ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ, 2023, том 509, № 2, с. 165–176

УДК 550.93:552.5

U-Pb-ВОЗРАСТ ДЕТРИТОВОГО ЦИРКОНА ИЗ МАТРИКСА РАННЕДОКЕМБРИЙСКИХ ПОЛИМИКТОВЫХ КОНГЛОМЕРАТОВ ЦЕНТРАЛЬНО-КАРЕЛЬСКОГО ДОМЕНА КАРЕЛЬСКОЙ ПРОВИНЦИИ ФЕННОСКАНДИНАВСКОГО ЩИТА

© 2023 г. Г. А. Кучеровский¹, В. П. Чекулаев¹, член-корреспондент РАН А. Б. Кузнецов^{1,*}, Ю. С. Егорова¹, Н. А. Арестова¹, Т. С. Зайцева¹, Е. В. Адамская¹, Ю. В. Плоткина¹

> Поступило 02.11.2022 г. После доработки 28.12.2022 г. Принято к публикации 28.12.2022 г.

Приведены первые результаты U-Th-Pb LA-ICP-MS-датирования детритового циркона из матрикса неоархейских и палеопротерозойских полимиктовых конгломератов из структур Гимольская и Воттомукс Центрально-Карельского домена Фенноскандинавского щита. Впервые представлены данные о химическом составе терригенных и вулканогенных пород гимольской серии. Новые данные показывают, что в матриксе неоархейских и палеопротерозойских конгломератов преобладает обломочный циркон с возрастом около 2.75 млрд лет. Неоархейские конгломераты района пос. Суккозеро содержат преимущественно гальки гнейсо-тоналитов и плагиопорфиров, аналогичных по составу неоархейским (2.78-2.73 млрд лет) породам ТТГ-серии, гранодиоритам и метадацитам Центрально-Карельского домена. Они характеризуются повышенными содержаниями Ва (900-1200 г/т), Sr (600-700 г/т) и отношениями Sr/Y = 34-90, (La/Yb)n = 17-30. Близость химического состава матрикса неоархейских конгломератов к составу галек, а также индекс зрелости CIA < 55 и отрицательные значения DF(x) от -1.0 до -0.4 предполагают, что матрикс представлен продуктами разрушения тех же пород. Матрикс палеопротерозойских конгломератов оз. Воттомукс содержит значительное количество цикрона из неоархейских среднекислых пород фундамента. Однако присутствие обломков сумийских базальтовых андезитов в палеопротерозойских конгломератах и химический состав матрикса свидетельствуют об их постсумийском возрасте (<2.45 млрд лет). Возраст неоархейских конгломератов гимольской структуры моложе, чем 2.75 млрд лет.

Ключевые слова: U–Pb-возраст, детритовые циркон, полимиктовые конгломераты, неоархей, палеопротерозой, Карельская провинция

DOI: 10.31857/S2686739722602496, EDN: NXKBRY

Полимиктовые конгломераты широко распространены в Карельской провинции Фенноскандинавского щита [1, 2]. Они маркируют важные геодинамические события на рубеже архея и протерозоя и начинают новый этап осадконакопления после длительного перерыва. Полимиктовые конгломераты, занимающие стратиграфическую позицию между архейскими породами фундамента и раннепротерозойскими (сумийскими) вулканитами, отражают этап заложения прогибов, а состав обломочного материала конгломератов характеризует породы, выходящие на поверхность в то время. Появление конгломератов было вызвано разрушением горных поднятий и последующим заполнением крупных впадин, возникших на архейской коре. Вероятно, заложение этих впадин, было связано с внутриплитным рифтогенезом, охватившим различные провинции Фенноскандинавского щита и сформировавшим поля сумийских континентальных базальтов 2505—2430 млн лет назад [3, 4]. Изучение вещественного состава терригенных пород и возраста находящихся в них зёрен обломочного циркона являются главным источником информации при

¹ Институт геологии и геохронологии докембрия Российской академии наук, Санкт-Петербург, Россия *E-mail: antonbor9@mail.ru

Рис. 1. Схематическое строение Карельской провинции Фенноскандинавского щита (а) и геологическая карта участка п. Суккозеро – оз. Воттомукс (б) (составлена на основе геолкарты 1:200000 и данных К.И. Хейсканена с дополнениями авторов). Цифры в кружках – район отбора проб: 1 – Сегозеро, 2 – Иломантси, 3 – Суоярви. 1 – архейские гранитоиды; 2 – метаосадки гимольской серии; 3 – архейские конгломераты; 4 – протерозойские метавулканиты бергаульской свиты Сумийского надгоризонта; 5 – палеопротерозойские конгломераты; 6–7 – нерасчлененные интрузивные породы: 6 – кислые, 7 – основные; 8 – метаосадки янгозёрской свиты Ятулийского надгоризонта.

реконструкции истории раннедокембрийской континентальной коры. До настоящего времени в пределах российской части Карельской провинции объектами изучения были обломочные цирконы из кварцитов и матрикса ятулийских кварцевых конгломератов [5], из архейских кварцитов Маткалахтинского зеленокаменного пояса [6], и из сумийского кварцита Кумсинской структуры в Центральной Карелии [7].

Настоящая работа является первой попыткой оценки состава и возраста источников сноса полимиктовых конгломератов в двух районах Центрально-Карельского домена Карельской провинции: около озер Суккозеро и Воттомукс (рис. 1), характеризующих неоархейский и палеопротерозойский этапы эволюции раннедокембрийской коры Фенноскандинавского щита.

Центрально-Карельский домен вместе с Западно-Карельским и Водлозерским доменами формирует архейскую Карельскую провинцию [8] в пределах юго-западной части Фенноскандинавского щита (рис. 1 а). Карельская провинция состоит из гнейсо-гранитовых областей с породами тоналит-трондьемит-гранодиоритовой (ТТГ) ассоциации и разделяющих их зеленокаменных поясов, сложенных преимушественно супракрустальными породами. Центрально-Карельский домен является наиболее молодым фрагментом неоархейской коры на щите, будучи сложенным гранитоидами, возраст которых не превышает 2.78 млрд лет [9]. В составе супракрустальных пород зеленокаменных поясов этого домена преобладают метавулканиты среднего и кислого состава и терригенные осадочные породы, а коматииты и базальты имеют подчиненное значение. В центральной части домена расположена узкая гимольская структура, вытянутая в субмеридиональном направлении. Разрез гимольской палеовпадины начинают полимиктовые конгломераты, сланцы и основные вулканиты, а выше залегают метаграувакки и метаалевролиты. Наиболее полно терригенные породы этой палеовпадины представлены около поселка Суккозеро и озера Воттомукс (рис. 1 б).

