———— ПЕТРОЛОГИЯ ——

УДК 551.24; 552.2; 550.4; 550.9

ФОРМИРОВАНИЕ ГРАНИТОВ А-ТИПА НА ЕНИСЕЙСКОМ КРЯЖЕ В КРИОГЕНИИ НА ЭТАПЕ ТЕКТОНИЧЕСКОЙ ПЕРЕСТРОЙКИ РЕГИОНА (ЮГО-ЗАПАДНОЕ ОБРАМЛЕНИЕ СИБИРСКОГО КРАТОНА)

© 2023 г. А. Е. Верниковская^{1,2,*}, академик РАН В. А. Верниковский^{1,2}, Н. Ю. Матушкин^{1,2}, М. Т. Д. Вингейт³, И. В. Романова^{1,2}, П. И. Кадильников^{1,2}, Е. А. Богданов^{1,2}

Поступило 01.08.2022 г. После доработки 15.09.2022 г. Принято к публикации 23.09.2022 г.

В статье рассматривается эволюция гранитного магматизма А-типа в криогении на этапе тектонической перестройки Енисейского кряжа от постколлизионной обстановки к ранней стадии развития активной континентальной окраины. Представлены новые геохронологические и геохимические данные по гранитам А-типа двух массивов – Стрелковского, относящегося к постколлизионному глушихинскому комплексу (752–718 млн лет) и Ягодкинского, выделенного в составе татарского комплекса, образованного в условиях активной континентальной окраины (711–629 млн лет). Новые U–Pb-и Ar/Ar-геохронологические данные для указанных массивов позволили соединить временные интервалы этих двух комплексов и показать непрерывную эволюцию магматизма А-типа в ходе тектонической перестройки региона.

Ключевые слова: граниты А-типа, Енисейский кряж, U–Pb- и Ar/Ar-геохронология, геохимия, криогений

DOI: 10.31857/S2686739722601600, EDN: GAQREC

В строении Енисейского кряжа – ключевой структуры юго-западного обрамления Сибирского кратона, среди других магматических образований доминируют неопротерозойские гранитоиды, в том числе граниты А-типа. Модели формирования таких гранитов, помимо анорогенных условий, включают обстановки вблизи конвергентных границ плит, как постколлизионную, так и активной континентальной окраины ([1–3] и др.). На Енисейском кряже граниты А-типа описаны в составе постколлизионного глушихинского комплекса, образованного в интервале 752-718 млн лет [2, 4, 5], и в составе татарского комплекса, формирование которого рассматривается в условиях активной континентальной окраины (711-629 млн лет) [3, 6], размещенные в пределах Центрально-Ангарского террейна и Татарско-Ишимбинской сутурной зоны (рис. 1). В настоя-

³Школа наук о Земле, Университет Западной Австралии, Перт, Австралия щей статье представлены новые геохронологические и геохимические данные по гранитам А-типа двух массивов — Стрелковского, наиболее молодого из постколлизионного глушихинского комплекса и Ягодкинского, образование которого происходило на ранней стадии развития активной континентальной окраины [16].

Изучение минерального состава проводилось с использованием электронного сканирующего микроскопа "Tescan" MIRA 3 LMU (ИГМ СО РАН, г. Новосибирск). Определение содержаний главных и трэйс-элементов выполнено с помощью масс-спектрометров - квадрупольного Agilent7500се (Япония) и высокого разрешения Element2 (Германия) в лабораториях ИГХ СО РАН (г. Иркутск). Изотопные анализы U, Th и Pb цирконов из лейкократовых гранитов (пробы №№ А-08-10 и А-08-9-6) Стрелковского массива получены с использованием ионного микрозонда SHRIMP II в Центре Джона де Летера в Университете Кертина (г. Перт. Австралия), следуя аналитическим методиками, описанным в [9]. Изотопные анализы U и Pb в цирконах из пробы № 624 гранита Ягодкинского массива выполнялись на многоколлекторном масс-спектрометре "Finnigan" МАТ-261 в ИГГД РАН (г. Санкт-Петербург), описание методик дано, например, в [7]. Изотопный состав аргона измерялся на масс-

¹Новосибирский государственный университет, Новосибирск, Россия

²Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук, Новосибирск, Россия

^{*}E-mail: VernikovskayaAE@ipgg.sbras.ru

спектрометре Noble gas 5400 фирмы Микромасс (Англия) в ИГМ СО РАН (г. Новосибирск). Методика датирования описана, например, в работе [13].

Вмешаюшими породами для гранитоидов Стрелковского массива являются доломитистые известняки с прослоями кварц-хлорит-серицитовых сланцев, метаморфизованные в условиях зеленосланцевой фации регионального метаморфизма, и относящиеся к токминской (горевской) свите (NP₁₋₂). Особый интерес в структуре Стрелковского массива представляют автолиты, рассматриваемые в качестве ранних продуктов затвердевания магмы. Размеры и формы автолитов варьируют от почти изометричных, не более 5-30 см в диаметре, до вытянутых и уплощенных эллипсоидов, вытянутых капель и цилиндров, достигающих 0.5-2 м в поперечном сечении, длинные оси которых ориентированы субмеридионально и субвертикально.

