——— МИНЕРАЛОГИЯ ——

УДК 549.753 (571.66)

НОВЫЙ ИЗОМОРФНЫЙ РЯД ВАГНЕРИТ—АРСЕНОВАГНЕРИТ

© 2022 г. Н. Н. Кошлякова^{1,*}, член-корреспондент РАН И. В. Пеков¹, М. Ф. Вигасина¹, А. А. Агаханов², М. А. Назарова³

Поступило 17.06.2022 г. После доработки 24.07.2022 г. Принято к публикации 25.07.2022 г.

Новый твердый раствор между изоструктурными магнезиальными арсенатом и фосфатом группы вагнерита и новая высокомышьяковая разновидность вагнерита установлены в эксгаляционных отложениях активной фумаролы Арсенатной, вулкан Толбачик, Камчатка. Минералы изоморфного ряда вагнерит $Mg_2(PO_4)F$ —арсеновагнерит $Mg_2(AsO_4)F$ образовались при взаимодействии фумарольного газа и базальтового шлака в окислительных условиях при температурах выше 300°C. В минералах этого ряда единственной значимой изоморфной схемой является замещение $As^{5+} \leftrightarrow P^{5+}$, а состав тетраэдрически координированных компонентов меняется в пределах ($As_{0.98}P_{0.01}$)— ($P_{0.54}As_{0.42}V_{0.01}$) с разрывом между составами ($As_{0.93}P_{0.06}$) и ($As_{0.57}P_{0.34}V_{0.07}$). Изоморфизм в тетраэдрических позициях (P, As^{5+}) у минералов группы вагнерита и родственных им соединений, как природных, так и синтетических, установлен впервые.

Ключевые слова: вагнерит, арсеновагнерит, группа вагнерита, изоморфизм, КР-спектр, фумарольные эксгаляции, вулкан Толбачик **DOI:** 10.31857/S2686739722601107

Вагнерит $Mg_2(PO_4)F$ И арсеновагнерит $Mg_2(AsO_4)F$ входят в группу вагнерита, объединяющую четыре природных моноклинных фосфата и два арсената с общей формулой $M_2 TO_4 X$, где видообразующие M = Mg, Mn^{2+} , Mn^{3+} , T = P, As, a X = F, O, OH. Характерная черта членов этой группы, родственных фосфатам группы триплита-триплоидита – способность к образованию большого количества политипов на основе структурного архетипа триплита. Наиболее распространены в природе представители структурного типа вагнерита-Ma2bc ($P2_1/c$), к которому относится и арсеновагнерит. Их кристаллическая структура состоит из тетраэдров ТО₄ и искаженных октаэдров *MO*₄F₂, объединенных вершинами и гранями с тригональными бипирамидами *М*О₄F [1-3].

Для минералов группы вагнерита характерно образование твердых растворов с широко проявленными замещениями в позициях M (Mg²⁺ $\leftrightarrow Fe^{2+} \leftrightarrow Mn^{2+} \leftrightarrow Mn^{3+} \leftrightarrow Fe^{3+} \leftrightarrow Ca^{2+}$) и в позициях X (F⁻ $\leftrightarrow OH^- \leftrightarrow O^{2-}$) [1]. В то же время скольлибо протяженных твердых растворов с участием тетраэдрически координированных компонентов T до настоящего времени не было известно не только у природных, но и у синтетических соединений с вагнеритоподобной структурой.

Арсеновагнерит, второй после саркинита $Mn_2^{2+}(AsO_4)F$ арсенат в группе вагнерита, был открыт в высокотемпературных эксгаляциях активной фумаролы Арсенатной, порожденной вулканом Толбачик на Камчатке. По химическому составу голотип арсеновагнерита близок к конечному члену $Mg_2(AsO_4)F$ [3]. Недавно в этой же фумароле нами впервые установлены промежуточные по величине As:P-отношения представители структурного семейства триплита/вагнерита. Их изучение позволило охарактеризовать новый изоморфный ряд вагнерит—арсеновагнерит, которому и посвящена настоящая работа.