Полимиктовые конгломераты у поселка Суккозеро слагают нижнюю часть разреза супракрустальных пород гимольской серии – стратотипа неоархея Фенноскандинавского щита [1]. Неоархейские конгломераты сильно деформированы (рис. 2 а), гальки имеют линзовидную форму, хотя в них часто сохраняется более ранняя сланцеватость, расположенная косо по отношению к деформации конгломератов. Размер кластов вкрест сланцеватости варьирует от 0.5×3 до 15×50 см с преобладающим размером в пределах 5-10 см. Обломочный материал обычно составляет от 30 до 60-70%, но иногда его количество достигает почти 90%. Матрикс представлен кварц-биотитамфибол-плагиоклазовым сланцем с вкрапленниками плагиоклаза. Сходные по составу породы присутствуют в виде прослоев в конгломератах. В конгломератах района Суккозеро преобладают крупнозернистых гнейсо-тоналитов гальки (обр. С2013с) и мезократовых плагиопорфиров (обр. С2013b).

Рис. 2. Фото архейских конгломератов около пос. Суккозеро (а) и палеопротерозойских конгломератов оз. Воттомукс (б).

Рис. 3. Сравнение химического состава галек и матрикса архейских конгломератов пос. Суккозера и протерозойских конгломератов оз. Воттомукс с потенциальными источниками сноса Центрально-Карельского домена: неоархейскими метадацитами и гранитоидами [9] и сумийскими базальтовыми андезитами оз. Воттомукс (данные авторов), а также с неоархейскими метаосадочными породами: метаграувакками зеленокаменных поясов [12] и метатерригенными породами гимольской серии (данные этой статьи).

В 10 км к востоку от поселка Суккозеро, в районе озера Воттомукс архейские породы перекрыты базальтовыми андезитами (рис. 1) и полимиктовыми конгломератами палеопротерозоя, слагающими толщу с видимой мощностью около 190 м, в которой наряду с преобладающими валунно-галечными конгломератами присутствуют конгломерато-брекчии и галечно-гравийные конгломераты [2]. Конгломераты оз. Воттомукс (рис. 2 б, С2012 на рис. 1 б) менее деформированы и имеют более разнообразный состав кластов. Среди них преобладают округлые, часто угловатые, но со сглаженными углами гальки плотных мелкозернистых темно-серых метавулканитов (обр. 122 г), часто с миндалекаменной или вариолитовой текстурой, которая характерна для сумийских базальтовых андезитов. Среди кластов присутствуют гальки пород габброидного облика, редко ультраосновного состава, гнейсо-гранитов, метавулканитов средне-кислого состава, лейкогранита и кварца. Преобладающий размер галек 3–5 см, однако их размер варьирует от 0.5 см и реже до 15– 20 см. Гальки составляют более 70% объема породы. Матрикс — грубозернистый метапесчаник, преимущественно кварц-биотитовый, с амфиболом, турмалином и гранатом.

Анализ химического состава показал (табл. 1), что в обоих конгломератах преобладает гетерогенный магматический материал, что подтверждается отрицательными значениями функции DF(x) (рис. 3 а). Функция DF(x) вычисляется из петрохимических данных по формуле: DF(x) = = 26.64 - 0.24SiO₂ - 0.16TiO₂ - 0.25Al₂O₃ -- 0.28FeO* - 0.30MgO - 0.48CaO - 0.79Na₂O -

блица 1. Химический состав галек и матрикса архейских и протерозойских конгломератов и предполагаемых источников сноса в Центрально-Ка-
ском домене

168

Район		Суккозеро		Цент	зально-Карельсі	кий домен		Bortomykc	
Возраст	AF	сконгломера	ITЫ		AR_3		РК-конгло	омераты	PR_1
	Гал	ЬКИ	Матрикс	Вулк. толща	Интрузивный комплекс	Мета-осадки	Матрикс	Галька	Вулк. толща
Порода	РІ-порфир	РІ-гнейсо- тоналит	Qtz-Bt-Pl- сланец	Дацит	TTF	Мета-граувакка	Мета-песчаник	Базальто	вый андезит
№ пробы	C2013b	C2013c	C2013	среднее	среднее	среднее	C2012	C2012/1	среднее/вариации
SiO ₂	65.19	64.29	65.96	65.29	68.67	63.22	60.16	51.14	48.3–56.4
TiO_2	0.47	0.47	0.42	0.54	0.34	0.69	0.48	0.73	0.66 - 1.93
Al_2O_3	14.92	15.91	17.33	16.41	16.51	16.03	17.74	17.68	11.8-16.3
FeO _{tot}	6.98	6.05	3.57	4.06	2.70	6.60	7.16	10.97	8.5-11.2
MnO	0.12	0.11	0.07	0.08	0.05	0.09	0.34	0.18	0.18
MgO	2.19	2.06	1.10	1.71	0.79	3.16	2.08	3.74	4.5-8.4
CaO	2.74	2.65	3.18	3.16	3.20	2.03	3.07	3.38	5.30
Na_2O	3.33	4.58	3.64	4.22	4.80	2.75	5.32	5.90	4.12
K_2O	2.23	2.07	2.41	2.72	1.56	2.34	1.84	3.36	0.3–2.7
P_2O_5	0.20	0.22	0.11	0.19	0.14	0.13	0.10	0.13	0.10
ШШ	0.73	0.68	1.40	1.02	0.77	I	0.83	1.45	0.79
mg#	0.36	0.38	0.35	0.42	0.35	0.45	0.34	0.38	0.44 - 0.64
Rb	76	74	68	100	44	113	87	122	59
Sr	595	621	774	731	590	278	321	275	80 - 330
Ba	849	842	1210	1043	705	560	421	580	270 - 880
Y	12.6	18.2	10.9	11.9	8.5	13.8	26.1	18.5	7-25
Zr	237	162	115	182	151	123	108	95	94
Hf	5.8	4.1	3.1	3.9	1	3.6	2.8	2.5	2.5
Nb	7.0	5.1	4.4	11	6.2	10	1.0	3.5	4-10
Th	19.9	14.1	12.1	9.38	8.90	6.00	5.11	2.87	2.65
Cr	117	78	113	62	73	227	131	148	100 - 524
>	92	101	95	80	58	133	79	170	176
La	28.0	65.3	57.0	30.0	33.3	25.0	38.0	24.5	10-27
Ce	86.5	102	103	56.0	65.7	45.8	72.3	48.9	23-62

