УДК 549.08:550.4.02

ВОЗРАСТ И ТЕРМАЛЬНАЯ ИСТОРИЯ ЭКЛОГИТОВ ТУЛЕПСАЙСКОГО КОМПЛЕКСА ВОСТОЧНЫХ МУГОДЖАР (ЗАПАДНЫЙ КАЗАХСТАН)

© 2022 г. А. В. Рязанцев^{1,*}, Б. Г. Голионко¹, член-корреспондент РАН А. Б. Котов², А. В. Скобленко¹, М. В. Стифеева², Ю. В. Плоткина², Е. Б. Сальникова², М. Ю. Корешкова³, Ф. Мачев⁴

Поступило 23.05.2022 г. После доработки 01.06.2022 г. Принято к публикации 02.06.2022 г.

В Восточно-Мугоджарской зоне среди толщи амфиболитов находятся линзы эклогитов (тулепсайский комплекс), сформированных на пике метаморфизма P = 15 кбар, $T = 700-750^{\circ}$ С, испытавших декомпрессию при 12 кбар (гранулитовая фация метаморфизма). Отсутствие значимой разницы между возрастом цирконов, образовавшихся, как мы полагаем, в условиях эклогитовой фации метаморфизма (374 ± 4 млн лет) на глубинах 50-60 км (?) и возрастом их оболочек (372 ± 6 млн лет), образование которых, скорее всего, связано с изотермическим падением давления до 12 кбар (25-35 км?), может указывать на быстрый подъем эклогитов со значительных глубин. Рутил, выделенный из эклогитов, отражает более поздний этап преобразования породы при $630-690 \pm 40^{\circ}$ С, значение его U–Pb-возраста соответствует 360 ± 2 млн лет. Максютовский эклогит-глаукофансланцевый и тулепсайский комплексы являются близкими по возрасту структурными аналогами, слагая нижние аллохтоны на разных крыльях Магнитогорской синформы. Комплексы сформированы в близкой геодинамической обстановке коллизии дуга–континент.

Ключевые слова: метаморфизм, эклогиты, гранулиты, U–Pb-возраст, циркон, рутил, скорость эксгумации, Урал, Казахстан

DOI: 10.31857/S2686739722600916

На западе Восточно-Мугоджарской зоны Восточно-Уральской мегазоны находится Талдыкская антиформа, перекрытая на западе аллохтоном Магнитогорской синформы, а на востоке комплексами Балкымбайского грабена (рис. 1). В строении Талдыкской антиформы принимают участие метаморфические породы южномугоджарской и талдыкской серий [1, 3-6]. Южномугоджарская серия представлена мигматизированными амфиболитами, биотитовыми гнейсами и эклогитами. Некоторые авторы относят амфиболиты и эклогиты этой серии к тулепсайскому комплексу. Талдыкская серия сложена кварцитами, кварц-слюдяными и кианитовыми сланцами, гнейсами и лептинитами. Узкие линейные тела на западе района на площади распространения

Российской академии наук, Москва, Россия

² Институт геологии и геохронологии докембрия

Российской академии наук, Санкт-Петербург, Россия ³ Институт наук о Земле, Санкт-Петербургский государственный университет, Санкт-Петербург, Россия талдыкской серии представлены ультрабазитами с линзами эклогитоподобных гранатовых амфиболитов [3, 8]. Возраст южномугоджарской и талдыкской серий рассматривается как рифейский [3, 6].

Для определения возраста эклогитов тулепсайского комплекса и их последующих метаморфических преобразований нами были выполнены геохронологические исследования.

Эклогиты тулепсайского комплекса наблюдаются в виде согласных тел мощностью 0.5-1.5 м среди амфиболитов южномугоджарской серии. По химическому составу амфиболиты отвечают низко- и умеренно-калиевым базальтам и андезибазальтам толеитовой серии. Эклогиты отличаются от них меньшими содержаниями K₂O, SiO₂, P₂O₅ (табл. 1). Распределение редкоземельных элементов в эклогитах имеет слабодифференцированный характер (La_n/Yb_n = 0.7–2.0). Состав эклогитов близок к N-MORB с признаками коровой контаминации.