Строение, минералогия и геохимико-минералогическая зональность отложений фумаролы Арсенатной охарактеризованы в работах [4, 5]. Минералы ряда вагнерит-арсеновагнерит встре-

¹ Московский государственный университет, Геологический факультет, Москва, Россия

² Минералогический музей им. А.Е. Ферсмана Российской академии наук, Москва, Россия

³ Институт вулканологии и сейсмологии

Дальневосточного отделения Российской академии наук, Петропавловск-Камчатский, Россия

^{*}E-mail: sebbest@yandex.ru

N₂	1	2	3	4	5	6	7
Минерал	Wag	Wag	AsWag	AsWag	AsWag	AsWag	AsWag
№ образца	5838-16	5838-16	5838-29	5838-21	5479	4766	4383 ht
мас. %							
MgO	43.35	44.31	42.01	43.51	39.65	38.62	38.72
CaO	0.40	0.41	0.51	0.47	0.20	0.22	0.23
MnO			0.07	0.08			0.32
Fe ₂ O ₃ **	0.11			0.01	0.11		0.11
SiO ₂	0.12		0.11	0.07			0.08
P_2O_5	21.37	19.36	16.50	15.56	2.17		0.18
V ₂ O ₅ **	0.59	1.01	1.66	1.25		0.31	0.03
As ₂ O ₅	26.88	29.15	30.98	32.97	53.77	56.15	54.96
SO ₃		0.09	0.23	0.12			0.10
F	9.85	9.78	10.66	10.14	9.89	9.33	8.91
$-O=F_2$	4.15	4.12	4.49	4.27	4.16	3.93	-3.75
Сумма	98.52	99.99	98.25	99.92	101.63	100.71	100.57*
формульные коэффициенты, расчет на сумму O + F = 5							
Mg	1.99	2.03	1.97	2.03	1.97	1.97	1.98
Ca	0.01	0.01	0.02	0.02	0.01	0.01	0.01
Mn				0.00	0.00		0.01
Р	0.56	0.50	0.44	0.41	0.06		0.01
V	0.01	0.02	0.03	0.03		0.01	0.00
As	0.43	0.47	0.51	0.54	0.94	1.00	0.99
F	0.96	0.95	1.06	1.00	1.04	1.01	0.97
0	4.04	4.05	3.94	4.00	3.96	3.99	4.03
ΣM	2.00	2.04	1.99	2.05	1.98	1.98	2.02
ΣT	1.00	0.99	0.98	0.98	1.00	1.01	1.97

Таблица 1. Представительные химические анализы минералов ряда вагнерит (Wag) – арсеновагнерит (AsWag) из фумаролы Арсенатной (вулкан Толбачик, Камчатка)

*В сумму анализа входят также (мас. %): CuO 0.60 (формульный коэффициент для Cu = 0.02), ZnO 0.05. **Для примесных Fe и V предположены валентные состояния Fe³⁺ и V⁵⁺, с учетом высокоокислительных условий минералообразования в фумароле Арсенатной [4, 5]. Ан. 1–6 – данные настоящей работы, ан. 7 – голотип арсеновагнерита [3]. $\Sigma M = Mg + Ca + Mn + Cu$; $\Sigma T = As + P + V$. Пустая ячейка – содержание компонента ниже предела обнаружения.

чаются в различных зонах в двух минеральных ассоциациях. Наиболее богатые As члены ряда, представленные арсеновагнеритом с содержанием P_2O_5 не выше 0.5 мас. % (ан. 6 и 7 в табл. 1), установлены в промежуточной части вертикального разреза, в т.н. полиминеральной зоне. Они ассоциируют с гематитом, фторфлогопитом, касситеритом, кальциойохиллеритом, йохиллеритом, никенихитом, свабитом, берцелиитом, тилазитом, ангидритом, афтиталитом, метатенардитом, крашенниниковитом и флюоборитом.

Более богатые фосфором члены ряда (12.4—21.4 мас. % P_2O_5 : ан. 1—5 в табл. 1) ассоциируют с ангидритом, ванадат-арсенатными гранатами ряда шеферит-берцелиит, удинаитом, арсенудина-

итом, кальциойохиллеритом, свабитом, фторапатитом, тилазитом, людвигитом, боратами группы рабдоборита, форстеритом, диопсидом, гематитом, магнезиоферритом, повеллитом, шеелитом и баритом в глубокой, т.н. ангидритовой зоне фумаролы.

Минералы ряда вагнерит—арсеновагнерит образуют изометричные, таблитчатые, часто скелетные кристаллы размером до 1 мм, иногда собранные в прерывистые корочки площадью до 3×1.5 см при толщине до 2 мм. Они прозрачны, имеют стеклянный блеск и светлый лимонноили зеленовато-желтый цвет, а иногда бесцветны.

