]. Определение изотопного состава Рb и U выполнено на многоколлекторном масс-спектрометре Triton TI в статическом или динамическом режимах (при помо-Для ши счетчика ионов). изотопных исследований использовался изотопный индикатор  $^{235}U-^{202}Pb$ . Точность определения U/Pb-отношений и содержаний U, Pb составила 0.5%. Холостое загрязнение не превышало 15 пг для Pb и 1 пг для U. Все ошибки приведены на уровне 2σ.

Определение содержаний редких элементов в рутиле выполнено в ИГЕМ РАН на электроннозондовом микроанализаторе "JEOL"-JXA-8200 (Япония), оснащенном волновыми спектрометрами. Состав минеральных включений в цирконе определялся с помощью сканирующего электронного микроскопа "Hitachi" S-3400N с энергодисперсионным спектрометром.



**Рис. 2.** Фотографии шлифов эклогитов тулепсайского комплекса с симплектитовыми агрегатами диопсида и олигоклаза, сделанные с помощью оптического микроскопа  $(A, \Gamma)$  и BSE-фотографии, сделанные с помощью сканирующего электронного микроскопа (Д, E). A, B — николи —,  $B, \Gamma$  — николи +. Grt — гранат, Omp — омфацит, Par — паргасит, Olg — олигоклаз, Di — диопсид, Rt — рутил.

Циркон, выделенный из эклогита (проба 1856), представлен прозрачными и полупрозрачными кристаллами светло-желтого цвета, габитус которых изменяется от округлого до удлиненнопризматического. Огранение кристаллов определяется различными комбинациями призм {100}, {110} и дипирамид {111}, {201}, {101}. Ребра и вер-

шины кристаллов сглажены, поверхность граней шероховатая. Они имеют сложное строение (рис. 3). В них наблюдаются ядра неправильной формы с фрагментами осцилляторной зональности, которые окружены, как правило, однородными оболочками с более яркой по сравнению с ядрами люминесценцией. Зональные оболочки встреча-



**Рис. 3.** Диаграмма с конкордией и микрофотографии кристаллов циркона, выполненные в режиме катодолюминесценции. Номера точек соответствуют номерам анализов в Таблице 2. Обозначены включения в цирконах: Px — пироксен, Qz — кварц.

ются крайне редко. В ядрах обнаружены включения пироксена, апатита и кварца (см. рис. 3), а в оболочках — включения кварца и единичные газово-жидкие включения. Содержание  $Al_2O_3$  в пироксене достигает 19 вес. %. Кроме того, в нем присутствуют Са, Мп и Ті. Такие особенности химического состава характерны для пироксенов, образовавшихся в ходе высокобарных и высокотемпературных процессов [2]. Предполагается, что образование ядер в кристаллах циркона связано с высокобарическим метаморфизмом, а образование оболочек с последующими изотермическими преобразованиями в условиях снижения давления.

U—Th—Pb-исследования циркона (SIMS) проведены для 20 кристаллов различного габитуса (см. рис. 3, табл. 2). Были проанализированы участки как в пределах ядер (№ 1, 2; 4, 5, 7, 9—11, 13—15, 14, 17, 18, 20), так и оболочек (№ 3, 6, 8, 12, 16, 19). Циркон, образующий оболочки, как правило, отличается меньшим содержанием урана, тория и свинца. Значения возраста  $(^{206}\text{Pb}/^{238}\text{U})$ 

ядер находятся в интервале 367-386 млн лет, а оболочек — 361-388 млн лет и совпадают в пределах погрешности (см. рис. 3). Значение возраста ( $^{206}\text{Pb}/^{238}\text{U}$ ) ядер составляет  $374\pm4$  млн лет (СКВО = 0.48) и может рассматриваться в качестве оценки возраста метаморфизма эклогитов тулепсайского комплекса. Значение возраста ( $^{206}\text{Pb}/^{238}\text{U}$ ) оболочек составляет  $372\pm6$  млн лет (СКВО = 0.12).