Главными минералами эклогитов являются гранат, амфибол (магнезиогастингсит, паргасит), клиноцоизит, плагиоклаз, рутил и кварц (рис. 2). Омфацит (Jd_{24–39}) сохраняется только в виде реликтов и в большинстве случаев замещен сим-

¹ Геологический институт

⁴ Sofia University St. Kliment Ohridski, Sofia, Bulgaria

^{*}E-mail: avryazan51@mail.ru

Рис. 1. Положение эклогитов в структуре Талдыкской антиформы, по [6] с изменениям (А) и схема основных структур Южного Урала (Б). 1 – нижне-среднепалеозойские карбонатные, терригенно-кремнистые и вулканогенные толши Балкымбайского грабена, 2 – девонские вулканогенные толщи и комплекс параллельных даек Западно-Мугоджарской зоны; 3 - борлинская и мамбеткульская свиты нерасчлененные, нижний палеозой (?), углеродистые сланцы, кварциты, филлиты; 4 – талдыкская серия, верхний рифей-венд (?), кварциты, кварц-мусковитовые сланцы, кианитовые сланцы, двуслюдяные гнейсы; 5 – южномугоджарская серия, рифей(?), амфиболиты, эклогиты; 6 – милысайский комплекс, венд-ранний кембрий(?), гранито-гнейсы; 7 – ащисайский комплекс, средний карбон, биотитовые и биотит-роговообманковые граниты; 8 – ультрабазиты; 9 – разрывные нарушения; 10 – зона с эклогитами среди ам-фиболитов; 11 – проба эклогитов 1856 (координаты – 49°01'49.2" с.ш., 59°04'23.0" в.д.); На схеме (Б): 12 – флиш, молассы и карбонатные отложения нижнего карбона-верхней перми; 13 - граувакковый флиш верхнего девона-нижнего карбона; 14 – вулканогенные и карбонатные комплексы среднего-верхнего палеозоя; 15 – вулканогенные терригенные и карбонатные комплексы нижнего-верхнего палеозоя; 16 – докембрийские и палеозойские метаморфические комплексы; 17 – докембрийские и палеозойские комплексы метаморфизованные; 18 – рифейские и вендские комплексы; максютовский эклогит-глаукофансланцевый комплекс; 19 - офиолиты и серпентинитовые меланжи; 20 – границы структурных зон; 21 – государственная граница Российской Федерации на севере и Республики Казахстан на юге. На рис. 1 Б прямоугольником показано положение территории рис. 1 А. В квадратах показаны номера структур: І – Предуральский краевой прогиб, ІІ – Башкирский мегантиклинорий, западная часть, ІІІ – Башкирский мегантиклинорий, восточная часть, IIIб – зона Уралтау, IV – Магнитогорская мегазона, V – Восточно-Уральская мегазона, VI – Зауральская мегазона.