КУЧЕРОВСКИЙ и др.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 509 № 2 2023

Район		Суккозеро		Центј	рально-Карельсн	кий домен		Bortomykc	
Возраст	IA	R-конгломера	ITЫ		AR_3		РК-конгло	омераты	PR_1
	Гал	ІЬКИ	Матрикс	Вулк. толща	Интрузивный комплекс	Мета-осадки	Матрикс	Галька	Вулк. толща
Порода	Р1-порфир	РІ-гнейсо- тоналит	Qtz-Bt-Pl- сланец	Дацит	TTF	Мета-граувакка	Мета-песчаник	Базальто	вый андезит
№ пробы	C2013b	C2013c	C2013	среднее	среднее	среднее	C2012	C2012/1	среднее/вариации
Pr	6.98	14.8	11.4	9.7	6.25	7.61	8.39	5.60	3.50
Nd	24.2	55.3	40.7	23.8	27.8	21.8	31.1	21.2	11–27
Sm	4.62	9.54	6.22	4.23	4.14	4.11	5.71	4.45	4.23
Eu	1.25	1.85	1.50	1.10	0.87	1.23	1.44	1.07	1.32
Gd	3.23	6.38	4.53	4.28	2.24	4.13	4.92	4.06	3.83
Tb	0.41	0.71	0.50	0.40	0.38	0.59	0.69	0.71	0.54
Dy	2.2	3.28	2.16	2.21	0.86	3.34	4.24	3.54	2.96
Но	0.42	0.62	0.44	0.37	0.15	0.68	0.96	0.70	0.43
Er	1.17	1.66	1.08	1.02	0.43	1.33	2.92	1.69	1.23
Tm	0.18	0.24	0.15	0.15	0.10	0.19	0.42	0.24	0.20
Yb	1.21	1.5	0.93	0.98	0.37	1.34	3.09	1.29	1.42
Lu	0.17	0.23	0.15	0.16	0.07	0.22	0.45	0.16	0.22
K_2O/Na_2O	0.67	0.45	0.66	0.64	0.33	0.85	0.35	0.57	0.08 - 0.56
Sr/Y	47.2	34.1	71.0	89.3	81.7	20.1	12.3	14.9	15.8
(La/Yb) _n	16.6	31.2	44.0	28.2	40.5	14.0	8.8	13.6	9.6
$(Gd/Yb)_n$	3.5	2.2	4.0	3.6	3.14	2.5	1.3	2.6	2.2
$(Tb/Yb)_n$	2.2	1.5	2.4	1.9	1.78	1.4	1.0	2.5	1.7
Sm/Nd	0.17	0.19	0.15	0.18	0.15	0.19	0.18	0.21	0.20
$(La/Sm)_n$	4.4	3.9	5.9	4.6	5.20	3.7	4.3	3.6	3.3
Eu/Eu*	0.68	0.94	0.82	0.78	0.79	0.91	0.81	0.72	0.73
CIA-2	52.17	53.69	54.66	51.2	51.74	60.4	52.08	47.56	43.0
DF(x)	-1.02	-0.41	-0.44	-0.99	-1.08	0.69	-1.47	-2.21	-1.82
ссылка	1	1	1	2	3	4	1	1	1
Примечание. приборе ELAl 32.331407 в.д.;	Содержания гл N-DRC-6100 (1 C2012: 63.2092	тавных элемент ВСЕГЕИ). 1 – с 94 с.ш., 32.574	гов определены оригинальна 269 в.д.	г РФА методол цанные, эта ст	і на приборе VRA- атья; 2 − [9]; 3 − [30 (ВСЕГЕИ). Соде 13]; 4 – [12]. Коорд	гржание редких элем инаты точек отбора I	іентов измерено проб (WGS84) –	етодом ИСП-МС на C2013: 63.184995 с.ш.,

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 509

Nº 2

2023

Таблица 1. Окончание

U-Рb-ВОЗРАСТ ДЕТРИТОВОГО ЦИРКОНА

169

 $-0.46K_2O - 0.10P_2O_5$, где FeO* = $0.9Fe_2O_3 + FeO$, содержания главных элементов (мас. %) даны без пересчета на безводную основу [10]. Эта функция с высокой долей вероятности позволяет различать принадлежность пород к осадочному или магматическому протолиту в метаморфических комплексах. Низкие (менее 55) значения индекса зрелости CIA (CIA = $100Al_2O_3/(Al_2O_3 + CaO + Na_2O + K_2O)$, [11]), указывают на отсутствие существенного выветривания большинства изученных пород.

При определенном сходстве в содержании главных элементов матрикс неоархейского конгломерата (Пр. С2013) существенно отличается более высокими содержаниями Sr. Ba. LREE и отношениями Sr/Y, Zr/Y, (La/Yb)n (рис. 3 б). Такими же геохимическими особенностями обладают гальки гнейсо-тоналита (обр. С2013с) и плагиопорфира (обр. C2013b), доминирующие в составе архейских конгломератов. По химическому составу они соответствуют неоархейским (2.78-2.73 млрд лет) ТТГ-породам и среднекислым вулканитам (плагиопорфирам и метадацитам) Центрально-Карельского домена (ЦКД), фрагмента наиболее молодой архейской коры Карельской провинции [8] (табл. 1, рис. 3). ТТГ-породы представляют собой наиболее вероятный источник терригенного материала для неоархейских конгломератов около пос. Суккозеро (рис. 1). Близкий возраст (2.72-2.75 млрд лет) имеют и массивы санукитоидов Карельской провинции, вклад которых мог обеспечить повышенные концентрации Ba, Sr, LREE. Так как состав матрикса неоархейских конгломератов близок к составу галек (табл. 1, рис. 3), вероятно, он является плохо сортированными мелкими обломками тех же пород, превращенных в кварц-биотит-амфиболплагиоклазовый сланец в результате поздних деформаций и метаморфизма. В палеопротерозойских конгломератах преобладают гальки пород, аналогичных по составу широко развитым в данном районе сумийским базальтовым андезитам, имеющим возраст около 2.45 млрд лет (табл. 1, рис. 3).

