УДК 551.594

ГЕОФИЗИЧЕСКИЕ ЭФФЕКТЫ АКТИВНОЙ СТАДИИ ИЗВЕРЖЕНИЯ ВУЛКАНА СТРОМБОЛИ 09.10.2022 г.

© 2023 г. А. А. Спивак^{1,*}, Д. Н. Локтев^{1,**}, Ю. С. Рыбнов^{1,***}, С. А. Рябова^{1,****}, А. В. Тихонова^{1,****}

Представлено академиком В.В. Адушкиным 03.12.2022 г. Поступило 03.12.2022 г. После доработки 10.12.2022 г. Принято к публикации 15.12.2022 г.

С использованием результатов инструментальных наблюдений, выполненных в приземной атмосфере, анализируется отклик микробарического фона, вариаций магнитного и электрического полей Земли на параксизмальную активность вулкана Стромболи (09.10.2022 г., Италия). Показано, что активная стадия вулканического извержения сопровождалась генерацией акустического сигнала и выраженными вариациями геомагнитного и атмосферного электрического поля на значительных расстояниях как в период активности вулкана, так и в период прихода в точку наблюдений инфразвуковой волны. Также отмечено, что вулканическое извержение вызвало отклик в ионосфере в виде изменения критической частоты F₂-слоя.

Ключевые слова: вулканическое извержение, микробарический фон, вариации, магнитное поле, электрическое поле, критическая частота F₂-слоя **DOI:** 10.31857/S2686739722602757, **EDN:** NYZVFG

Извержения вулканов сопровождаются многочисленными геофизическими эффектами, которые наиболее ярко проявляются на эксплозивной стадии вулканической активности. Наряду с сильными локальными возмушениями атмосферы в результате резкого выброса смеси газов и пирокластического материала, что приводит, в частности, к образованию атмосферных волн [1], наблюдаются также магнитные и атмосферноэлектрические эффекты [2-6]. Атмосферные волны и электризация эруптивного облака определяют сложный характер воздействия вулканических извержений на среду. Изучение вариаций физических полей, вызванных вулканами, вызывает особый интерес как с точки зрения расширения представлений и понимания механизмов явлений и процессов, сопровождающих вулканические извержения, так и с точки зрения оценки и возможностей прогнозирования их экологических последствий.

¹ Институт динамики геосфер имени академика

М.А. Садовского Российской академии наук, Москва, Россия

****E-mail: ryabovasa@mail.ru

В настоящем сообщении рассматриваются геофизические эффекты, вызванные активностью вулкана Стромболи 09.10.2022 г. Вулкан высотой ~900 м над уровнем моря расположен в Тирренском море (ГЕО: 38.79° с.ш.; 15.21° в.д.) примерно в 75 км к северу от о. Сицилия (рис. 1). Вулкан периодически активен. Последнее сильное извержение в виде чередования двух эксплозий и мощной продувки между ними произошло в июле-августе 2019 г. [2, 3].

Максимум эксплозивной активности вулкана Стромболи 09.10.2022 г. наблюдался в ~ 06:15 UTC. В ~ 07:22 UTC сформировался пирокластический поток, достигший береговой линии и растекшийся по морю на несколько сотен метров. За пирокластическим потоком следовал мощный лавовый поток, активность которого спала к ~18:00 UTC.

В качестве исходных данных использовались результаты инструментальных наблюдений за микробарическими вариациями и геомагнитным полем в обсерватории "Михнево" ИДГ РАН (МНV; ГЕО: 54.94° с.ш.; 37.73° в.д.) [7], а также микробарическими вариациями и вариациями электрического поля в Центре геофизического мониторинга г. Москвы (ЦГМ; ГЕО: 55.71° с.ш.; 37.57° в.д.) [8].

Микробарические вариации в МНV измерялись с помощью микробарометра МБ-03, который обеспечивал устойчивую регистрацию аку-

^{*}E-mail: aaspivak100@gmail.com

^{**}E-mail: dloctev@idg.ras.ru

^{***}E-mail: rybnov.y@mail.ru

^{*****}E-mail: tikhonova@idg.ras.ru

Рис. 1. Схема расположения обсерваторий европейской части сети ИНТЕРМАГНЕТ; А – вулкан Стромболи.