ВОЗРАСТ И ТЕРМАЛЬНАЯ ИСТОРИЯ ЭКЛОГИТОВ

Образец	1856	1858/3	1959/3	1867/3	1874/2	1960	1858/1	1962/1	1963	1968/1
Породы	Е	Е	Е	GrA	GrA	GrA	А	А	А	А
SiO ₂	50.63	45.27	47.06	43.82	55.59	53.15	44.74	52.03	54.91	48.04
TiO ₂	1.53	1.03	1.85	1.01	0.70	1.93	1.26	0.55	0.39	2.06
Al_2O_3	12.05	13.04	12.75	14.99	16.99	8.86	18.62	15.54	14.05	15.72
Fe ₂ O ₃	7.97	7.78	5.39	7.72	5.46	11.35	8.24	4.49	4.21	3.55
FeO	9.38	8.37	8.81	6.71	5.22	12.72	6.86	5.68	7.16	9.25
MnO	0.29	0.25	0.20	0.33	0.15	0.16	0.30	0.21	0.27	0.20
MgO	4.68	9.05	6.88	5.15	3.03	2.26	3.77	4.62	5.93	5.20
CaO	8.85	10.39	11.95	15.66	6.36	5.71	9.29	8.85	8.32	9.79
K ₂ O	0.05	0.37	0.21	0.68	0.73	0.19	0.93	1.18	0.48	0.86
Na ₂ O	3.10	2.71	3.17	1.91	3.83	1.03	3.64	4.14	2.45	3.27
P_2O_5	0.28	0.25	0.20	0.20	0.17	0.87	0.56	0.69	0.09	0.36
loi	0.16	0.56	0.96	1.08	1.19	0.95	1.05	1.20	0.80	0.97
Sum	98.96	99.06	99.42	99.26	99.41	99.18	99.24	99.17	99.06	99.26
Li	6.7	9.8	7.6	8.9	6.0	3.0	14.8	4.4	9.2	6.8
Be	0.82	1.1	1.3	1.0	1.7	0.57	0.69	1.3	0.79	1.2
Sc	54.3	50.2	47.0	47.0	29.5	63.2	37.7	39.3	56.7	46.3
V	392	297	371	276	222	64.6	184	227	256	243
Cr	78.7	399	166	654	60.0	10.1	1105	214	191	279
Co	45.5	58.3	40.9	41.1	25.9	21.6	50.1	28.0	37.0	53.3
Ni	17.2	98.5	58.2	127	27.0	5.7	262	45.0	46.6	128
Cu	30.1	76.9	29.3	119	14.1	38.6	14.2	110	-	46.3
Zn	78.1	132	98.1	167	92.9	117	136	109	121	82.9
Ga	15.4	18.5	18.2	15.8	20.1	15.6	11.7	13.9	14.5	18.7
As	4.5	0.51	3.8	3.6	2.6	3.6	1.4	3.2	2.2	2.3
Rb	1.1	5.2	3.0	19.3	15.7	2.1	3.1	16.0	4.7	15.8
Sr	84	275	150	598	410	96.3	205	440	171	391
Y	33.7	26.7	41.1	18.9	22.9	63.6	10.2	20.7	12.4	43.8
Zr	11.2	10.8	14.3	23.2	6.5	28.2	9.1	10.9	9.3	14.4
Nb	3.0	0.69	3.6	3.8	1.4	6.4	0.43	4.2	0.82	13.9
Mo	1.2	0.84	0.21	1.2	1.4	0.81	0.70	0.48	0.24	0.53
Cs	0.037	0.16	0.12	0.17	0.17	0.056	0.23	0.13	0.10	0.094
Ba	20.1	46.2	17.2	74.7	97.2	16.0	40.4	325	223	164
La	3.2	7.5	6.7	7.9	10.8	13.6	2.6	9.8	3.0	10.0
Ce	8.4	21.7	18.4	17.4	25.4	33.3	6.5	26.2	6.9	25.3
Pr	1.3	3.4	2.7	2.4	3.2	5.4	0.90	3.3	1.0	3.8
Nd	6.4	17.6	14.9	10.7	15.0	25.6	4.5	15.9	4.5	20.0
Sm	2.1	4.6	4.8	2.8	3.9	7.7	1.3	3.7	1.3	6.2

Таблица 1. Химические составы эклогитов и амфиболитов Тулепсайского комплекса

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 506 № 1 2022

Образец	1856	1858/3	1959/3	1867/3	1874/2	1960	1858/1	1962/1	1963	1968/1
Породы	Е	Е	Е	GrA	GrA	GrA	А	А	А	А
Eu	0.85	1.4	1.9	1.3	1.4	3.5	0.56	1.1	0.7	2.5
Gd	3.4	5.1	7.1	3.3	4.4	10.3	1.8	3.8	1.8	7.8
Tb	0.60	0.72	1.1	0.48	0.63	1.6	0.25	0.51	0.25	1.2
Dy	4.7	4.4	7.2	3.0	3.9	10.6	1.6	3.4	1.8	7.4
Но	1.1	0.93	1.4	0.66	0.79	2.3	0.34	0.72	0.41	1.4
Er	3.6	2.7	4.5	2.0	2.3	6.9	1.1	2.2	1.4	4.3
Tm	0.49	0.37	0.60	0.28	0.30	1.0	0.14	0.33	0.22	0.62
Yb	3.4	2.7	4.5	2.0	2.2	7.7	1.0	2.3	1.8	4.2
Lu	0.47	0.36	0.62	0.31	0.30	1.1	0.15	0.33	0.26	0.59
Hf	0.45	0.59	0.68	0.87	0.31	0.75	0.38	0.54	0.42	0.84
Та	0.16	0.038	0.25	0.16	0.094	0.39	0.02	0.27	0.044	0.71
Pb	0.55	3.4	3.6	14.6	4.2	1.3	4.1	4.5	1.5	2.7
Th	0.44	0.47	0.72	0.62	2.3	2.6	0.28	1.0	1.0	1.0
U	0.15	0.24	0.30	0.42	0.31	1.0	0.37	0.57	0.17	0.24

Таблица 1. Окончание

Породообразующие оксиды (вес. %) определены в Лаборатории химических и аналитических исследований Геологического института РАН, редкоземельные и рассеянные элементы (ppm) – в Аналитическом Центре сертификации Института микроэлектроники и технологии ультрачистых материалов РАН. Породы: Е – эклогит, GrA – гранатовый амфиболит, А – амфиболит.