Для более точной оценки возраста источников сноса терригенного материала, участвовавшего в формировании неоархейских и палеопротерозойских конгломератов, из их матрикса был отобран циркон, соответственно проба C2013 и проба C2012. U–Th–Pb-изотопное датирование (LA-ICP-MS) циркона проведено в ИГГД РАН на ICP MS ELEMENT XR, оснащенном системой лазерной абляции NWR-213 по методике, описанной в [14]. Для контроля качества изотопного анализа использованы стандартные цирконы Harvard 91 500 и Plešovice, для которых были получены конкордантные значения возраста 1071 ± 10 и 329 ± 8 для пробы C2012 и 1070 ± 8 и 338 ± 4 для

пробы С2013. Результаты измерений приведены в табл. 2.

Циркон из пробы C2013 представлен преимущественно идиоморфными слабо удлиненными зёрнами, часто содержащими ядра. Преобладают зёрна размером 150–200 мкм. Морфология и внутреннее строение зёрен указывают на их магматическое происхождение. Циркон из проб C2012 и C2013 морфологически схож (рис. 4). На CL-изображениях наблюдаются осцилляторная зональность и редкие включения. Размер зёрен варьирует в пределах 100–200 мкм. Результаты геохронологических исследований приведены на диаграммах (рис. 4).

В пробе C2013 исследованы 94 зерна, из которых для 67 были получены конкордантные значения возраста.

Как видно из рис. 4, доминирующая популяция циркона (более 80% изученных зёрен) имеет возраст около 2750 млн лет. На рис. 5 представлено распределение относительной вероятности возрастов для детритового ширкона. Для пробы С2013 рассчитан пик возраста 2757 млн лет (44 зёрна), для C2012 — 2750 млн лет (21 зерно). Этот возраст сопоставим с возрастом неоархейских ТТГ-пород и комплементарных им среднекислых вулканитов и плагиопорфиров даек, участвующих в строении Центрально-Карельского домена [9], в том числе блока Иломантси в его юго-западной части (Восточная Финляндия) [15-17] (рис. 1). Полученный возраст циркона из матрикса неоархейского конгломерата близок к среднему возрасту терригенных комплексов зеленокаменного пояса Кухмо-Типасъярви (около 2750 млн лет [16]) Карельской провинции [8]. Близкий возраст получен для гальки конгломерата в Восточной Финляндии [15, 16].

В пробе C2012 изучены 88 зёрен, для 35 из которых были получены конкордантные значения возраста (рис. 4). Более 80% зёрен циркона в этой пробе также имеют возраст около 2750 млн лет. Это свидетельствует о том, что при формировании палеопротерозойских конгломератов неоархейские породы среднекислого состава продолжали быть одним из ключевых источников сноса терригенного материала. Отсутствие в матриксе популяции циркона протерозойского возраста, по-видимому, связано с его отсутствием в сумийских базальтовых андезитах, распространенных в изученном районе.

В архейских и протерозойских конгломератах присутствуют единичные зёрна циркона с возрастами 2.9—3.2 млрд лет, что указывает на незначительный вклад более древнего источника сноса, которым могли быть породы ТТГ-ассоциации мезоархейского фундамента Водлозёрского домена [13]. Однако в этих конгломератах отсутствует значимое количество обломочных зёрен