Доминирующими породами Стрелковского массива являются крупно- и среднезернистые лейкократовые граниты с порфировыми вкрапленниками калиевого полевого шпата. Они состоят преимущественно из калиевого полевого шпата и кварца, менее плагиоклаза и биотита (до 10 об. % каждого). Калиевый полевой шпат представлен ортоклазом и микроклином, менее анортоклазом, плагиоклаз – андезином и олигоклазом. Биотит темно-коричневого цвета, с удлиненной формой зерен (до 3 мм), иногда слабо деформированных, соответствует сидерофиллиту, и замещается обогащенным железом рипидолитом, брунсвигитом и мусковитом. Акцессорными минералами этих пород являются турмалин, флюорит, циркон, сфен и ильменит, в меньшей степени топаз, ортит-(Се) и апатит, а также рутил, ксенотим, монацит и торианит-уранинит. Ильменит замещается анатазом и лейкоксеном. Среди вторичных изменений отмечается пелитизация, серицитизация, альбитизация и хлоритизация.

В мелкозернистых лейкократовых гранитах из автолитов, в отличие от крупно-среднезернистых разностей, калиевый полевой шпат представлен санидином и микроклином. Сидерофиллит замещается незначительно мусковитом, железистым рипидолитом и брунсвигитом. Среди акцессорных минералов присутствуют монацит, циркон и топаз, менее флюорит, турмалин и фторапатит. Метамиктные зерна циркона иногда содержат каймы ксенотима и ассоциируют с уранинитом. В этих породах не выявлены сфен и рутил, присутствует магнетит, образующий срастания зерен с ильменитом. Вторичные изменения этих пород проявлены в меньшей степени.

Гранитоиды Стрелковского массива обогащены SiO₂ (73.0-75.9 мас. %), К₂O (5.6-6.6 мас. %) и имеют высокие значения K₂O/Na₂O (до 5.1). Они являются слабо пералюминиевыми (A/CNK = = 1.1 - 1.3), и, согласно классификации [1], соответствуют породам щелочно-известковой и известково-щелочной интрузивных серий, а с учетом высоких значений FeO^{общ} /(FeO^{общ} + MgO), гранитам А-типа. Большинство из них, согласно классификации [17], относятся к окисленным гранитам А-типа, лишь отдельные пробы из автолитов, подобно породам из других массивов глушихинского комплекса, к восстановленным гранитам А-типа. Гранитоиды Стрелковского массива имеют однотипные спектры на РЗЭ- и спайдер-диаграммах в сравнении с породами из других массивов глушихинского комплекса (рис. 2 а, б). Они, как и гранитоиды других массивов этого комплекса, имеют слабо или умеренно фракционированные спектры распределений РЗЭ с резкими отрицательными аномалиями Еи (Eu/Eu* = 0.10-0.3), а также Sr, Ba, Ti и P. В автолитах установлены более высокие содержания легких и низкие тяжелых РЗЭ, что определяет более фракционированный характер их спектров лантаноидов ((La/Yb)_{CN} = 22.5-52.9, только в одной пробе 11.1)), по сравнению с менее крутыми для средне-крупнозернистых разностей ((La/Yb)_{CN} = = 6.3 - 24.4).

Гранитоиды Ягодкинского массива, в отличие от пород Стрелковского массива, обогащены Al_2O_3 (до 14.4 мас. %), имеют менее высокие содержания SiO_2 (70.4–71.7 мас. %), K, U и Th и значения K_2O/Na_2O (1.8–2.2) и (La/Yb)_{CN} (9.0–10.9),

Рис. 1. Тектоническая схема Енисейского кряжа с положением неопротерозойских гранитоидных комплексов, с использованием ([6–10] и ссылки в этих работах). 1 - гнейсы, амфиболиты, мраморы, гранитоиды таракского комплекса – 1840 млн лет; 2 - терригенно-карбонатные отложения – NP₂₋₃; 3 - офиолитовые, островодужные комплексы – NP₂₋₃, плагиограниты – 697–628 млн лет; 4 - флишевые и терригенно-карбонатные породы, гнейсы – MP–NP₂, гранитоиды коллизионные тейского комплекса – 883–867 млн лет; 5 - гранитоиды синколлизионного аяхтинского комплекса – 761–750 млн лет (а), граниты А-типа постколлизионного глушихинского комплекса (752–702 млн лет) (б); 6 - щелочные и нефелиновые сиениты, ийолиты, уртиты, трахидолериты, трахибазальты, карбонатиты, граниты А-типа татарского комплекса активной континентальной окраины (711–629 млн лет); 7 - офиолиты рыбинского комплекса (MP); 8 - тектонические швы достоверные и предполагаемые; 9 - 13 - кинематика дизъюнктивной тектоники: 9 - взбросы и надвиги; 10 - сбросы; 11 - установленные левосторонние сдвиги; 12 - разломы неясной кинематики; 13 - крупнейшие разломы. Числа в выносках – возраст, млн лет: черный цвет – U–Pb-данные по циркону (m – монациту, t – титаниту), белый курсив – Ar/Ar-данные. Цифры в скобках – ссылки на литературные источники: (1) - [11]; (2) - [12]; (3) - [2]; (4) - [13]; (5) - [14]; (6) - [3]; (7) - [15]; в красных рамках – эта работа.