Рутил, выделенный из пробы эклогитов (1856), представлен удлиненными призматическими кристаллами. Цвет зерен изменяется от светлокоричневого до красно-коричневого. В рутиле присутствуют включения апатита, титанита, ильменита, циркона, плагиоклазов (олигоклаз, анортит). Кроме того, в некоторых зернах наблюдаются тонкие пластинчатые ламели циркона, образовавшиеся при распаде твердого раствора. Содержание  $ZrO_2$ , определенное для 45 зерен рутила, составляет 0.017-0.047 мас. %, средняя величина  $-0.035 \pm 0.09$  мас. %. Температура, рассчитанная с помощью уравнений термометров,

**Таблица 2.** Результаты геохронологических U—Th—Pb-исследований циркона из эклогитов Тулепсайского комплекса (проба 1856)

| Таолий             | таолица 2. гезультаты геохронологических о | biaibiic           | Onodvo           | JULIANON | 11 1                                | to meet effective the control of the meeting of the control of the | OHODELL.                              | rid idali                         | one mo      | OLDI LI LI                                | 131161 | ioni in in | 2                  | TO TOTAL                                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,    | ()             |                          |                                             |
|--------------------|--------------------------------------------|--------------------|------------------|----------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|-------------|-------------------------------------------|--------|------------|--------------------|--------------------------------------------|--------------------------------------------|----------------|--------------------------|---------------------------------------------|
|                    | 20605                                      |                    | Содержание мкг/г | MKF/F    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Изо                                   | Изотопные отношения               | отнош       | ения                                      |        |            |                    | [                                          | Возраст млн лет                            | млн лет        |                          |                                             |
| ле<br>анализа<br>и |                                            | <sup>206</sup> Pb* | n                | Th       | <sup>232</sup> Th/ <sup>238</sup> U | $^{207}\mathrm{Pb/^{206}Pb^{a}},$<br>$\pm\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>5</sup> <b>Pb</b> <sup>a</sup> , | $^{207}$ Pb $/^{235}$ U, $\pm \%$ | ,235U,<br>% | <sup>206</sup> Pb/ <sup>238</sup> U<br>±% | ,238U, | Rho        | <sup>207</sup> Pb, | <sup>207</sup> Pb/ <sup>235</sup> U<br>±Ma | <sup>206</sup> Pb/ <sup>238</sup> U<br>±Ma | ,238U<br>fa    | <sup>207</sup> Pb,<br>±N | <sup>207</sup> Pb/ <sup>206</sup> Pb<br>±Ma |
| - 1                | 0.18                                       | 14.1               | 569              | 5        | 0.02                                | 0.0533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                     | 0.448                             | 3           | 0.0609                                    | 1.4    | 0.48       | 376                | 6∓                                         | 381                                        | +5             | 340                      | ±59                                         |
| 7                  | 0.44                                       | 8.21               | 162              | 3        | 0.02                                | 0.0541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                     | 0.438                             | 4           | 0.0587                                    | 1.5    | 0.37       | 369                | ±12                                        | 368                                        | +5             | 374                      | ±84                                         |
| 8                  | 0.40                                       | 2.66               | 54               | -        | 0.01                                | 0.0527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                     | 0.418                             | 7           | 0.0576                                    | 2      | 0.30       | 355                | ±20                                        | 361                                        | +7             | 317                      | ±150                                        |
| 4                  | 0.14                                       | 7.43               | 142              | _        | 0.01                                | 0.0525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                     | 0.440                             | 4           | 0.0609                                    | 1.5    | 0.43       | 370                | ±11                                        | 381                                        | 9∓             | 306                      | ±74                                         |
| 5                  | 0.37                                       | 10.9               | 216              | 3        | 0.02                                | 0.0527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                     | 0.424                             | 4           | 0.0583                                    | 1.5    | 0.38       | 359                | ±12                                        | 365                                        | +5             | 316                      | 780                                         |
| 9                  | 0.43                                       | 09.9               | 129              | -        | 0.01                                | 0.0546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                     | 0.447                             | 2           | 0.0593                                    | 1.6    | 0.35       | 375                | +14                                        | 372                                        | 9∓             | 397                      | 96∓                                         |
| 7                  | 0.25                                       | 5.49               | 106              | 2        | 0.02                                | 0.0531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                     | 0.443                             | 5           | 0.0604                                    | 1.8    | 0.37       | 372                | ±15                                        | 378                                        | 9∓             | 334                      | 66∓                                         |
| ∞                  | 0.33                                       | 10.6               | 208              | 2        | 0.01                                | 0.0531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                     | 0.435                             | 4           | 0.0594                                    | 2.3    | 0.58       | 367                | ±12                                        | 372                                        | 8+             | 333                      | ±74                                         |