Данные по химическому составу минералов получены в Лаборатории локальных методов ис-

Рис. 1. Соотношение фосфора и мышьяка (в атомах на формулу) в минералах ряда вагнерит-арсеновагнерит из фумаролы Арсенатной (вулкан Толбачик, Камчатка). Пунктирной линией показана формальная граница между минеральными видами.

следования вещества кафедры петрологии МГУ с помощью электронно-зондового микроанализатора JEOL Superprobe JXA-8230. Анализы выполнены в режиме ВДС при ускоряющем напряжении 20 кВ и токе зонда 40 нА. Стандарты: Mg, Si – диопсид, Ca – CaSiO₃, Mn – MnTiO₃, Fe, S – FeS₂, P – GaP, V – V, As – GaAs, F – CaF₂.

Съемка спектров комбинационного рассеяния света (КРС) осуществлялась на кафедре минералогии МГУ с помощью спектрометра EnSpectr R532 при длине волны лазерного излучения 532 нм и мощности луча на выходе 4 мВт. Спектры получены на произвольно ориентированных образцах в диапазоне 200–4000 см⁻¹ в режиме накопления сигнала в течение 1 с при усреднении по 40 измерениям. Диаметр фокального пятна составлял 10 мкм.

Единственной значимой изоморфной схемой в описываемых минералах является изовалентное замещение ${}^{T}As^{5+} \leftrightarrow {}^{T}P^{5+}$. Примеси остальных *T*-компонентов, среди которых преобладает V⁵⁺, не превышают в сумме 0.1 атома на формулу (а.ф.). Сумма примесных катионов, замещающих Mg, не поднимается выше 0.04 а.ф. (табл. 1). Данные спектроскопии КРС показывают отсутствие в составе этих минералов ОН-групп.

В эксгаляциях фумаролы Арсенатной реализуется изоморфный ряд с разрывом между почти бесфосфористым арсеновагнеритом и высокомышьяковой разновидностью вагнерита. Этот ряд распадается на две части (рис. 1), ограниченные следующими составами (эмпирические данные):

низкофосфористая часть ряда (образцы из полиминеральной зоны):

Рис. 2. КР-спектры: (1) арсеновагнерита с низким содержанием фосфора (0.01 а.ф. Р) (Толбачик); (2) промежуточного члена ряда с составом, близким к $Mg_{2.0}(P_{0.5}As_{0.5}O_{4.0})F_{1.0}$ (Толбачик); (3) безмышьякового вагнерита (Хольшеберг, Швеция).

(1) $Mg_{1.98}(As_{0.98}P_{0.01})_{\Sigma 0.99}F_{1.04};$

(2) $(Mg_{1.95}Ca_{0.01})_{\Sigma 1.96}(As_{0.93}P_{0.06})_{\Sigma 0.99}F_{1.16};$

высокофосфористая часть ряда (образцы из ангидритовой зоны):

(3) $(Mg_{2.03}Ca_{0.02})_{\Sigma 2.05}(As_{0.57}P_{0.34}V_{0.07})_{\Sigma 0.98}F_{1.02};$

 $(4) \ (Mg_{2.05}Ca_{0.01})_{\Sigma 2.08}(P_{0.54}As_{0.42}V_{0.01})_{\Sigma 0.97}F_{1.04}.$

Спектры КРС (рамановские) получены для трех образцов различного состава. Изучены арсеновагнерит с низким содержанием Р (обр. 4766: ан. 6 в табл. 1) и промежуточный член ряда с сопоставимыми содержаниями As и P (обр. 5838–16: ан. 1–2 в табл. 1) из фумаролы Арсенатной, а для сравнения – безмышьяковый вагнерит состава, близкого к $Mg_2(PO_4)F$, из кварцита проявления Хольшеберг (Hålsjöberg), Вермланд, Швеция (рис. 2, спектры 1, 2 и 3 соответственно).

Интерпретация спектров выполнена с использованием данных [6], все приведенные ниже значения волновых чисел (рамановский сдвиг) даны в см⁻¹.

Арсеновагнерит почти без Р (1): все линии относятся к колебаниям тетраэдра AsO₄: 946, 903, 894 — валентная мода F_2 , 866 с плечом при 839 — валентная мода A_1 , линии в диапазоне 500—330 соответствуют деформационным модам Е и F_2 .