Рис. 2. Спектры распределений редкоземельных элементов (а) и спайдер-диаграммы б) для гранитоидов Стрелковского и Ягодкинского массивов. *1* – лейкократовые граниты крупно-среднезернистые Стрелковского массива: (а) эта работа, (б) – опубликованные данные (3 пробы); *2* – лейкократовые граниты автолитов: (а) – эта работа, (б) опубликованные данные (4 пробы); *3* – граниты Ягодкинского массива, эта работа; *4* – лейкократовые граниты других массивов глушихинского комплекса, опубликованные данные (15 проб). Опубликованные данные из [2, 12]. Содержания элементов нормированы к хондриту по [18] и к примитивной мантии по [19]. Линии содержания верхней (UCC) и нижней (LCC) континентальной коры приведены по [20].

а также более высокие величины Eu/Eu* (0.4). В то же время они также относятся к слабо пералюминиевым породам щелочно-известковой и известково-щелочной интрузивных серий и соответствуют окисленным гранитам А-типа. Породы этих двух массивов имеют однотипный характер распределений, с близкими концентрациями Ta, Nb, La, Ce, Hf и Zr и положительными высокими аномалиями Rb, низкими отрицательными аномалиями Ba, Sr, P и Ti (рис. 2 б). Они, вероятно, имели близкие магматические источники, проявляя смешанные характеристики продуктов верхнекорового и нижнекорового компонентов.

U-Th-Pb-изотопные исследования проведены для 14 зерен цирконов из пробы А-08-10 мелкозернистого лейкократового гранита из автолита Стрелковского массива (табл. 1; рис. 3 а, б). Зерна цирконов субидиоморфные и идиоморфные до 400 мкм в длину, прозрачные или непрозрачные, бесцветные до темно-коричневых. Все зерна имеют хорошо выраженную зональность, наблюдаемую на CL- и BSE-изображениях и в отраженном свете (рис. 3 б), что указывает на магматическое происхождение цирконов. Большинство имеют трещиноватые метамиктные области с низкой отражательной способностью. Эти области оказались очень сильно обогащенными ураном и ²⁰⁴Pb и исключались при проведении анализов. Из 20 изотопных анализов, один, показавший высокое содержание нерадиогенного Рь (f204 > 1%), был исключен из дальнейших расчетов. Оставшиеся аналитические точки располагаются близко к конкордии. Для двенадцати анализов средний ²³⁸U/²⁰⁶Pb возраст, скорректированный на нерадиогенный свинец, используя измеренное отношение ²⁰⁴Pb/²⁰⁶Pb, равен 718 ± 5 млн лет (СКВО = 1.5). Однако несколько из анализов находятся ниже конкордии (рис. 3 а), по-видимому, из-за слегка чрезмерной корректировки. Более точный результат, полученный для двенадцати анализов, с использованием регрессии от исходного Pb (²⁰⁷Pb/²⁰⁶Pb = 0.8862 при 719 млн лет) для нескорректированных данных, указывает на возраст пересечения с конкордией, соответствующий 719 \pm 4 млн лет (точность 95%, СКВО = = 1.6). Два существенно более древних анализа (743 и 734 млн лет) интерпретируются как отражение захваченного материала в этих цирконах. Пять более молодых анализов указывают на небольшую потерю радиогенного свинца. Возраст пересечения регрессии с конкордией 719 ± 4 млн лет принимается как наилучшая оценка возраста кристаллизации образца.

U-Th-Pb-изотопные исследования проведены для двенадцати зерен цирконов из пробы A-08-9-6 среднезернистого лейкократового гранита Стрелковского массива (табл. 2, рис. 3 в). Зерна цирконов бесцветные до бледно-коричневых, сильно трещиноватые, с хорошо выраженной концентрической зональностью. В одной