стических сигналов амплитудой от 0.01 до 200 Па в диапазоне частот 0.0003–10 Гц. Поиск акустических сигналов, вызванных извержением вулкана, выполнялся на основе анализа исходной записи в диапазоне частот 0.005–1 Гц с учетом расстояния до источника сигнала (~2460 км) и вероятной скорости его распространения в стратосферном волноводе (280–310 м/с) [9].

EE O

Кол	Принад-	11	D KM	B*,	
КОД	лежность	Широта	Долгота	л, км	нТл
DUR	Италия	41.39°N	14.28°E	~299	~3.4
LON	Хорватия	45.41°N	16.66°E	~744	~3.1
PEG	Греция	38.1°N	23.9°E	~759	~3.9
GCK	Сербия	44.63°N	20.77°E	~790	~3.7
PAG	Болгария	42.50°N	24.18°E	~863	~4.4
THY	Венгрия	46.90°N	17.89°E	~926	~3.5
EBR	Испания	40.96°N	0.33°E	~1291	~3.1
LVV	Украина	49.9°N	23.75°E	~1408	~3.4
DOU	Бельгия	50.1°N	4.6°E	~1510	~3.5
BEL	Польша	51.84°N	20.79°E	~1514	~3.9
SFS	Испания	36.67°N	5.95°W	~1872	~4.2
MHV ^{*)}	Россия	54.94°N	37.73°E	~2460	~4.5
ARS	Россия	56.43°N	58.57°E	~3706	~3.5
NVS	Россия	54.85°N	83.23°E	~5242	~4.5
IRT	Россия	52.27°N	104.45°E	~6659	~4.8

Таблица 1. Пункты геомагнитных наблюдений

Примечание. * магнитная обсерватория MHV не входит в сеть ИНТЕРМАГНЕТ.

Компоненты индукции магнитного поля B_x , B_y и B_z^{-1} регистрировались феррозондовым цифровым магнитометром LEMI-018, который обеспечивал уверенную регистрацию в диапазоне ±68000 нТл с разрешением 10 пТл (частота выборки 1 с⁻¹). При анализе магнитного эффекта, вызванного извержением вулкана, привлекались также данные магнитных измерений, выполненных в обсерваториях сети ИНТЕРМАГНЕТ (табл. 1), расположенных на разных расстояниях от вулкана *R*.

При описании электрического эффекта вулканического извержения использовались результаты регистрации вертикальной компоненты атмосферного электрического поля *E* в ЦГМ. Измерения напряженности электрического поля осуществлялись с помощью электростатического флюксметра ИНЭП [10] в диапазоне частот 0-20 Гц с частотой выборки 1 с⁻¹. Для анализа *E* использовались ряды цифровых записей, сформированные с дискретностью 5 с.

Метеорологические параметры в МНV и ЦГМ контролировались с помощью автоматизированных цифровых метеостанций Davis Vantage Pro 2.

Следует отметить, что период выполнения инструментальных наблюдений характеризовался достаточно спокойной магнитной обстановкой (табл. 2) и отсутствием значимых локальных возмущений атмосферы и атмосферного электрического поля, что значительно упростило изучение

¹ Направление осей координат: *x* – С-Ю, *y* – В-З, *z* – вертикально вниз.

Дата 09.10.2022	Время (UTC)								
	0-3	3-6	6–9	9-12	12-15	15-18	18-21	21-24	
K	3	3	2	3	4	4	4	3	
Кр	4	3	3	3	3	4	3	3	

Таблица 2. Станционный *К* (по данным MHV) и планетарный *Кр* индексы магнитной активности в период извержения вулкана Стромболи 09.10.2022 г.

геофизических эффектов, вызванных вулканическим извержением.