| 6                  | 0.34                                       | 10.6               | 205              | 3        | 0.01                                | 0.0541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                     | 0.445                             | 4           | 0.0596                                    | 1.5    | 0.39       | 374                | ±12                                        | 373                                        | +5             | 376                      | ±77                                         |
| 10                 | 0.43                                       | 7.86               | 148              | 2        | 0.01                                | 0.0532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                     | 0.452                             | 4           | 0.0617                                    | 1.6    | 0.37       | 379                | +14                                        | 386                                        | 9∓             | 337                      | ±93                                         |
| 11                 | 0.12                                       | 12.3               | 244              | 5        | 0.02                                | 0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                     | 0.445                             | 3           | 0.0585                                    | 1.4    | 0.47       | 374                | <del>+</del> 6                             | 366                                        | +5             | 421                      | 09∓                                         |
| 12                 | 0.75                                       | 1.65               | 31               | 0        | 0.01                                | 0.0558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                     | 0.477                             | 10          | 0.0620                                    | 2.5    | 0.25       | 396                | ±32                                        | 388                                        | <del>+</del> 6 | 446                      | ±210                                        |
| 13                 | 0.25                                       | 14.5               | 210              | 122      | 09.0                                | 0.0560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                     | 0.619                             | 3           | 0.0803                                    | 1.4    | 0.48       | 489                | ±11                                        | 498                                        | +7             | 450                      | ±57                                         |
| 14                 | 0.38                                       | 13.4               | 261              | 7        | 0.03                                | 0.0527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                     | 0.431                             | 3           | 0.0594                                    | 1.4    | 0.41       | 364                | ±11                                        | 372                                        | +5             | 316                      | ±72                                         |
| 15                 | 0.48                                       | 4.95               | 95               | -        | 0.01                                | 0.0548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                     | 0.457                             | 7           | 0.0605                                    | 1.9    | 0.25       | 382                | ±23                                        | 379                                        | +7             | 403                      | ±160                                        |
| 16                 | 0.61                                       | 4.92               | 86               | -        | 0.02                                | 0.0525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                     | 0.422                             | 9           | 0.0583                                    | 1.7    | 0.28       | 358                | ±18                                        | 365                                        | 9∓             | 308                      | ±130                                        |
| 2022               | 0.46                                       | 12.1               | 229              | 28       | 0.13                                | 0.0526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                     | 0.445                             | 4           | 0.0614                                    | 2.3    | 0.53       | 374                | ±13                                        | 384                                        | <del>+</del> 6 | 312                      | +84                                         |
| 18                 | 0.58                                       | 6.10               | 117              | _        | 0.01                                | 0.0550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                     | 0.459                             | 5           | 0.0605                                    | 1.6    | 0.30       | 384                | ±17                                        | 379                                        | 9∓             | 413                      | ±120                                        |
| 19                 | 0.45                                       | 2.53               | 48               | 0        | 0.01                                | 0.0559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                     | 0.472                             | 7           | 0.0612                                    | 2.1    | 0.30       | 393                | ±23                                        | 383                                        | 8+1            | 448                      | ±150                                        |
| 20                 | 0.17                                       | 9.53               | 189              | 9        | 0.03                                | 0.0547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                     | 0.442                             | 3           | 0.0585                                    | 1.5    | 0.44       | 372                | <del>+</del> 111                           | 367                                        | +5             | 402                      | 69∓                                         |
|                    |                                            | ļ                  |                  |          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                   |             |                                           |        | ١          |                    |                                            | 2000                                       |                |                          |                                             |

Погрешность —  $1\sigma$ ; Рвс и  $Pb^*$  — пропорции обычного и радиогенного свинца соответственно; погрешность в калибровке стандарта — 0.39%, Rho — коэффициент корреляции ошибок  $^{207}$ Pb/ $^{235}$ U —  $^{206}$ Pb/ $^{238}$ U.