U-Рb-ВОЗРАСТ ДЕТРИТОВОГО ЦИРКОНА

					Изото	опные с	отношен	ния				Возр	раст	, млн .	лет		
Точка анализа	²⁰⁶ Pbc, %	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	ls	²⁰⁷ Pb/ ²³⁵ U	ls	²⁰⁶ Pb/ ²³⁸ U	ls	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	1s	²⁰⁷ Pb/ ²³⁵ U	1s	²⁰⁶ Pb/ ²³⁸ U	1s	CA	1s
						Обр	. C2012										
C212-08		0.33	0.2169	0.0021	17.4170	0.3745	0.5825	0.0123	0.98	2958	14	2958	21	2959	50	2959	14
C212-10		0.55	0.1884	0.0018	13.6702	0.2937	0.5263	0.0111	0.98	2728	15	2727	20	2726	47	2728	14
C212-12		0.65	0.1854	0.0018	13.0408	0.2829	0.5101	0.0108	0.98	2702	15	2683	20	2657	46	2701	14
C212-13		0.59	0.1930	0.0018	14.2834	0.3058	0.5367	0.0113	0.98	2768	14	2769	20	2770	47	2770	14
C212-16		0.66	0.1940	0.0018	14.3814	0.3085	0.5376	0.0113	0.98	2777	14	2775	20	2773	47	2776	14
C212-17		0.63	0.1964	0.0019	14.6985	0.3205	0.5428	0.0115	0.97	2797	15	2796	21	2795	48	2796	17
C212-18		0.42	0.1979	0.0019	14.5989	0.3185	0.5352	0.0113	0.97	2809	15	2789	21	2763	48	2807	17
C212-21		0.30	0.1909	0.0018	13.9961	0.3005	0.5319	0.0112	0.98	2750	14	2749	20	2749	47	2749	14
C212-22		0.58	0.1917	0.0018	14.1163	0.3038	0.5340	0.0112	0.98	2757	14	2758	20	2758	47	2758	14
C212-25		0.52	0.2090	0.0020	16.3196	0.3476	0.5665	0.0118	0.98	2897	14	2896	20	2894	49	2897	14
C212-31		0.98	0.2067	0.0020	16.0426	0.3420	0.5629	0.0117	0.97	2880	14	2879	20	2879	48	2880	17
C212-39		0.40	0.1908	0.0018	13.9814	0.2915	0.5316	0.0109	0.98	2749	14	2748	20	2748	46	2749	13
C212-44		0.43	0.1861	0.0017	13.3876	0.2833	0.5217	0.0107	0.97	2708	15	2707	20	2707	45	2708	17
C212-49		0.70	0.1912	0.0018	14.0392	0.2938	0.5326	0.0109	0.98	2753	15	2752	20	2752	46	2752	14
C212-50		0.87	0.1913	0.0018	14.0509	0.2946	0.5329	0.0109	0.98	2753	15	2753	20	2754	46	2754	14
C212-53		0.58	0.1920	0.0019	14.1227	0.3095	0.5336	0.0112	0.95	2759	15	2758	21	2757	47	2759	22
C212-54		1.27	0.1924	0.0018	14.1788	0.3031	0.5344	0.0110	0.96	2763	15	2762	20	2760	46	2763	19
C212-55		0.53	0.1923	0.0018	14.1550	0.3024	0.5339	0.0110	0.96	2762	15	2760	20	2758	46	2762	19
C212-57		0.61	0.2269	0.0021	18.7544	0.3959	0.5995	0.0123	0.97	3031	14	3029	20	3028	49	3030	16
C212-59		1.05	0.1911	0.0018	14.0092	0.2933	0.5317	0.0108	0.97	2752	15	2750	20	2748	46	2752	16
C212-62		0.57	0.1890	0.0017	13.7556	0.2849	0.5279	0.0107	0.98	2734	15	2733	20	2732	45	2733	13
C212-65		0.56	0.1878	0.0017	13.6031	0.2824	0.5254	0.0106	0.97	2723	15	2722	20	2722	45	2723	16
C212-66		0.47	0.1948	0.0018	14.5127	0.3046	0.5405	0.0110	0.97	2783	15	2784	20	2785	46	2786	16
C212-68		0.83	0.1900	0.0017	13.8821	0.2876	0.5300	0.0108	0.98	2742	15	2742	20	2741	45	2742	13
C212-69		0.45	0.1888	0.0018	13.7272	0.2875	0.5275	0.0108	0.98	2731	15	2731	20	2731	45	2731	14
C212-70		0.74	0.1940	0.0018	14.3870	0.2984	0.5378	0.0110	0.98	2777	15	2776	20	2774	46	2776	13
C212-71		0.69	0.2308	0.0021	19.3423	0.4012	0.6078	0.0124	0.98	3058	14	3059	20	3061	50	3061	13
C212-75		0.56	0.1872	0.0017	13.5095	0.2829	0.5236	0.0108	0.98	2717	15	2716	20	2714	46	2717	14
C212-77		0.63	0.1900	0.0018	13.8905	0.2929	0.5302	0.0108	0.97	2742	15	2742	20	2742	46	2742	17
C212-79		0.60	0.1904	0.0018	13.9028	0.2931	0.5297	0.0109	0.97	2745	15	2743	20	2740	46	2745	16
C212-81		0.25	0.0759	0.0007	1.9253	0.0403	0.1839	0.0038	0.98	1093	18	1090	14	1088	20	1093	15
C212-83		0.55	0.1948	0.0018	14.4965	0.3022	0.5397	0.0111	0.98	2783	15	2783	20	2782	46	2783	13
C212-84		0.63	0.1738	0.0016	11.8834	0.2469	0.4959	0.0102	0.99	2594	15	2595	19	2596	44	2596	10
C212-85		0.50	0.1907	0.0018	13.9748	0.2906	0.5316	0.0109	0.99	2748	15	2748	20	2748	46	2748	10
C212-86		0.56	0.1909	0.0018	14.0246	0.2904	0.5328	0.0109	0.99	2750	15	2751	20	2753	46	2753	10
C212-87		0.33	0.1865	0.0017	13.4590	0.2794	0.5235	0.0108	0.99	2711	15	2712	20	2714	46	2714	10
	1	I	I	I	I	Обр	. C2012	I	1	1		I	1	I	1	ı 1	
C213-01		0.25	0.1933	0.0017	14.3511	0.2883	0.5384	0.0106	0.98	2771	14	2773	19	2777	45	2777	13
C213-03		0.40	0.1908	0.0017	14.0090	0.2812	0.5326	0.0105	0.98	2749	14	2750	19	2752	44	2752	13

Таблица 2. Результаты U–Th–Pb LA-ICP-MS-геохронологических исследований детритовых цирконов из полимиктовых конгломератов