плектитовыми срастаниями диопсида и олигоклаза. Акцессорные минералы эклогитов представлены цирконом.

Гранат образует зональные порфиробласты размером 0.6–1 мм. Во внутренних частях порфиробластов он имеет состав $Prp_{23-33}Alm_{49-52}Sps_{1.8-2}Adr_4Grs_{19-25}$, а в каймах — $Prp_{20}Alm_{44-52}Sps_{1.8-2}Adr_{5-3}Grs_{26-21}$. Исходя из предположения о равновесности омфацита и магнезиального граната из "ядер" порфиробластов, по геотермобарометрам [7, 14] рассчитаны максимальные параметры метаморфизма эклогитов, которые составляют P = 15 кбар, T = 700-750°C. Расчеты для низкомагнезиальных кайм граната и диопсида из симплектитовых срастаний указывает на то, что эклогиты, возможно, испытали изотермическое преобразование при снижении давления до 12 кбар.

U–Th–Pb-геохронологические исследования циркона из эклогитов выполнены в ЦИИ ВСЕГЕИ локальным анализом (SIMS SHRIMP II) по методике, описанной в [19]. Интенсивность первичного пучка молекулярных отрицательно заряженных ионов кислорода составляла ~2.5– 4 нА, диаметр пятна (кратера) – ~15 × 10 мкм. Индивидуальные погрешности даны для интервала 1 σ (%), рассчитанные возрасты –2 σ (млн лет). Полученные данные обрабатывались с помощью программ SQUID [15] и ISOPLOT [16]. U–Pb-геохронологические исследования (ID TIMS) рутила проведены в ИГГД РАН. Наиболее "чистые" кристаллы рутила подвергались предварительной многоступенчатой обработке 3N HCl в ультразвуковой ванне и на горячей плитке. После каждой ступени зерна промывались особо чистой водой. Разложение и последующее химическое выделение U и Pb осуществлялось в соответствии с модифицированными методиками [9]. Определение изотопного состава Рb и U выполнено на многоколлекторном масс-спектрометре Triton TI в статическом или динамическом режимах (при помо-Для ши счетчика ионов). изотопных исследований использовался изотопный индикатор ²³⁵U-²⁰²Pb. Точность определения U/Pb-отношений и содержаний U, Pb составила 0.5%. Холостое загрязнение не превышало 15 пг для Pb и 1 пг для U. Все ошибки приведены на уровне 2σ.

Определение содержаний редких элементов в рутиле выполнено в ИГЕМ РАН на электроннозондовом микроанализаторе "JEOL"-JXA-8200 (Япония), оснащенном волновыми спектрометрами. Состав минеральных включений в цирконе определялся с помощью сканирующего электронного микроскопа "Hitachi" S-3400N с энергодисперсионным спектрометром.

Рис. 2. Фотографии шлифов эклогитов тулепсайского комплекса с симплектитовыми агрегатами диопсида и олигоклаза, сделанные с помощью оптического микроскопа (А, Г) и BSE-фотографии, сделанные с помощью сканирующего электронного микроскопа (Д, Е). А, В – николи –, Б, Г – николи +. Grt – гранат, Omp – омфацит, Par – паргасит, Olg – олигоклаз, Di – диопсид, Rt – рутил.

Циркон, выделенный из эклогита (проба 1856), представлен прозрачными и полупрозрачными кристаллами светло-желтого цвета, габитус которых изменяется от округлого до удлиненно-призматического. Огранение кристаллов определяется различными комбинациями призм {100}, {110} и дипирамид {111}, {201}, {101}. Ребра и вер-

шины кристаллов сглажены, поверхность граней шероховатая. Они имеют сложное строение (рис. 3). В них наблюдаются ядра неправильной формы с фрагментами осцилляторной зональности, которые окружены, как правило, однородными оболочками с более яркой по сравнению с ядрами люминесценцией. Зональные оболочки встреча-

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 506 № 1 2022

Рис. 3. Диаграмма с конкордией и микрофотографии кристаллов циркона, выполненные в режиме катодолюминесценции. Номера точек соответствуют номерам анализов в Таблице 2. Обозначены включения в цирконах: Рх – пироксен, Qz – кварц.