Промежуточный член ряда (2): линии относятся к колебаниям тетраэдров PO_4 и AsO₄: 1187, 1115, 1019 — валентная мода F_2 тетраэдра PO_4 , дублет при 981/995 — валентная мода A_1 тетраэдра PO_4 , линия 914 с плечом при 937 — валентная мода F_2 тетраэдра AsO₄, линии 883 и 845 — валентная мода A_1 тетраэдра AsO₄, линии 639 и 611 — деформационная мода F_2 тетраэдра PO_4 , линии в диапазоне 500—300 относятся к деформационным модам E и F_2 тетраэдров PO_4 и AsO₄.

Вагнерит без As (3): линии относятся к колебаниям тетраэдра PO₄: 1151, 1094, 1055 относятся к валентной моде F_2 , дублет при 992/1003 — к валентной моде A_1 , линия при 618 с плечом при 591 соответствует моде F_2 , а линии при 479 и 454 — моде E, являющимися деформационными.

Линии с частотами ниже 300 относятся к трансляционным колебаниям катионов и решеточным модам.

Таким образом, обнаружена ранее неизвестная богатая As разновидность вагнерита и установлен новый изоморфный ряд между фосфатным и арсенатным представителями структурного семейства триплита/вагнерита. Изоморфизм в тетраэдрических позициях у соединений с такими структурами до обнаружения этого ряда не был известен не только в природе, но и для синтетических веществ. При этом, в отличие от описанных в литературе членов групп вагнерита и триплита-триплоидита, в изученных нами минералах ряда вагнерит-арсеновагнерит из фумарольных эксгаляций практически не проявлен изоморфизм в катионных позициях М (они здесь почти полностью заселены Mg) и анионных позициях Х. Состав Т-компонентов в минералах ряда вагнерит-арсеновагнерит лежит в диапазоне $(As_{0.98}P_{0.01}) - (As_{0.93}P_{0.06})$ у образцов, отобранных в более низкотемпературной полиминеральной зоне фумаролы, и в диапазоне $(As_{0.57}P_{0.34}V_{0.07})$ – $(P_{0.54}As_{0.42}V_{0.01})$ у образцов из более высокотемпературной ангидритовой зоны.

КР-спектры арсеновагнерита и промежуточного члена ряда вагнерит—арсеновагнерит публикуются впервые. В спектре вагнерита промежуточного состава $Mg_{2.0}(P_{0.5}As_{0.5})O_4F_{1.0}$ наблюдаются сопоставимые по интенсивности полосы, отвечающие валентным колебаниям связей T^{5+} — О в тетраэдрах PO₄ и AsO₄.

Фосфаты и арсенаты достаточно близки с кристаллохимической точки зрения: многие арсенаты имеют изоструктурные аналоги среди фосфатов, однако протяженных твердых растворов между природными арсенатами и фосфатами из-

вестно не так много. Существенный изоморфизм между Р⁵⁺ и As⁵⁺ в фумарольных минералах группы вагнерита реализуется только в глубоких, наиболее горячих (>600°С) зонах фумаролы Арсенатной, но не в промежуточных. Важно отметить, что твердые растворы с широкими замещениями в тетраэдрах *TO*₄ с участием пятивалентных *Т*-компонентов (P, As, V) при незначительном проявлении изоморфизма в позициях катионов металлов наблюдаются здесь же и для представителей других групп - это минералы со структурами типа апатита (изоморфная система фторапатит-свабит-плиниусит: $P^{5+} \leftrightarrow As^{5+} \leftrightarrow V^{5+}$), титанита (система изокит-тилазит-резницкиит: P^{5+} ↔ As^{5+} ↔ V^{5+}), граната (ряд шеферит–берце-лиит: As^{5+} ↔ V^{5+}), джеффбенита (ряд удинаит– арсенудинаит: As^{5+} ↔ V^{5+}) [4, 7, 8]. Мы считаем, что именно сочетание высокой температуры и атмосферного давления при сильно окислительных условиях и газовом транспорте анионообразующих компонентов способствует широкому изоморфизму между высоковалентными тетраэдрически координированными компонентами в этих минералах.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при поддержке РНФ, грант № 19-17-00050.