Таблица 2. Продолжение

					Изото	опные с	тноше	ния				Возр	раст	, млн .	лет		
Точка анализа	²⁰⁶ Pbc, %	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	ls	²⁰⁷ Pb/ ²³⁵ U	ls	²⁰⁶ Pb/ ²³⁸ U	ls	Rho	$^{207} Pb/^{206} Pb$	1s	²⁰⁷ Pb/ ²³⁵ U	1s	²⁰⁶ Pb/ ²³⁸ U	1s	CA	1s
C213-04		0.93	0.1923	0.0017	14.2017	0.2852	0.5358	0.0106	0.98	2762	14	2763	19	2766	44	2766	13
C213-05		0.62	0.1891	0.0017	13.7439	0.2765	0.5273	0.0104	0.98	2734	14	2732	19	2730	44	2734	13
C213-06R		0.31	0.2191	0.0020	17.6918	0.3607	0.5858	0.0116	0.97	2974	14	2973	20	2972	47	2974	13
C213-06C		0.43	0.2117	0.0019	16.7294	0.3397	0.5733	0.0113	0.97	2918	14	2919	19	2921	46	2921	13
C213-07		0.21	0.2322	0.0021	19.5527	0.3940	0.6108	0.0120	0.98	3067	14	3069	19	3073	48	3073	13
C213-08		0.55	0.1921	0.0017	14.1204	0.2842	0.5333	0.0105	0.98	2760	14	2758	19	2755	44	2760	13
C213-09		0.42	0.1895	0.0017	13.8262	0.2787	0.5293	0.0104	0.97	2738	14	2738	19	2739	44	2739	13
C213-11		0.27	0.1960	0.0018	14.6612	0.2956	0.5427	0.0107	0.97	2793	14	2794	19	2795	45	2795	13
C213-13		0.71	0.1899	0.0017	13.8683	0.2803	0.5297	0.0104	0.97	2742	14	2741	19	2740	44	2741	13
C213-14		0.57	0.1922	0.0017	14.1679	0.2845	0.5347	0.0106	0.99	2761	15	2761	19	2761	45	2761	13
C213-15		0.61	0.1924	0.0017	14.1925	0.2854	0.5349	0.0106	0.99	2763	15	2763	19	2762	45	2763	13
C213-16		0.66	0.1896	0.0017	13.8533	0.2782	0.5298	0.0105	0.99	2739	15	2740	19	2741	44	2741	13
C213-17		0.65	0.1919	0.0017	14.1235	0.2840	0.5338	0.0106	0.99	2759	15	2758	19	2757	45	2758	13
C213-19		1.03	0.1906	0.0017	13.9523	0.2805	0.5311	0.0105	0.99	2747	15	2746	19	2746	44	2747	13
C213-23		0.47	0.1906	0.0017	13.9460	0.2817	0.5306	0.0105	0.98	2748	15	2746	19	2744	44	2747	13
C213-24		0.71	0.1925	0.0017	14.2232	0.2888	0.5358	0.0106	0.98	2764	15	2765	19	2766	45	2766	13
C213-25		0.55	0.1930	0.0017	14.2549	0.2898	0.5357	0.0106	0.98	2768	15	2767	19	2765	45	2768	13
C213-26		0.36	0.2547	0.0022	22.7078	0.4395	0.6467	0.0122	0.97	3214	13	3215	19	3215	48	3215	12
C213-28		0.58	0.2212	0.0019	17.9966	0.3438	0.5902	0.0110	0.97	2989	14	2990	18	2990	44	2990	12
C213-30		0.55	0.2131	0.0018	16.8699	0.3235	0.5743	0.0106	0.97	2929	14	2927	18	2925	44	2929	12
C213-31		0.59	0.1944	0.0016	14.4440	0.2736	0.5389	0.0099	0.97	2780	14	2779	18	2779	41	2780	12
C213-34		0.76	0.1945	0.0016	14.4599	0.2697	0.5393	0.0097	0.96	2780	13	2780	18	2781	41	2781	12
C213-38		0.54	0.1884	0.0017	13.6880	0.2744	0.5270	0.0104	0.98	2728	15	2728	19	2729	44	2729	13
C213-40		0.45	0.1856	0.0017	13.3330	0.2689	0.5212	0.0103	0.98	2703	15	2704	19	2704	44	2704	13
C213-41		0.75	0.1928	0.0017	14.2440	0.2883	0.5360	0.0106	0.98	2766	15	2766	19	2767	45	2767	13
C213-42		0.92	0.1916	0.0017	14.0936	0.2865	0.5336	0.0106	0.98	2756	15	2756	19	2757	45	2757	13
C213-43		0.20	0.1970	0.0018	14.7796	0.3014	0.5441	0.0108	0.98	2802	15	2801	19	2801	45	2801	13
C213-44		0.63	0.1888	0.0017	13.7679	0.2861	0.5291	0.0106	0.97	2731	15	2734	20	2738	45	2738	13
C213-45		0.64	0.1916	0.0017	14.0958	0.2898	0.5337	0.0107	0.97	2756	15	2756	19	2757	45	2757	13
C213-47		0.69	0.1909	0.0017	14.0188	0.2897	0.5326	0.0107	0.97	2750	15	2751	20	2752	45	2752	13
C213-48		0.43	0.1893	0.0017	13.8076	0.2864	0.5291	0.0106	0.97	2736	15	2737	20	2738	45	2738	14
C213-49		0.69	0.1869	0.0017	13.4880	0.2806	0.5234	0.0105	0.97	2715	15	2714	20	2713	45	2715	14
C213-50		0.14	0.2099	0.0019	16.4725	0.3371	0.5693	0.0114	0.98	2905	15	2905	20	2905	47	2905	13
C213-51		0.89	0.1965	0.0018	14.7314	0.3014	0.5438	0.0109	0.98	2797	15	2798	19	2799	45	2799	13
C213-52		0.85	0.1860	0.0017	13.5605	0.2784	0.5288	0.0106	0.97	2707	15	2720	19	2736	45	2736	13
C213-53		0.50	0.1917	0.0018	14.1163	0.2909	0.5340	0.0107	0.97	2757	15	2758	20	2758	45	2758	13
C213-54		0.56	0.1924	0.0018	14.1891	0.2919	0.5349	0.0107	0.97	2763	15	2762	20	2762	45	2763	13
C213-55		0.26	0.2472	0.0023	21.6117	0.4450	0.6341	0.0127	0.97	3167	14	3166	20	3166	50	3167	13
C213-56		0.65	0.2010	0.0018	15.2941	0.3157	0.5520	0.0111	0.97	2834	15	2834	20	2833	46	2834	13
C213-57		0.57	0.1914	0.0018	14.0703	0.2917	0.5332	0.0107	0.97	2754	15	2754	20	2755	45	2755	13
C213-58		0.57	0.1941	0.0018	14.4227	0.2993	0.5390	0.0108	0.97	2777	15	2778	20	2779	45	2779	13

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 509 № 2 2023

Таблица 2. Окончание

					Изото	опные с	тношен	ния				Возр	аст	, млн	лет		
Точка анализа	²⁰⁶ Pbc, %	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	ls	²⁰⁷ Pb/ ²³⁵ U	ls	²⁰⁶ Pb/ ²³⁸ U	ls	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	1s	²⁰⁷ Pb/ ²³⁵ U	1s	$^{206}\text{Pb}/^{238}\text{U}$	1s	CA	1s
C213-60		0.62	0.1939	0.0018	14.3701	0.3028	0.5376	0.0109	0.96	2776	15	2774	20	2773	46	2775	14
C213-62		0.23	0.2080	0.0019	15.8074	0.3311	0.5512	0.0111	0.96	2890	15	2865	20	2830	46	2889	13
C213-63		0.28	0.1912	0.0016	14.0564	0.2716	0.5331	0.0102	0.99	2753	14	2754	18	2755	43	2755	12
C213-64		1.06	0.1766	0.0015	12.2173	0.2357	0.5019	0.0096	0.99	2621	14	2621	18	2622	41	2622	13
C213-65		0.56	0.1901	0.0016	13.8991	0.2681	0.5303	0.0101	0.99	2743	14	2743	18	2743	43	2743	12
C213-66		0.61	0.1924	0.0017	14.1950	0.2745	0.5352	0.0102	0.99	2762	14	2763	18	2763	43	2763	12
C213-67		0.53	0.1934	0.0017	14.3064	0.2771	0.5366	0.0103	0.99	2771	14	2770	18	2769	43	2771	12
C213-69		0.36	0.1980	0.0017	14.9183	0.2905	0.5465	0.0105	0.98	2810	14	2810	19	2810	44	2810	12
C213-70		0.48	0.1903	0.0017	13.9307	0.2736	0.5310	0.0102	0.98	2745	14	2745	19	2746	43	2746	13
C213-71		0.31	0.2425	0.0021	20.9646	0.4085	0.6271	0.0120	0.99	3136	14	3137	19	3138	48	3138	12
C213-73		0.41	0.1899	0.0017	13.8725	0.2716	0.5300	0.0102	0.98	2741	14	2741	19	2741	43	2741	13
C213-74		0.38	0.1904	0.0017	13.9312	0.2737	0.5307	0.0102	0.98	2746	14	2745	19	2744	43	2745	13
C213-75		0.20	0.1999	0.0018	15.1461	0.2986	0.5496	0.0106	0.98	2825	14	2824	19	2823	44	2825	13
C213-76		0.40	0.1918	0.0017	14.1108	0.2766	0.5337	0.0102	0.98	2757	14	2757	19	2757	43	2757	13
C213-77		0.92	0.3040	0.0027	30.1244	0.6031	0.7188	0.0140	0.97	3491	14	3491	20	3491	53	3491	12
C213-78		0.73	0.1942	0.0017	14.4258	0.2838	0.5387	0.0104	0.98	2778	14	2778	19	2778	43	2778	13
C213-79		0.64	0.1919	0.0017	14.1298	0.2790	0.5340	0.0103	0.98	2759	14	2758	19	2758	43	2759	13
C213-80		0.54	0.1922	0.0017	14.1715	0.2796	0.5348	0.0103	0.98	2761	14	2761	19	2762	43	2762	13
C213-81		0.54	0.1935	0.0017	14.3471	0.2841	0.5378	0.0104	0.97	2772	14	2773	19	2774	44	2774	13
C213-82		0.52	0.1934	0.0017	14.3119	0.2844	0.5369	0.0104	0.97	2771	14	2771	19	2770	44	2771	13
C213-89		0.61	0.1908	0.0017	14.0020	0.2783	0.5322	0.0103	0.97	2749	14	2750	19	2751	43	2751	13
C213-90		0.85	0.2370	0.0021	20.1751	0.4036	0.6174	0.0120	0.97	3100	14	3100	19	3100	48	3100	13
C213-92		0.67	0.1905	0.0017	13.9459	0.2798	0.5309	0.0103	0.97	2747	15	2746	19	2745	43	2747	13
C213-93		0.40	0.2190	0.0019	17.6937	0.3549	0.5860	0.0114	0.97	2973	14	2973	19	2973	46	2973	13