| Е         | MI         |           |          |                                      | Изо                                               | топные отн                            | ошения                              |                                     |      | Возр                         | раст, млн                    | . лет                                |
|-----------|------------|-----------|----------|--------------------------------------|---------------------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|------|------------------------------|------------------------------|--------------------------------------|
| Номер п/п | Навеска, м | РЬ, мкг/г | U, mkt/r | <sup>206</sup> Pb/ <sup>204</sup> Pb | <sup>207</sup> Pb/ <sup>206</sup> Pb <sup>a</sup> | <sup>208</sup> Pb/ <sup>206</sup> Pbª | <sup>207</sup> Pb/ <sup>235</sup> U | <sup>206</sup> Pb/ <sup>238</sup> U | Rho  | $^{207}{ m Pb}/^{235}{ m U}$ | $^{206}{ m Pb}/^{238}{ m U}$ | <sup>207</sup> Pb/ <sup>206</sup> Pb |
| 1         | 1.71       | 0.73      | 6.69     | 76.92                                | $0.0530 \pm 14$                                   | $0.0116 \pm 1$                        | $0.4202 \pm 24$                     | $0.0575 \pm 1$                      | 0.42 | $356 \pm 2$                  | $360 \pm 1$                  | $329 \pm 14$                         |
| 2         | 0.60       | 0.60      | 3.67     | 43.28                                | $0.0538 \pm 8$                                    | $0.0001 \pm 1$                        | $0.4151 \pm 69$                     | $0.0559 \pm 2$                      | 0.41 | $352 \pm 6$                  | $351 \pm 2$                  | $363 \pm 35$                         |
| 3         | 0.48       | 0.50      | 4.32     | 48.18                                | $0.0552 \pm 12$                                   | $0.0005 \pm 1$                        | $0.4278 \pm 95$                     | $0.0562 \pm 4$                      | 0.43 | $362 \pm 8$                  | $353 \pm 3$                  | $419 \pm 47$                         |
| 4         | 0.30       | 1.82      | 8.34     | 36.43                                | $0.0542 \pm 10$                                   | $0.0004 \pm 1$                        | $0.4227 \pm 84$                     | $0.0566 \pm 2$                      | 0.41 | $358 \pm 7$                  | $355 \pm 2$                  | $379 \pm 42$                         |

Таблица 3. Результаты U-Pb (ID-TIMS) изотопных исследований рутила из пробы 1856

Изотопные отношения, скорректированные на бланк и обычный Pb; Rho — коэффициент корреляции ошибок  $^{207}$ Pb/ $^{235}$ U —  $^{206}$ Pb/ $^{238}$ U. Величины ошибок ( $^{20}$ ) соответствуют последним значащим цифрам.

основанных на содержании Zr в рутиле [11, 17, 18], находится в интервале  $630-690\pm40^{\circ}\mathrm{C}$ . Концентрация  $ZrO_2$  определена на участках зерен, не содержащих видимых включений и ламелей циркона, следовательно, данные оценки температуры отвечают не пиковым условиям метаморфизма, когда существовала одна фаза богатого Zr рутила, а стадии распада твердого раствора.

U—Рb-исследования выполнены для четырех микронавесок рутила (20—30 зерен) (табл. 3, рис. 4). Для изученного рутила в целом характерны незначительные вариации содержания урана (3.6—8.3 мкг/г). Рутил характеризуется конкордантным возрастом  $360 \pm 2$  млн лет (СКВО = 0.07) (№ 1 в табл. 3), или обладает незначительной возрастной дискордантностью (№ 2—4). Возраст, определяемый верхним пересечением дискордии с конкордией, рассчитанной для четырех аналитических точек, отвечающих изотопному составу рутила, составляет  $360 \pm 7$  млн лет (СКВО = 0.46)



**Рис. 4.** Диаграмма с конкордией для рутила из пробы 1856.

и совпадает в пределах погрешности с величиной конкордантного возраста  $360 \pm 2$  млн лет.