СПИСОК ЛИТЕРАТУРЫ

- Chopin C., Armbruster T., Grew E.S., Baronnet A., Leyx C., Medenbach O. The triplite-triploidite supergroup: structural modulation in wagnerite, discreditation of magniotriplite, and the new mineral hydroxylwagnerite // Eur. J. Mineral. 2014. V. 26. № 4. P. 553–565.
- Lazic B., Armbruster T., Chopin C., Grew E.S., Baronnet A., Palatinus L. Superspace description of wagnerite-group minerals (Mg,Fe,Mn)₂(PO₄)(F,OH) // Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2014. V. 70. № 2. P. 243–258.
- Pekov I.V., Zubkova N.V., Agakhanov A.A., Yapaskurt V.O., Chukanov N.V., Belakovskiy D.I., Sidorov E.G., Pushcharovsky D.Y. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VIII. Arsenowagnerite, Mg₂(AsO₄)F // Mineral. Mag. 2018. V. 82. № 4. P. 877–888.
- Pekov I.V., Koshlyakova N.N., Zubkova N.V., Lykova I.S., Britvin S.N., Yapaskurt V.O., Agakhanov A.A., Shchipalkina N.V., Turchkova A.G., Sidorov E.G. Fumarolic arsenates - A special type of arsenic mineralization // Eur. J. Mineral. 2018. V. 30. № 2. P. 305–322.
- Shchipalkina N.V., Pekov I.V., Koshlyakova N.N., Britvin S.N., Zubkova N.V., Varlamov D.A., Sidorov E.G. Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia - Part 1: Neso-, cyclo-, ino- And phyllosilicates // Eur. J. Mineral. 2020. V. 32. № 1. P. 101–119.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 507 № 1 2022

- 6. *Nakamoto K*. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, New York, 1986. 484 pp.
- Кошлякова Н.Н., Пеков И.В., Зубкова Н.В., Агаханов А.А., Турчкова А.Г., Карташов П.М., Сидоров Е.Г., Пущаровский Д.Ю. Новый твердый раствор со структурой граната: изоморфный ряд берцелиит шеферит из фумарольных эксгаляций вулкана Толбачик, Камчатка // Записки Российского ми-

нералогического общества. 2020. Т. 149. № 6. Р. 69-84.

 Koshlyakova N.N., Pekov I.V., Vigasina M.F., Zubkova N.V., Agakhanov A.A., Britvin S.N., Sidorov E.G., Pushcharovsky D.Y. Reznitskyite, CaMg(VO₄)F, a new mineral from the Tolbachik volcano, Kamchatka, Russia and the first vanadate with a titanite-type structure // Mineral. Mag. 2022. V. 86. № 2. P. 307–313.

THE NOVEL SOLID SOLUTION BETWEEN WAGNERITE AND ARSENOWAGNERITE

N. N. Koshlyakova^{*a*,#}, Corresponding Member of the RAS I. V. Pekov^{*a*}, M. F. Vigasina^{*a*}, A. A. Agakhanov^{*b*}, and M. A. Nazarova^{*c*}

^a Lomonosov Moscow State University, Faculty of Geology, Moscow, Russian Federation ^b Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russian Federation ^c Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Petropavlovsk-Kamchatsky, Russian Federation

#E-mail: sebbest@yandex.ru

The novel solid solution between isostructural magnesian arsenate and phosphate of the wagnerite group and a new As^{5^+} -rich variety of wagnerite have been discovered in sublimates of the active Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. The minerals of the wagnerite $Mg_2(PO_4)F$ – arsenowagnerite $Mg_2(AsO_4)F$ isomorphic series were formed as a result of the interaction of fumarolic gas and basalt scoria, under oxidizing conditions at temperatures above 300°C. In minerals of this series, the only significant substitution is $As^{5^+} \leftrightarrow P^{5^+}$, with the composition of the tetrahedrally coordinated components varying within the interval $(As_{0.98}P_{0.01}) - (P_{0.54}As_{0.42}V_{0.01})$, with a gap between $(As_{0.93}P_{0.06})$ and $(As_{0.57}P_{0.34}V_{0.07})$. Isomorphism in tetrahedral positions (P, As^{5^+}) in wagnerite-group minerals and the related natural or synthetic compounds was earlier unknown.

Keywords: wagnerite, arsenowagnerite, wagnerite group, isomorphic substitutions, Raman spectrum, fumarolic sublimates, Tolbachik volcano