Примечания. 206 Pbc.% – содержание обычного Pb. Rho – коэффициент корреляции ошибок отношений 207 Pb/ 235 U – 206 Pb/ 238 U. CA – значение конкордантного возраста.

циркона с возрастом 2705—2695 млн лет ([13, 17] и другие работы), отвечающим возрасту плагиомикроклиновых гранитов [13], широко распространенных в Карельской провинции. Возможно, в палеопротерозойское время эти гранитоиды не выходили на поверхность в данной части провинции.

Заключая сказанное, отметим, что одним из главных источников сноса при формировании как неоархейских (пос. Суккозеро), так и палеопротерозойских (оз. Воттомукс) полимиктовых конгломератов, служили неоархейские магматические породы средне-кислого состава (ТТГ и вулканиты) с возрастом около 2.75 млрд лет, широко развитые в Центрально-Карельском домене Фенноскандинавского щита. Поскольку неоархейские породы ТТГ-серии рассматриваются как продукты частичного плавления базитов нижней коры, то присутствие обломков этих пород в конгломератах означает, что к началу раннего протерозоя они были эксгумированы на поверхность.

Поскольку источник обломочного циркона с возрастом 2.75 млрд лет для неоархейских конгломератов Центрально-Карельского домена был доминирующим, незначительная часть материала с мезоархейским цирконом могла приноситься с территории более древнего Водлозёрского домена. Таким образом, возраст около 2.75 млрд лет может быть принят в качестве нижней возрастной границы для неоархейских конгломератов (пос. Суккозеро) Центрально-Карельского домена. Для палеопротерозойских конгломератов до-

Рис. 4. Распределение возрастов детритового циркона в матриксе архейских (обр. C2013, пос. Суккозеро) и палеопротерозойских конгломератов (обр. C2012, оз. Воттомукс).

Рис. 5. Распределение относительной вероятности возрастов для детритового циркона из архейских (обр. С2013, пос. Суккозеро) и палеопротерозойских конгломератов (обр. С2012, оз. Воттомукс).

полнительным источником терригенного материала служили сумийские базальтовые андезиты, преобладающие среди галек и обеспечившие обогащение матрикса FeO, MnO, MgO и обеднение SiO₂

и K₂O. Наличие обломков сумийских базальтов в этих конгломератах позволяет установить верхнюю возрастную границу палеопротерозойских конгломератов (оз. Воттомукс) около 2.45 млрд лет.

Отсутствие в матриксе архейских и палеопротерозойских конгломератов популяций циркона с возрастом около 2.70 и 2.45 млрд лет, отвечающих времени проявления в Карельской провинции соответственно неоархейского гранитного магматизма и палеопротерозойского базитового вулканизма, наряду с низким индексом зрелости терригенного материала, свидетельствует о накоплении конгломератов вблизи источника сноса, без значительного перемещения. Этот факт предполагает, что в пределах структур Гимольская и Воттомукс Центрально-Карельского домена существовал расчлененный рельеф с ограниченными локальными областями сноса.

БЛАГОДАРНОСТИ

Авторы благодарны Н.Б. Кузнецову за полезные замечания.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при финансовой поддержке РНФ (проект № 23-27-00263), и при использовании оборудования ЦКП "АИРИЗ" [18].

СПИСОК ЛИТЕРАТУРЫ

- Общая стратиграфическая шкала нижнего докембрия России. Объяснительная записка. (Ф.П.Митрофанов и В.З.Негруца ред.). Апатиты. 2002. 13 с.
- Хейсканен К.И., Голубев А.И., Бондарь Л.Ф. Орогенный вулканизм Карелии. Труды Ин-та геологии Кар.ФАН СССР. 1977. Вып. 36. 216 с.
- 3. *Ojakangas R.W., Marmo J.S., Heiskanen K.I.* Basin evolution of the Paleoproterozoic Karelian Supergroup of the Fennoscandian (Baltic) Shield // Sedimentary Geology. 2001. V. 141–142. P. 255–285.
- 4. Melezhik V.A., Hanski E.J. 3.3 Palaeotectonic and Palaeogeographic Evolution of Fennoscandia in the Early Palaeoproterozoic 111–178 V.A. Melezhik et al. (eds.), Reading the Archive of Earth's Oxygenation, Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia - Drilling Early Earth Project, Springer-Verlag Berlin Heidelberg 2013.
- Кожевников В.Н., Скублов С.Г., Марин Ю.Б., Медведев П.В., Сыстра Ю., Валенсиа В. Хадей-архейские детиртовые цирокны из ятулийских кварцитов и конгломератов Карельского кратона // ДАН. 2010. Т. 431. № 1. С. 85–90.
- Кожевников В.Н., Скублов С.Г. Детритовые цирконы из архейских кварцитов Маткалахтинского зеленокаменного пояса. Карельский кратон // ДАН. 2010. Т. 430. № 5. С. 681–685.
- Бережная Н.Г., Мыскова Т.А., Арестова Н.А., Матуков Д.И., Пресняков С.Л., Антонов А.В., Сергеев С.А., Шулешко И.К. Возраст источника сноса нижнепротерозойских осадков Кумсинской структуры Балтийского щита (U–Pb, SHRIMP II) // ДАН. 2005. Т. 400. № 2. С. 214–218.