Оценка возраста циркона из эклогитов тулепсайского комплекса коррелируется со значениями возраста одной из стадий метаморфизма максютовского эклогит-глаукофансланцевого комплекса (375  $\pm$  2 млн лет) [12]. Максютовский и тулепсайский комплексы являются близкими по возрасту структурными аналогами, слагая нижние аллохтоны на разных крыльях Магнитогорской синформы (см. рис. 1). Формирование тулепсайского и максютовского комплексов в девоне отражает одни и те же геодинамические обстановки коллизии дуга—континент.

Отсутствие значимой разницы между возрастом цирконов, образовавшимся, как мы полагаем, в условиях эклогитовой фации метаморфизма на глубинах 50-60 км (?) и возрастом их оболочек, образование которых, скорее всего, связано с изотермическим падением давления до 12 кбар (25–35 км?), может указывать на быстрый подъем эклогитов со значительных глубин. Величина U—Pb-возраста рутила из эклогитов тулепсайского комплекса  $360 \pm 2$  млн лет отражает возраст закрытия его изотопной системы (500°С) [13]. Опираясь на среднее значение температуры его кристаллизации 630°C и возраст метаморфизма. оцененный на основании результатов U-Th-Pbисследований цирконов (374 млн лет), можно рассчитать скорость остывания пород, слагающих тулепсайский комплекс, которая составляла порядка 12°С/млн лет, а скорость эксгумации – 0.3 см/год соответственно. Последнее значение близко к скорости эксгумации максютовского комплекса — 0.5 см/год [10].

#### ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Исследование выполнено при финансовой поддержке РФФИ (№ 20-05-00308, 20-55-18017), Национального научного фонда Болгарии (№ KP-06-Russia-32) и в рамках госзаданий 0135-2019-0049, FMUW-2022-0003 и госзадания ГИН РАН.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Бирюков В.М. Высокобарические комплексы подвижных поясов. Москва: Наука, 1988. 207 с.
- 2. *Буланова В.А.*, *Сизых А.И*. Кристаллохимизм породообразующих минералов: Учеб. пос. // Иркутск: Иркут. Ун-т. 2005. 220 с.
- 3. *Ефимов И.А.*, *Бурд Г.И*. Региональный метаморфизм, возраст и условия формирования некоторых глубинных пород докембрия Мугоджар // Советская геология. 1970. № 11. С. 36—89.
- Иванов К.С. Палеозойская геодинамика Мугоджар (к проблеме выделения палеозон субдукции) // Уральский геологический журнал. 2020. № 6 (138). С. 57-71.
- Краснобаев А.А., Баянова Т.Б. Новые данные по цирконовой геохронологии Талдыкского блока Мугоджар // Ежегодник-2005. Екатеринбург: Издательство Института геологии и геохимии УрО РАН, 2006. С. 297—300.
- 6. Миловский А.В., Гетлинг Р.В., Зверев А.Т., Рошкован Г.Р., Свальнова В.И. Докембрий и нижний палеозой Западного Казахстана. Москва: Издательство МГУ, 1977. 268 с.
- 7. Перчук А.Л. Новый вариант омфацит-альбит-кварцевого геобарометра с учетом структурных состояний омфацита и альбита // ДАН СССР. 1992. 324. С. 1286—1189.
- 8. *Русин АМ*. Китарсайская эклогит-перидотитовая ассоциация Мугоджар // Ежегодник ИГГ УрО РАН. Екатеринбург, 1996. С. 99—103.
- 9. Стифеева М.В., Сальникова Е.Б., Арзамасцев А.А., Котов А.Б., Гроздев В.Ю. Кальциевые гранаты как источник информации о возрасте щелочно-ультраосновных интрузий Кольской магматической провинции // Петрология. 2020. Т. 28. № 1. С. 1—13.