ются крайне редко. В ядрах обнаружены включения пироксена, апатита и кварца (см. рис. 3), а в оболочках — включения кварца и единичные газово-жидкие включения. Содержание Al_2O_3 в пироксене достигает 19 вес. %. Кроме того, в нем присутствуют Са, Мп и Ті. Такие особенности химического состава характерны для пироксенов, образовавшихся в ходе высокобарных и высокотемпературных процессов [2]. Предполагается, что образование ядер в кристаллах циркона связано с высокобарическим метаморфизмом, а образование оболочек с последующими изотермическими преобразованиями в условиях снижения давления.

U-Th-Pb-исследования циркона (SIMS) проведены для 20 кристаллов различного габитуса (см. рис. 3, табл. 2). Были проанализированы участки как в пределах ядер (№ 1, 2; 4, 5, 7, 9–11, 13–15, 14, 17, 18, 20), так и оболочек (№ 3, 6, 8, 12, 16, 19). Циркон, образующий оболочки, как правило, отличается меньшим содержанием урана, тория и свинца. Значения возраста (²⁰⁶Pb/²³⁸U) ядер находятся в интервале 367-386 млн лет, а оболочек – 361-388 млн лет и совпадают в пределах погрешности (см. рис. 3). Значение возраста (206 Pb/ 238 U) ядер составляет 374 ± 4 млн лет (СКВО = 0.48) и может рассматриваться в качестве оценки возраста метаморфизма эклогитов тулепсайского комплекса. Значение возраста (206 Pb/ 238 U) оболочек составляет 372 ± 6 млн лет (СКВО = 0.12).

Рутил, выделенный из пробы эклогитов (1856), представлен удлиненными призматическими кристаллами. Цвет зерен изменяется от светлокоричневого до красно-коричневого. В рутиле присутствуют включения апатита, титанита, ильменита, циркона, плагиоклазов (олигоклаз, анортит). Кроме того, в некоторых зернах наблюдаются тонкие пластинчатые ламели циркона, образовавшиеся при распаде твердого раствора. Содержание ZrO₂, определенное для 45 зерен рутила, составляет 0.017–0.047 мас. %, средняя величина – 0.035 \pm 0.09 мас. %. Температура, рассчитанная с помощью уравнений термометров,

Габлица 2	. Резуль	таты ге	онодхо	логичес	ких U-Th-	-Рр-иссло	едовани	ай циркс	она из с	ЭКЛОГИТО	в Тулеп	сайског	спмох о	іекса (п)	po6a 185	<u>5</u> ()		
ک ل	206 Dh	Содеј	эжание	MKL/F			Изо	топные (этноше	вине				н	Зозраст	млн лет		
анализа	۲ ⁰ с, %	²⁰⁶ Pb*	Ŋ	Th	²³² Th/ ²³⁸ U	²⁰⁷ Pb/ ²¹ 士9	⁰⁶ Pb ^a , ő	²⁰⁷ Pb/	²³⁵ U, %	²⁰⁶ Pb/ [,] 士祭	²³⁸ U, 6	Rho	²⁰⁷ Pb/ ±N	/ ²³⁵ U 1a	²⁰⁶ Pb/ ±N	/ ²³⁸ U Aa	²⁰⁷ Pb/ ±N	²⁰⁶ Pb 1a
1	0.18	14.1	269	5	0.02	0.0533	3	0.448	3	0.0609	1.4	0.48	376	±9	381	±5	340	±59
2	0.44	8.21	162	3	0.02	0.0541	4	0.438	4	0.0587	1.5	0.37	369	±12	368	± 5	374	± 84
3	0.40	2.66	54	1	0.01	0.0527	7	0.418	7	0.0576	2	0.30	355	± 20	361	土7	317	±150
4	0.14	7.43	142	1	0.01	0.0525	3	0.440	4	0.0609	1.5	0.43	370	±11	381	7	306	土74
5	0.37	10.9	216	3	0.02	0.0527	4	0.424	4	0.0583	1.5	0.38	359	±12	365	±5	316	±80
9	0.43	6.60	129	1	0.01	0.0546	4	0.447	5	0.0593	1.6	0.35	375	±14	372	± 6	397	1 96
7	0.25	5.49	106	2	0.02	0.0531	4	0.443	5	0.0604	1.8	0.37	372	± 15	378	±6	334	46∓
8	0.33	10.6	208	2	0.01	0.0531	3	0.435	4	0.0594	2.3	0.58	367	±12	372	+8	333	土74
6	0.34	10.6	205	3	0.01	0.0541	З	0.445	4	0.0596	1.5	0.39	374	±12	373	± 5	376	土77
10	0.43	7.86	148	2	0.01	0.0532	4	0.452	4	0.0617	1.6	0.37	379	±14	386	± 6	337	±93
11	0.12	12.3	244	5	0.02	0.0552	Э	0.445	3	0.0585	1.4	0.47	374	± 9	366	± 5	421	109∓
12	0.75	1.65	31	0	0.01	0.0558	6	0.477	10	0.0620	2.5	0.25	396	±32	388	± 9	446	±210
13	0.25	14.5	210	122	0.60	0.0560	3	0.619	б	0.0803	1.4	0.48	489	±11	498	± 7	450	±57
14	0.38	13.4	261	7	0.03	0.0527	Э	0.431	б	0.0594	1.4	0.41	364	±11	372	± 5	316	±72
15	0.48	4.95	95	1	0.01	0.0548	7	0.457	7	0.0605	1.9	0.25	382	±23	379	± 7	403	± 160
16	0.61	4.92	98	1	0.02	0.0525	9	0.422	9	0.0583	1.7	0.28	358	± 18	365	9	308	± 130