Таолип	a I. re3	/JIBTATEI		р-исследо	вании дид нири	конов из прооы А-о		аговыи гранит из а		DELIKOBCKOLO	массива	
	Codep.	жание, /т	100			Изотопные	отношения		Bo	зраст, млн л	leT	C
Точки	238 U	²³² Th)201 (%)	²³² Th/ ²³⁸ U	²³⁸ U/ ²⁰⁶ Pb (±1σ)	²⁰⁷ Pb/ ²⁰⁶ Pb (土1σ)	(1) $^{238}U/^{206}Pb*$ $(\pm 1\sigma)$	(1) ²⁰⁷ Pb/ ²⁰⁶ Pb* (土1σ)	(1) $^{238}U/^{206}Pb^{*}(\pm 1\sigma)$	(2) ²³⁸ U/ ²⁰⁶ Pb* (土1の)	(1) ²⁰⁷ Pb*/ ²⁰⁶ Pb * (±1σ)	n (%)
					GPS коорд	инаты точки отбор	pa: N 58°04'05.4	t"; E 93°06'41"				
						сеан	нс 1					
1.1	837	389	1.250	0.48	8.501 ± 0.113	0.07621 ± 0.00464	8.610 ± 0.122	0.06587 ± 0.00620	708 ± 10	706 ± 10	799 ± 197	11.4
2.1	761	558	0.311	0.76	8.732 ± 0.117	0.06659 ± 0.00046	8.759 ± 0.118	0.06403 ± 0.00070	695 ± 9	6 ± 969	742 ± 23	6.1
3.1	507	67	0.670	0.14	8.621 ± 0.120	0.06999 ± 0.00051	8.679 ± 0.122	0.06447 ± 0.00099	703 ± 9	702 ± 10	757 ± 33	7.1
4.1*	278	176	0.095	0.66	8.518 ± 0.122	0.06276 ± 0.00061	8.526 ± 0.122	0.06199 ± 0.00072	715 ± 10	716 ± 10	674 ± 25	-6.1
5.1*	538	109	0.352	0.21	8.377 ± 0.124	0.06675 ± 0.00047	8.406 ± 0.125	0.06384 ± 0.00072	724 ± 10	724 ± 10	736 ± 24	1.6
6.1^{*}	304	200	-0.021	0.68	8.514 ± 0.121	0.06326 ± 0.00058	8.512 ± 0.121	0.06344 ± 0.00061	716 ± 10	716 ± 10	723 ± 20	0.9
7.1	664	80	0.260	0.12	8.763 ± 0.120	0.06537 ± 0.00083	8.786 ± 0.121	0.06323 ± 0.00094	694 ± 9	694 ± 9	716 ± 32	3.0
8.1*	467	286	0.231	0.63	8.626 ± 0.121	0.06370 ± 0.00050	8.646 ± 0.122	0.06180 ± 0.00069	705 ± 9	706 ± 10	667 ± 24	-5.8
9.1*	483	06	0.045	0.19	8.560 ± 0.118	0.06235 ± 0.00049	8.564 ± 0.118	0.06198 ± 0.00054	711 ± 9	713 ± 10	673 ± 19	-5.7
10.1^{*}	597	209	0.617	0.36	8.555 ± 0.121	0.06813 ± 0.00046	8.608 ± 0.123	0.06306 ± 0.00123	708 ± 10	708 ± 10	710 ± 42	0.2
	_		-			cear	нс 2	-	-	_	-	
2.2	395	274	0.836	0.72	8.576 ± 0.086	0.06977 ± 0.00049	8.648 ± 0.088	0.06290 ± 0.00113	705 ± 7	705 ± 7	705 ± 38	-0.1
5.2	695	82	0.066	0.12	8.192 ± 0.055	0.06304 ± 0.00033	8.197 ± 0.059	0.06250 ± 0.00037	742 ± 5	743 ± 5	691 ± 13	-7.3
4.2	273	121	0.037	0.46	8.301 ± 0.061	0.06274 ± 0.00053	8.304 ± 0.066	0.06243 ± 0.00057	733 ± 5	734 ± 5	689 ± 19	-6.4
7.2*	427	69	0.066	0.17	8.387 ± 0.058	0.06261 ± 0.00044	8.393 ± 0.062	0.06207 ± 0.00050	726 ± 5	727 ± 5	676 ± 17	-7.3
8.2	596	525	0.941	0.91	8.751 ± 0.058	0.07012 ± 0.00063	8.835 ± 0.062	0.06239 ± 0.00106	691 ± 4	691 ± 5	688 ± 36	0.5
11.1^{*}	763	92	0.156	0.12	8.379 ± 0.068	0.06307 ± 0.00033	8.392 ± 0.068	0.06178 ± 0.00043	726 ± 6	727 ± 6	667 ± 15	-8.9
12.1*	732	43	0.038	0.06	8.357 ± 0.068	0.06212 ± 0.00035	8.360 ± 0.058	0.06182 ± 0.00037	728 ± 6	730 ± 6	668 ± 13	-9.1
13.1*	375	108	-0.015	0.30	8.553 ± 0.060	0.06312 ± 0.00048	8.552 ± 0.065	0.06324 ± 0.00049	713 ± 5	713 ± 5	716 ± 17	0.5
10.2	421	133	0.147	0.33	8.668 ± 0.060	0.06343 ± 0.00047	8.681 ± 0.065	0.06222 ± 0.00060	703 ± 5	703 ± 5	682 ± 21	-3.1
14.1^{*}	719	128	0.109	0.18	8.513 ± 0.066	0.06408 ± 0.00036	8.523 ± 0.059	0.06318 ± 0.00044	715 ± 5	715 ± 5	714 ± 15	0.1
Примеч содержа пиотенн	ание. Ан нии ²⁰⁶ Р ого Рь Т	алитичес b, оценен Тогрешно	кие точки зная с уче ость восни	1 со звездоч. Том измере ооизвелени	кой — значения, у нного ²⁰⁴ Pb. Pb* я (1 6) составила	/читываемые в расчет — радиогенный свине 0 50% птя обоих сеан	ге среднего возра ец. Отношения р сов. Погрешнос	ста образца./204 – до радиогенных изотопс тъ калибровки (16) с.	оля нерадиоге ов и возраста с оставила () 43	знного ²⁰⁶ Рb _Е откорректирс % пля сезнса	з общем измер ваны с учетом 1 и 0 28% лля	енном Гнера-
2. D 一页	искордан	HTHOCTE. ((1) и (2) –	нерадиоген	и (то) состании. ННый свинец, ско	орректированный по	методу измерен	ного ²⁰⁴ Рb (1) с испол	иставити от то	егрессии (2).	1 11 11 11 11 11 11 11 11 11 11 11 11 II	00000

62

ВЕРНИКОВСКАЯ и др.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 508 **№** 1 2023

Рис. 3. Диаграммы с конкордией и катодолюминесцентные изображения цирконов из мелкозернистого лейкократового гранита автолита (проба A-08-10) (а, б) и среднезернистого лейкократового гранита (проба A-08-9-6) (в) Стрелковского массива, и цирконов из гранита (проба 624) Ягодкинского массива (г).