- Лобач-Жученко С.Б., Чекулаев В.П., Арестова Н.А., Левский Л.К., Коваленко А.В. Архейские террейны Карелии: их геологическое и изотопно-геохимическое обоснование // Геотектоника. 2000. № 6. С. 26–42.
- 9. Чекулаев В.П., Арестова Н.А., Егорова Ю.С., Кучеровский Г.А. Изменение условий формирования коры Карельской провинции Балтийского щита при переходе от мезо- к неоархею: результаты геохимических исследований // Стратиграфия. Геол. корреляция. 2018. Т. 26. № 3. С. 3–23.
- Великославинский С.Д., Глебовицкий В.А., Крылов Д.П. Разделение силикатных осадочных и магматических пород по содержанию петрогенных элементов с помощью дискриминационного анализа // ДАН. 2013. Т. 453. № 3. С. 310–313.
- 11. *Nesbitt H.W., Young G.M.* Early Proterozoic climates and plate motions inferred from major element chemistry of lutites // Nature. 1982. V. 299. P. 715–717.
- 12. Чекулаев В.П., Арестова Н.А. Архейские метатерригенные породы Карельской провинции: геологическое положение, геохимия, источники сноса// Стратиграфия. Геол. корреляция. 2020. № 4. С. 3–25.
- Чекулаев В.П., Арестова Н.А., Егорова Ю.С. Архейская тонали-трондьемит-гранодиоритовая ассоциация Карельской провинции: геология, геохимия, этапы и условия образования // Стратиграфия. Геол. Корреляция. 2022. № 4. С. 3–21.
- 14. Ковач В.П., Котов А.Б., Гладкочуб Д.П. и др. Возраст и источники метапесчаников чинейской подсерии удоканской серии (Алданский щит): результаты геохронологических (LA-ICP-MS) и изотопных U–Th–Pb-и Nd-исследований // ДАН. 2018. Т. 482. № 2. С. 177–180.
- Vaasjoki M., Sorjonen-Ward P., Lavikainen S. U-Pb age determinations and sulfide Pb-Pb characteristics from the late Archaean Hattu schist belt, Ilomantsi, eastern Finland // Geol. Surv. Finland. Spec. Pap. 1993. V. 17. P. 103–131.
- Huhma H., Manttari I., Peltonen P., Kontinen A., Halkoaho T., Hanski E., Hokkanen T., Holtto P., Juopperi H., Konnunaho J., Layahe Y., Luukkonen E., Pietikainen K., Pulkkinen A., Sorjonen-Ward P., Vaasjoki M., Whitehouse M. The age of the Archaean greenstone belt of Finland // Geol. Survey of Finland. Spec. Paper. 2012. V. 12. P. 73–174.
- 17. *Kapyaho A., Manttari I., Huhma H.* Growth of Archaean crust in the Kuhmo district, eastern Finland: U–Pb and Sm–Nd isotope constraints on plutonic rocks // Precambrian Res. 2006. V. 146. P. 95–119.
- Кузнецов А.Б., Зайцева Т. С., Сальникова Е.Б. Центр коллективного пользования "АИРИЗ" (ИГГД РАН, Санкт-Петербург): научное оборудование, основные направления исследований и результаты // Геодинамика и тектонофизика. 2022. Т. 13. № 2. 0584.

https://doi.org/10.5800/GT-2022-13-2-0584

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 509 № 2 2023

U-Pb AGE OF DETRITAL ZIRCON IN THE CEMENT OF EARLY PRECAMBRIAN POLYMICTIC CONGLOMERATES OF CENTRAL KARELIAN DOMEN, KARELIAN PROVINCE, FENNOSCANDIAN SHIELD

G. A. Kucherovskiy^{*a*}, V. P. Chekulaev^{*a*}, J. S. Egorova^{*a*}, Corresponding Member of the RAS A. B. Kuznetsov^{*a*,[#]}, N. A. Arestova^{*a*}, T. S. Zaitseva^{*a*}, E. V. Adamskaya^{*a*}, and Yu. V. Plotkina^{*a*}

^a Institute of Precambrian geology and geochronology, Russian Academy of Sciences, Saint-Petersburg, Russian Federation [#]E-mail: antonbor9@mail.ru

U-Th-Pb LA-ICP-MS was used for dating detrital zircons extracted from the cement of the Neoarchean and Palaeoproterozoic polymictic conglomerates of the Karelian province, Fennoscandian shield. For the first time obtained a chemical composition of terrigenic and volcanogenic rocks of the gimolskava formation. Obtained data showed that the detrital zircons from the cement of conglomerates of different ages yield similar results of about 2750 Ma. In the Neoarchean conglomerates of the Sukkosero area dominate clasts of the gneissic tonalite and plagioporphyry. They are identical in chemical composition with the Neoarchean (2.78–2.73 Ga) TTG, granodiorite, and metadacite of the Central-Karelian domain. The feature of these rocks is increased content of Ba (900–1200 ppm), Sr (600–700 ppm), and ratios Sr/Y = 34-90, (La/Yb)n == 17-30. The chemical composition of the cement (the values of CIA < 55 and the negative values of the function DF(x) is similar to the composition of clasts, which means cement is composed of finer clasts of the same rocks. The Paleoproterozoic conglomerates of the Vottomuks area contain zircon from felsic rocks of the Neoarchean basement/ The chemical composition of the cement of the Paleoproterozoic conglomerates and the predominance of basaltic andesites of sumii is evidence of the post-sumii (≤ 2.45 Ga) age of these rocks. The absence of the Paleoproterozoic zircon in cement can be the result of the absence of it in the Paleoproterozoic source rocks. The age of Neoarchean conglomerates from the gimolskava formation is less than 2.75 Ga.

Keywords: U–Pb age, detrital zircons, polymictic conglomerates, Neoarchean, Paleoproterozoic, Karelian province