- Beane R., Leech M. The Maksyutov Complex: The First UHP Terrane 40 Years Later // Geological Society of America. 2007. Special Paper 419, P. 153–169.
- 11. Ferry J.M., Watson E.B. New Thermodynamic Models and Revised Calibrations for the Ti-in-zircon and Zr-in-rutile Thermometers // Contrib Mineral Petrol. 2007. 154. P. 429–437.
- 12. Glodny J., Bingen B., Austrheim H., Molina J.F., Rusin A. Precise Eclogitization Ages Deduced from Rb/Sr Mineral Systematics: The Maksyutov Complex, Southern Urals, Russia // Geochim. Cosmochim. Acta. 2002. V. 66 (7). P. 1221–1235.
- 13. *Kooijman E., Mezger K., Berndt J.* Constraints on the U-Pb Systematics of Metamorphic Rutile from in situ LA-ICP-MS Analysis // Earth and Planetary Science Letters. 2010. 293. P. 321–330.
- 14. *Krogh Ravna E*. The Garnet-clinopyroxene Fe<sup>2+</sup>–Mg Geothermometer: An Updated Calibration // J. Metamorph. Geol. 2000. 18. P. 211–219.
- 15. Teyssier Ch., Whitney D.L. Gneiss Domes and Orogeny // Geology. 2002. V. 30. № 12. P. 1139–1142.
- 16. Ludwig K.R. SQUID 1.00, A User's Manual // Berkeley Geochronology Center Special Publication. 2000. № 2. 2455 Ridge Road, Berkeley. CA 94709, USA. 17 p.
- 17. Ludwig K.R. ISOPLOT 3.00. A User's Manual // Berkeley Geochronology Center Special Publication. 2003. № 4. 2455 RidgeRoad, Berkeley. CA 94709. USA. 70 p.
- 18. *Tomkins H.S., Powell R., Ellis D.J.* The Pressure Dependence of the Zirconium-in-rutile Thermometer // J Metamorph Geol. 2007. 25. P. 703–713.
- 19. *Watson E.B.*, *Wark D.A.*, *Thomas J.B.* Crystallization Thermometers for Zircon and Rutile // Contributions to Mineralogy and Petrology. 2006. 151. P. 413–433.
- 20. *Whilliams I.S.* Geochronology by Ion Microprobe // Reviews in Economic Geology, 1998. V. 7. P. 1–35.

## AGE AND THERMAL HISTORY OF THE ECLOGITES FROM TULEPSAY COMPLEX, EASTERN MUGODZHARY (WESTERN KAZAKHSTAN)

A. V. Ryazantsev<sup>a,#</sup>, B. G. Golionko<sup>a</sup>, Corresponding Member of the RAS A. B. Kotov<sup>b</sup>, A. V. Skoblenko<sup>a</sup>, M. V. Stifeeva<sup>b</sup>, Yu. V. Plotkina<sup>b</sup>, E. B. Salnikova<sup>b</sup>, M. Yu. Koreshkova<sup>c</sup>, and Ph. Machev<sup>d</sup>

<sup>a</sup> Geological Institute, Russian Academy of Sciences, Moscow, Russian Federation

<sup>b</sup> Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, Sankt-Petersburg, Russian Federation
<sup>c</sup> Institute of Earth's Sciences, Sankt-Petersburg State University, Sankt-Petersburg, Russian Federation

<sup>d</sup> Sofia University St. Kliment Ohridski, Sofia, Bulgaria

#E-mail: avryazan51@mail.ru

Lenses of eclogites (the Tulepsai complex) formed at the peak of metamorphism P=15 kbar,  $T=700-750^{\circ}\mathrm{C}$  and experienced decompression at 12 kbar (granulite facies of metamorphism) located among the amphibolite sequences in the Eastern Mugodzhar zone. The absence of a significant difference between the age of zircon cors, which, we believe, formed under the conditions of the eclogitic facies of metamorphism (374  $\pm$  4 Ma) at depths of 50–60 km (?) and the age of their rims (372  $\pm$  6 Ma) formed during the isothermal pressure drop up to 12 kbar (25–35 km?), may indicate a rapid rise of eclogites from considerable depths. Rutile from eclogites yields U–Pb age at 360  $\pm$  2 Ma and reflects a later stage of rock transformation at 630–690  $\pm$  40°C. The Maksyutov eclogite-glaucophane-schist and Tulepsai complexes are structural analogs of similar age and compose the lower allochthons on different limbs of the Magnitogorsk synform. The complexes were formed in a similar geodynamic setting of the arc-continent collision.

 $\textit{Keywords}: \ metamorphism, \ eclogites, \ granulites, \ U-Pb \ age, \ zircon, \ rutile, \ Urals, \ Kazakhstan$