аналитической точке, которая была исключена из расчета возраста, было получено повышенное значение нерадиогенного Pb. Остальные одиннадцать результатов образуют конкордантный кластер, соответствующий среднему ²³⁸U/²⁰⁶Pb-возрасту 702 ± 13 млн лет (СКВО = 0.65), который интерпретируется как возраст кристаллизации этого образца.

Результаты U–Pb-изотопных исследований методом изотопного разбавления для четырех фракций циркона из пробы 624 гранита Ягодкинского массива представлены в табл. 3 и на рис. 3 г. Зерна циркона идиоморфные и субидиоморфные полупрозрачные, замутненные и прозрачные бесцветные призматической формы цирконового габитуса. Для внутреннего строения циркона характерно присутствие фрагментов магматической зональности, частично нарушенной в краевых участках зерен. Кроме того, в замутненных зернах циркона обнаружены метамиктизированные ядра с растворенными краями, обогащенные рудными минеральными, а также пылевидными включениями. Размер зерен изменяется от 30 до 500 мкм; К_{улл}. = 1.2–3.5. Для проведения U-Рb-изотопных исследований были использованы четыре навески наиболее идиоморфных и прозрачных зерен циркона, отобранных из размерных фракций -60 + 45 мкм, -85 + 60 мкм, -100 + 65 мкм и −100 + 85 мкм (№ 1-4, табл. 3). При этом циркон из двух фракций был подвергнут аэроабразивной обработке, в результате которой удалено соответственно около 60 и 30% его вещества (№ 3 и 4, табл. 3). Точки изотопного состава циркона после аэроабразивной обработки

	COTTO	THE AL	т/т от				Изотопите	рипопто		B	AT THE TRACE	E	
		hwan	1/1, 1/1					ипощония		'n	or unit in the second	1	
№ ан. очки.	Ŋ	Th	²⁰⁶ Pb*	²³² Th/ ²³⁸ U	²⁰⁴ Pb/ ²⁰⁶ Pb	(1) $20^7 Pb^*/^{206} Pb^*$	(1) $^{206}Pb_{*}/^{238}U$	(1) $^{207}\text{Pb*}/^{235}\text{U}$	(1) $^{208} Pb^{*/232} Th$	(1) $^{208}Pb^{*}/^{232}Th$	(1) $^{207}\text{Pb}^{*/^{206}}\text{Pb}^{*}$	(1) $^{206}Pb^{*}/^{238}U$	Q (%)
						(±1σ)	(±1σ)	(±1J)	(±1ơ)	(±IJ)	(±1J)	(±Iσ)	
					GPS ko	ординаты точк	u ombopa N 58	04'05.1"; E 9	3° 06 '06.3 "				
1.1	247	70	24	0.29	0.00011	0.06168 ± 2.2	0.1130 ± 2.6	0.96 ± 3.3	0.03185 ± 8.8	634 ± 55	663 ± 46	690 ± 17	4
2.1	408	130	40	0.33	0.00009	0.06155 ± 1.6	0.1144 ± 2.5	0.97 ± 3.0	0.03410 ± 3.4	678 ± 23	658 ± 34	698 ± 17	9-
3.1	394	78	39	0.21	0.00006	0.06178 ± 1.9	0.1143 ± 2.5	0.97 ± 3.2	0.03432 ± 3.8	682 ± 25	667 ± 41	698 ± 17	-5
4.1	609	124	60	0.21	0.00009	0.06280 ± 1.3	0.1149 ± 2.5	0.99 ± 2.8	0.03285 ± 3.8	653 ± 24	701 ± 28	702 ± 17	0
5.1	571	259	57	0.47	0.00115	0.06475 ± 5.6	0.1156 ± 2.5	1.03 ± 6.1	0.01360 ± 19.0	206 ± 41	766 ± 117	738 ± 18	8
6.1	242	165	22	0.70	0.00209	0.07244 ± 6.3	0.1074 ± 2.6	1.07 ± 6.8	0.02793 ± 7.4	557 ± 41	998 ± 127	657 ± 16	36
7.1	595	242	58	0.42	0.00045	0.06128 ± 2.3	0.1141 ± 2.5	0.96 ± 3.4	0.01115 ± 8.6	224 ± 19	649 ± 49	696 ± 16	-8
8.1	438	89	43	0.21	0.00004	0.06326 ± 1.3	0.1152 ± 3.5	1.01 ± 3.7	0.03488 ± 9.1	693 ± 62	717 ± 28	703 ± 23	2
9.1	467	278	46	0.62	0.00007	0.06460 ± 1.3	0.1155 ± 2.5	1.03 ± 2.8	0.03603 ± 3.1	717 ± 22	761 ± 28	705 ± 17	8
10.1	550	83	54	0.16	0.00005	0.06336 ± 1.1	0.1152 ± 2.5	1.01 ± 2.7	0.11524 ± 4.6	677 ± 677	720 ± 24	704 ± 17	3
11.1	317	128	32	0.42	0.00003	0.06327 ± 1.5	0.1157 ± 2.5	1.01 ± 2.9	0.03572 ± 3.3	709 ± 23	717 ± 31	706 ± 18	5
12.1	475	262	48	0.57	0.00126	0.06773 ± 3.9	0.1170 ± 2.7	1.09 ± 4.7	0.01723 ± 10.1	345 ± 34	860 ± 81	743 ± 20	18
Тримеча	иние. (1	l) — неl	задиоген	нный свинец.	, скорректирс	ован по методу из	змеренного ²⁰⁴ 1	Рb. D – дискор	дантность. Остал	ьные обозначе	ания – см. табл	. 1.	