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 506 **№** 1 2022

ВОЗРАСТ И ТЕРМАЛЬНАЯ ИСТОРИЯ ЭКЛОГИТОВ

 ± 69

402

 ± 150

448

393 372

0.300.44

2.1 1.5

0.0612

0.0585

 $\boldsymbol{\omega}$

0.442

ξ

0.03

9

189

9.53

0.17

20

19

0.0559 0.0547

 ± 120

 ± 84

312 413

61 91 8 15

384 379 383 367

 ± 13 ± 17 ± 23 <u>+</u>

374 384

0.53

2.3

0.0614

4 Ś ~

0.445

4 Ś ~

0.0526 0.0550

0.130.010.01

28 ---0

229 117 48

12.1

0.460.58 0.45

17

6.10 2.53

18

0.30

1.6

0.0605

0.459 0.472 Погрешность – 1σ; Pbc и Pb* – пропорции обычного и радиогенного свинца соответственно; погрешность в калибровке стандарта – 0.39%, Rho – коэффициент кор-реляции ошибок ²⁰⁷Pb/²³⁵U – ²⁰⁶Pb/²³⁸U.

E	IL	_			Изо	топные отн	ошения			Возр	раст, млн	. лет
Номер п/1	Навеска, м	Рb, мкг/г	U, мкг/г	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb ^a	²⁰⁸ Pb/ ²⁰⁶ Pb ^a	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	Rho	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	207 Pb/ 206 Pb
1	1.71	0.73	6.69	76.92	0.0530 ± 14	0.0116 ± 1	0.4202 ± 24	0.0575 ± 1	0.42	356 ± 2	360 ± 1	329 ± 14
2	0.60	0.60	3.67	43.28	0.0538 ± 8	0.0001 ± 1	0.4151 ± 69	0.0559 ± 2	0.41	352 ± 6	351 ± 2	363 ± 35
3	0.48	0.50	4.32	48.18	0.0552 ± 12	0.0005 ± 1	0.4278 ± 95	0.0562 ± 4	0.43	362 ± 8	353 ± 3	419 ± 47
4	0.30	1.82	8.34	36.43	0.0542 ± 10	0.0004 ± 1	0.4227 ± 84	0.0566 ± 2	0.41	358 ± 7	355 ± 2	379 ± 42

Таблица 3. Результаты U-Pb (ID-TIMS) изотопных исследований рутила из пробы 1856

Изотопные отношения, скорректированные на бланк и обычный Pb; Rho – коэффициент корреляции ошибок 207 Pb/ 235 U – 206 Pb/ 238 U. Величины ошибок (2 σ) соответствуют последним значащим цифрам.

основанных на содержании Zr в рутиле [11, 17, 18], находится в интервале $630-690 \pm 40$ °C. Концентрация ZrO₂ определена на участках зерен, не содержащих видимых включений и ламелей циркона, следовательно, данные оценки температуры отвечают не пиковым условиям метаморфизма, когда существовала одна фаза богатого Zr рутила, а стадии распада твердого раствора.