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 508 № 1 2023

Габлица 3. Результаты U–Pb-изотопных исследований цирконов для пробы 624 (гранит) Ягодкинского массива

	Размер фракции	Навеска,	Содер: МК	жание, т/г		Изотс	лные отноп	Іения		Dho	Bo	араст, млн л	eT
	(мкм) и се характеристика	ML	Pb	n	²⁰⁶ Pb/ ²⁰⁴ Pb	(1) $^{207}Pb/^{206}Pb$	(1) ²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	NII0	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb
				GF	У координап	лы точки отб	50pa N 57 ⁻ 35	'51.3"; E 93°2	41'45.7"				
1	-60 + 45	0.61	139	1230	8981	0.06312 ± 3	0.0848 ± 1	0.9910 ± 20	0.1139 ± 2	0.96	699.3 ± 1.4	695.2 ± 1.4	712.4 ± 1.1
2	-100 + 85	1.40	78.6	695	6242	0.06310 ± 4	0.0826 ± 1	0.9900 ± 20	0.1138 ± 2	0.95	698.7 ± 1.4	694.8 ± 1.4	711.4 ± 1.2
С	-100 + 65, A 60%	0.58	57.4	466	750	0.06277 ± 7	0.0852 ± 1	0.9995 ± 20	0.1155 ± 2	0.77	703.6 ± 1.4	704.5 ± 1.4	700.6 ± 2.3
4	-85 + 60, A 30%	0.24	33.2	284	1540	0.06301 ± 8	0.0857 ± 1	1.0056 ± 20	0.1157 ± 2	0.70	706.6 ± 1.4	706.1 ± 1.4	708.5 ± 2.7
Примеч ного в г	ание. (1) – изотопні іроцессе аэроабрази	ые отношен вной обраб	ния, ско отки ци	орректир іркона. І	ованные на б Зеличины ош	бланк и неради ибок соответс	иогенный сви ствуют послед	нец по методу (ним значащи	/ измеренногс м цифрам поо	, ²⁰⁴ Рb; сле запэ	А 50% – коли ятой.	ичество веще	ства, удален-

располагаются на конкордии, указывая на возраст 705 \pm 2 млн лет (СКВО = 0.07, вероятность = 79%). Дискордия, рассчитанная для всех фракций исследованного циркона, имеет верхнее пересечение с конкордией, отвечающее возрасту 705 \pm 11 млн лет (СКВО = 2.0) и нижнее пересечение с конкордией близко к 0 млн лет. Возраст 705 \pm 2 млн лет, получаемый на основе двух конкордантных анализов, интерпретируется в качестве наиболее достоверной оценки возраста кристаллизации этого образца.

⁴⁰Ar/³⁹Ar-геохронологические исследования проведены для биотита из пробы 619-3 крупнозернистого лейкократового гранита Стрелковского массива. согласно опубликованным данным, U-Pb-возраст цирконов из которого составляет 718 ± 9 млн лет [4]. Получен дискордантный возрастной спектр, в котором наблюдается два "промежуточных" плато, включающих соответственно четыре и пять ступеней, характеризующихся значением возраста 713 ± 4, 730 ± 5 млн лет, долей выделенного ³⁹Ar 35 и 25% (рис. 4 а). Это свидетельствует о гетерогенности изотопной системы образца. Линейная регрессия из 5 точек, при СКВО = 1.3, показывает значение возраста 711 \pm 13 млн лет, при начальном отношении аргона (${}^{40}\text{Ar}/{}^{36}\text{Ar}$) = 355 ± 125 (рис. 4 б). Поскольку начальное отношение аргона несколько выше относительно атмосферного значения. предполагается, что рассчитанные значения возраста изохронное 711 ± 13 и первого промежуточного плато 713 \pm 4, как более точное, соответствуют закрытию изотопной системы биотита. Рассчитанное значение возраста высокотемпературного плато, по всей видимости, является завышенным в связи с присутствием в соответствующих участках кристаллической решетки биотита избыточного ⁴⁰Ar.

Результаты новых U-Рb-геохронологических исследований позволили установить более длительный период формирования гранитоидов постколлизионного глушихинского комплекса Енисейского кряжа, от 752 до 702 млн лет, по сравнению с ранее установленным не моложе 719 млн лет [4]. На финальной стадии этого события образовались лейкократовые граниты Стрелковского массива, сначала мелкозернистые породы автолитов (719 \pm 4 млн лет, эта работа), затем крупно-среднезернистые разности (718 \pm 9 млн лет [4]; 702 ± 13 млн лет, эта работа). Как видно из приведенных данных, U-Pb-возраст гранитоидов Ягодкинского массива (705 \pm 2 млн лет), относимого к татарскому комплексу, очень близок к наиболее молодой датировке по гранитам Стрелковского массива.

Примечательно, что оба эти массива локализованы в юго-западной части Татарско-Ишимбинской сутурной зоны, ограниченной с востока Ишимбинской сутурой и Татарским разломом, а

Рис. 4. Результаты ⁴⁰Аг/³⁹Аг-изотопных исследований пород Стрелковского массива (проба 619-3): возрастные спектры (а) и изохронная диаграмма с линейной регрессией (б). IIА – изохронный возраст.

с запада – Приенисейской сутурой (рис. 1). Основываясь на новые U–Pb- и ⁴⁰Ar/³⁹Ar-данные для исследуемых гранитов, можно сделать вывод о более длительной истории магматизма финальной стадии постколлизионного события в криогении до 702 млн лет, и о синхронном с завершением этого события с началом формирования гранитов А-типа, щелочных сиенитов и карбонатитов татарского комплекса активной континентальной окраины.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследование выполнено при поддержке Российского научного фонда (грант РНФ № 22-27-00178).

СПИСОК ЛИТЕРАТУРЫ

1. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. A geochemical classification for granitic rocks // J. Petrol. 2001. V. 42. № 11. P. 2033– 2048.

https://doi.org/10.1093/petrology/42.11.2033

- Верниковская А.Е., Верниковский В.А., Сальникова Е.Б., Котов А.Б., Ковач В.П., Травин А.В., Вингейт М.Т.Д. Лейкогранитный магматизм А-типа в эволюции континентальной коры западного обрамления Сибирского кратона // Геология и геофизика. 2007. Т. 48. № 1. С. 5–21.
- 3. Верниковская А.Е., Даценко В.М., Верниковский В.А., Матушкин Н.Ю., Лаевский Ю.М., Романова И.В.,

Травин А.В., Воронин К.В., Лепехина Е.Н. Эволюция магматизма и карбонатит-гранитная ассоциация в неопротерозойской активной континентальной окраине Сибирского кратона: термохронологические реконструкции // ДАН. 2013. Т. 448. № 5. С. 555–562.

- 4. Верниковский В.А., Верниковская А.Е., Сальникова Е.Б., Котов А.Б., Ковач В.П. Постколлизионный гранитоидный магматизм Заангарья Енисейского кряжа: событие в интервале 750–720 млн лет назад // ДАН. 2002. Т. 384. № 2. С. 221–226.
- Верниковская А.Е., Верниковский В.А., Сальникова Е.Б., Ясенев А.М., Котов А.Б., Ковач В.П., Травин А.В., Яковлева С.З., Федосеенко А.М. Неопротерозойские А-граниты Гаревского массива (Енисейский кряж): возраст, источники и геодинамическая обстановка формирования // Петрология. 2006. Т. 14. № 1. С. 56–68.
- Верниковский В.А., Верниковская А.Е., Сальникова Е.Б., Бережная Н.Г., Ларионов А.Н., Котов А.Б., Ковач В.П., Верниковская И.В., Матушкин Н.Ю., Ясенев А.М. Позднерифейский щелочной магматизм западного обрамления Сибирского кратона: результат континентального рифтогенеза или аккреционных событий? // ДАН. 2008. Т. 419. № 1. С. 90–94.
- Верниковский В.А., Верниковская А.Е., Сальникова Е.Б., Котов А.Б., Черных А.И., Ковач В.П., Бережная Н.Г., Яковлева С.З. Новые U-Pb данные возраста формирования палеоостроводужного комплекса Предивинского террейна Енисейского кряжа // Геология и геофизика. 1999. Т. 40. № 2. С. 255–259.

 Vernikovsky V.A., Vernikovskaya A.E., Kotov A.B., Salnikova E.B., Kovach V.P. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge // Tectonophysics. 2003. V. 375. № 1–4. P. 147–168.