U–Pb-исследования выполнены для четырех микронавесок рутила (20–30 зерен) (табл. 3, рис. 4). Для изученного рутила в целом характерны незначительные вариации содержания урана (3.6–8.3 мкг/г). Рутил характеризуется конкордантным возрастом 360 ± 2 млн лет (СКВО = 0.07) (№ 1 в табл. 3), или обладает незначительной возрастной дискордантностью (№ 2–4). Возраст, определяемый верхним пересечением дискордии с конкордией, рассчитанной для четырех аналитических точек, отвечающих изотопному составу рутила, составляет 360 ± 7 млн лет (СКВО = 0.46)

Рис. 4. Диаграмма с конкордией для рутила из пробы 1856.

и совпадает в пределах погрешности с величиной конкордантного возраста 360 ± 2 млн лет.

Оценка возраста циркона из эклогитов тулепсайского комплекса коррелируется со значениями возраста одной из стадий метаморфизма максютовского эклогит-глаукофансланцевого комплекса (375 ± 2 млн лет) [12]. Максютовский и тулепсайский комплексы являются близкими по возрасту структурными аналогами, слагая нижние аллохтоны на разных крыльях Магнитогорской синформы (см. рис. 1). Формирование тулепсайского и максютовского комплексов в девоне отражает одни и те же геодинамические обстановки коллизии дуга-континент.

Отсутствие значимой разницы между возрастом цирконов, образовавшимся, как мы полагаем, в условиях эклогитовой фации метаморфизма на глубинах 50-60 км (?) и возрастом их оболочек, образование которых, скорее всего, связано с изотермическим падением давления до 12 кбар (25-35 км?), может указывать на быстрый подъем эклогитов со значительных глубин. Величина U–Рb-возраста рутила из эклогитов тулепсайского комплекса 360 ± 2 млн лет отражает возраст закрытия его изотопной системы (500°С) [13]. Опираясь на среднее значение температуры его кристаллизации 630°С и возраст метаморфизма. оцененный на основании результатов U-Th-Pbисследований цирконов (374 млн лет), можно рассчитать скорость остывания пород, слагающих тулепсайский комплекс, которая составляла порядка 12°С/млн лет, а скорость эксгумации – 0.3 см/год соответственно. Последнее значение близко к скорости эксгумации максютовского комплекса – 0.5 см/год [10].

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Исследование выполнено при финансовой поддержке РФФИ (№ 20-05-00308, 20-55-18017), Национального научного фонда Болгарии (№ КР-06-Russia-32) и в рамках госзаданий 0135-2019-0049, FMUW-2022-0003 и госзадания ГИН РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бирюков В.М. Высокобарические комплексы подвижных поясов. Москва: Наука, 1988. 207 с.
- Буланова В.А., Сизых А.И. Кристаллохимизм породообразующих минералов: Учеб. пос. // Иркутск: Иркут. Ун-т. 2005. 220 с.
- 3. *Ефимов И.А., Бурд Г.И.* Региональный метаморфизм, возраст и условия формирования некоторых глубинных пород докембрия Мугоджар // Советская геология. 1970. № 11. С. 36–89.
- Иванов К.С. Палеозойская геодинамика Мугоджар (к проблеме выделения палеозон субдукции) // Уральский геологический журнал. 2020. № 6 (138). С. 57–71.
- Краснобаев А.А., Баянова Т.Б. Новые данные по цирконовой геохронологии Талдыкского блока Мугоджар // Ежегодник-2005. Екатеринбург: Издательство Института геологии и геохимии УрО РАН, 2006. С. 297–300.
- Миловский А.В., Гетлинг Р.В., Зверев А.Т., Рошкован Г.Р., Свальнова В.И. Докембрий и нижний палеозой Западного Казахстана. Москва: Издательство МГУ, 1977. 268 с.
- Перчук А.Л. Новый вариант омфацит-альбит-кварцевого геобарометра с учетом структурных состояний омфацита и альбита // ДАН СССР. 1992. 324. С. 1286–1189.
- Русин АМ. Китарсайская эклогит-перидотитовая ассоциация Мугоджар // Ежегодник ИГГ УрО РАН. Екатеринбург, 1996. С. 99–103.
- Стифеева М.В., Сальникова Е.Б., Арзамасцев А.А., Котов А.Б., Гроздев В.Ю. Кальциевые гранаты как источник информации о возрасте щелочно-ультраосновных интрузий Кольской магматической провинции // Петрология. 2020. Т. 28. № 1. С. 1–13.