https://doi.org/10.1016/S0040-1951(03)00337-8

- 9. Верниковский В.А., Метелкин Д.В., Верниковская А.Е., Матушкин Н.Ю., Казанский А.Ю., Кадильников П.И., Романова И.В., Вингейт М.Т.Д., Ларионов А.Н., Родионов Н.В. Неопротерозойская тектоническая структура Енисейского кряжа и формирование западной окраины Сибирского кратона на основе новых геологических, палеомагнитных и геохронологических данных // Геология и геофизика. 2016. Т. 57. № 1. С. 63–90.
- 10. Vernikovskaya A., Vernikovsky V.A., Matushkin N., Kadilnikov P., Metelkin D.V., Romanova I., Li Z.-X., Bogdanov E. Early Ediacaran magmatism in the Yenisei Ridge and evolution of the southwestern margin of the Siberian Craton // Minerals. 2020. V. 10. № 6. 565. https://doi.org/10.3390/min10060565
- Верниковская А.Е., Верниковский В.А., Сальникова Е.Б., Даценко В.М., Котов А.Б., Ковач В.П., Травин А.В., Яковлева С.З. Гранитоиды Ерудинского и Чиримбинского массивов Заангарья Енисейского кряжа – индикаторы непротерозойских коллизионных событий // Геология и геофизика. 2002. Т. 43. № 3. С. 259–272.
- Верниковская А.Е., Верниковский В.А., Сальникова Е.Б., Котов А.Б., Ковач В.П., Травин А.В., Палесский С.В., Яковлева С.З., Ясенев А.М., Федосеенко А.М. Неопротерозойские постколлизионные гранитоиды глушихинского комплекса, Енисейский кряж // Петрология. 2003. Т. 11. № 1. С. 53–67.
- Верниковская А.Е., Верниковский В.А., Матушкин Н.Ю., Полянский О.П., Травин А.В. Термохронологические модели эволюции лейкогранитов А-типа неопротерозойского коллизионного орогена Енисейского кряжа // Геология и геофизика. 2009. Т. 50. № 5. С. 576–594.

- 14. Постников А.А., Ножкин А.Д., Наговицын К.Е., Травин А.В., Станевич А.М., Корнилова Т.А., Юдин Д.С., Якшин М.С., Кочнев Б.Б. Новые данные о возрасте неопротерозойских отложений чингасанской и вороговской серий Енисейского кряжа // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту): Материалы научного совещания по Программе фундаментальных исследований (Иркутск, 10–14 октября 2005 г.). Иркутск: Ин-т земной коры СО РАН. 2005. Т. 2. С. 71–74.
- Врублевский В.В., Ревердатто В.В., Изох А.Э., Гертнер И.Ф., Юдин Д.С., Тишин П.А. Неопротерозойский карбонатитовый магматизм Енисейского кряжа, центральная Сибирь: 40Ar/39Ar-геохронология пенченгинского комплекса // ДАН. 2011. Т. 437. № 4. С. 514–519.
- 16. Романова И.В., Верниковская А.Е., Верниковский В.А., Матушкин Н.Ю., Ларионов А.Н. Неопротерозойский щелочной и ассоциирующий с ним магматизм в западном обрамлении Сибирского кратона: петрография, геохимия и геохронология // Геология и геофизика. 2012. Т. 53. № 11. С. 1530–1555.
- 17. Dall'Agnol R., de Oliveira D.C. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites // Lithos. 2007. V. 93. № 3–4. P. 215–233. https://doi.org/10.1016/j.lithos.2006.03.065
- Evensen N.M., Hamilton P.S., O'Nions R.K. Rare-earth abundances in chondritic meteorites // Geochim. Cosmochim. Acta. 1978. V. 42. № 8. P. 1199–1212. https://doi.org/10.1016/0016-7037(78)90114-X
- 19. *McDonough W.F., Sun S.-S.* The composition of the Earth // Chem. Geol. 1995. V. 120. № 3–4, P. 223–253.

https://doi.org/10.1016/0009-2541(94)00140-4

 Rudnick R.L., Gao S. The Composition of the Continental Crust // Treatise on Geochemistry, The Crust, 1st. Ed.; Holland H.D., Turekian K.K., Eds., Elsevier-Pergamon: Oxford, UK. 2003. V. 3. P. 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4

FORMATION OF A-TYPE GRANITES IN THE YENISEI RIDGE IN THE CRYOGENIAN PERIOD DURING THE TECTONIC TRANSFORMATION OF THE REGION (SOUTHWESTERN MARGIN OF THE SIBERIAN CRATON)

A. E. Vernikovskaya^{a,b,#}, Academician of the RAS V. A. Vernikovsky^{a,b}, N. Yu. Matushkin^{a,b},
M. T. D. Wingate^c, I. V. Romanova^{a,b}, P. I. Kadilnikov^{a,b}, and E. A. Bogdanov^{a,b}

^aNovosibirsk State University, Novosibirsk, Russian Federation

^bTrofimuk Institute of Petroleum Geology and Geophysics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation

^cSchool of Earth Sciences, The University of Western Australia, Perth, Australia

[#]E-mail: VernikovskayaAE@ipgg.sbras.ru

We consider the evolution of the A-type granite magmatism in the Cryogenian period during the tectonic transformation of the Yenisei Ridge from a postcollisional setting to the early development stage of an active continental margin. We report geochronological and geochemical data for A-type granites of two intrusions – the Strelka pluton belonging to the Glushikha postcollisional complex (752–718 Ma) and the Yagodka pluton of the Tatarka active continental margin complex (711–629 Ma). The new U-Pb and Ar/Ar geochronological data for the postcollisional Glushikha plutons indicates that the age intervals for these complexes can be combined, showing the uninterrupted evolution of A-type magmatism during the change in tectonic setting of the region.

Keywords: A-type granites, Yenisei Ridge, U-Pb geochronology, Ar/Ar geochronology, geochemistry, Cryogenian

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 508 № 1 2023