- Beane R., Leech M. The Maksyutov Complex: The First UHP Terrane 40 Years Later // Geological Society of America. 2007. Special Paper 419, P. 153–169.
- Ferry J.M., Watson E.B. New Thermodynamic Models and Revised Calibrations for the Ti-in-zircon and Zrin-rutile Thermometers // Contrib Mineral Petrol. 2007. 154. P. 429–437.
- Glodny J., Bingen B., Austrheim H., Molina J.F., Rusin A. Precise Eclogitization Ages Deduced from Rb/Sr Mineral Systematics: The Maksyutov Complex, Southern Urals, Russia // Geochim. Cosmochim. Acta. 2002. V. 66 (7). P. 1221–1235.
- Kooijman E., Mezger K., Berndt J. Constraints on the U-Pb Systematics of Metamorphic Rutile from in situ LA-ICP-MS Analysis // Earth and Planetary Science Letters. 2010. 293. P. 321–330.
- Krogh Ravna E. The Garnet-clinopyroxene Fe²⁺-Mg Geothermometer: An Updated Calibration // J. Metamorph. Geol. 2000. 18. P. 211–219.
- 15. *Teyssier Ch., Whitney D.L.* Gneiss Domes and Orogeny // Geology. 2002. V. 30. № 12. P. 1139–1142.
- Ludwig K.R. SQUID 1.00, A User's Manual // Berkeley Geochronology Center Special Publication. 2000. № 2. 2455 Ridge Road, Berkeley. CA 94709, USA. 17 p.
- Ludwig K.R. ISOPLOT 3.00. A User's Manual // Berkeley Geochronology Center Special Publication. 2003. № 4. 2455 RidgeRoad, Berkeley. CA 94709. USA. 70 p.
- Tomkins H.S., Powell R., Ellis D.J. The Pressure Dependence of the Zirconium-in-rutile Thermometer // J Metamorph Geol. 2007. 25. P. 703–713.
- Watson E.B., Wark D.A., Thomas J.B. Crystallization Thermometers for Zircon and Rutile // Contributions to Mineralogy and Petrology. 2006. 151. P. 413–433.
- 20. *Whilliams I.S.* Geochronology by Ion Microprobe // Reviews in Economic Geology, 1998. V. 7. P. 1–35.

AGE AND THERMAL HISTORY OF THE ECLOGITES FROM TULEPSAY COMPLEX, EASTERN MUGODZHARY (WESTERN KAZAKHSTAN)

A. V. Ryazantsev^{a,#}, B. G. Golionko^a, Corresponding Member of the RAS A. B. Kotov^b, A. V. Skoblenko^a, M. V. Stifeeva^b, Yu. V. Plotkina^b, E. B. Salnikova^b, M. Yu. Koreshkova^c, and Ph. Machev^d

^a Geological Institute, Russian Academy of Sciences, Moscow, Russian Federation

^b Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, Sankt-Petersburg, Russian Federation

^c Institute of Earth's Sciences, Sankt-Petersburg State University, Sankt-Petersburg, Russian Federation

^d Sofia University St. Kliment Ohridski, Sofia, Bulgaria

[#]E-mail: avryazan51@mail.ru

Lenses of eclogites (the Tulepsai complex) formed at the peak of metamorphism P = 15 kbar, $T = 700-750^{\circ}$ C and experienced decompression at 12 kbar (granulite facies of metamorphism) located among the amphibolite sequences in the Eastern Mugodzhar zone. The absence of a significant difference between the age of zircon cors, which, we believe, formed under the conditions of the eclogitic facies of metamorphism (374 ± 4 Ma) at depths of 50–60 km (?) and the age of their rims (372 ± 6 Ma) formed during the isothermal pressure drop up to 12 kbar (25-35 km?), may indicate a rapid rise of eclogites from considerable depths. Rutile from eclogites yields U–Pb age at 360 ± 2 Ma and reflects a later stage of rock transformation at $630-690 \pm 40^{\circ}$ C. The Maksyutov eclogite-glaucophane-schist and Tulepsai complexes are structural analogs of similar age and compose the lower allochthons on different limbs of the Magnitogorsk synform. The complexes were formed in a similar geodynamic setting of the arc-continent collision.

Keywords: metamorphism, eclogites, granulites, U-Pb age, zircon, rutile, Urals, Kazakhstan

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 506 № 1 2022