При оценках влияния вулканического извержения на ионосферу привлекались свободные к доступу данные по критической частоте F_2 -слоя ионосферы f_0F_2 , полученные на станции наземного вертикального зондирования ионосферы "Рим", расположенной на расстоянии ~ 440 км от вулкана (ГЕО: 41.8° с.ш.; 12.5° в.д.) [11].

Результаты наблюдений показывают, что активная (эксплозивная) стадия вулканического извержения сопровождалась генерацией акустического сигнала, вид которого по данным обсерватории MHV, расположенной на расстоянии ~2460 км от вулкана, приведен на рис. 2. Сигнал зарегистрирован в MHV в ~08:45 UTC (скорость распространения ~290 м/с). Общая форма вызванного сигнала представляет собой хорошо выраженный цуг отдельных сигналов, что соответствует данным бюллетеня № 41/2022 от 11.10.2022 г. Национального института геофизики и вулканологии Италии (INGV), свидетельствующим о неоднократном проявлении вулканических эксплозий в течение небольшого промежутка времени (бюллетень [12]). Максимальная амплитуда акустического сигнала в МНУ составила ~6 Па.

Анализ данных магнитных измерений свидетельствует о том, что активная стадия вулканического извержения сопровождалась вариациями магнитного поля Земли, причем на значительных расстояниях от вулкана. В качестве примера на рис. 3 приведены вариации B_x^* относительно тренда горизонтальной, наиболее чувствительной к внешним возмущениям, компоненты магнитного поля В_x по данным некоторых магнитных обсерваторий². Из рис. 3 следует, что в период эксплозивной стадии извержения Стромболи 09.10.2022 г. примерно в 06:40 - 07:40 UTC наблюдались хорошо выраженные изменения в вариациях геомагнитного поля в виде отрицательной бухты, осложненной знакопеременными вариациями B_x^* . Характерно, что максимальная амплитуда вызванных вариаций В* находится в достаточно узком диапазоне 3.1–4.8 нТл вне зависимости от расстояния *R* (табл. 1).

Данные настоящей работы свидетельствуют о том, что аномальные геомагнитные вариации наблюдаются не только в период максимальной активности вулкана, но также в период прихода вызванного вулканом акустического сигнала в точку регистрации. В качестве примера на рис. 4 приведены геомагнитные вариации в период прихода акустического сигнала в MHV. Из рис. 4 следует, что акустический сигнал вызвал знакопеременные вариации вертикальной B_z^* и горизонтальной B_x^* компонент магнитного поля относительно тренда амплитудой соответственно ~2.5 и ~4.5 нТл.

Вулканическая активность 09.10.2022 г. вызвала изменения в ходе зависимости напряженности электрического поля от времени t. На рис. 5 приведены результаты измерений вертикальной компоненты электрического поля E в MHV – обсерватории, расположенной на значительном расстоянии от Стромболи (табл. 1). Данные рис. 5 свидетельствуют о том, что в период примерно с 06:43 до 07:15 UTC было зарегистрировано возникновение хорошо выраженных аномальных вариаций E(t) в виде знакопеременной пульсации с периодом ~20 мин и максимальной амплитудой ~30 В/м.

Ионосферный эффект извержения в виде вариаций критической частоты f_0F_2 , зарегистрированных на станции наземного зондирования "Рим" с помощью ионозонда DPS-4, представлен на рис. 6. Одновременно на том же рисунке приведена разность $\Delta f_0 F_2$ между значениями $f_0 F_2$ за 09.10.2022 г. и медианными значениями за октябрь 2022 г. Из рис. 6 следует, что активность вулкана вызвала ярко выраженные знакопеременные вариации критической частоты $f_0 F_2$ в период с ~06:15 до ~09:00 UTC (период ~45 мин, максимальная амплитуда ~1 МГц). Также заметные увеличения критической частоты F2-слоя ионосферы по сравнению с фоновыми наблюдались с 09:10 до ~17:00 UTC в виде положительной бухты.

Полученные данные свидетельствуют о том, что активная стадия извержений вулкана Стромболи 09.10.2022 г. сопровождалась генерацией акустического сигнала, параметры которого поз-

² Зафиксированные вариации отличаются по длительности и амплитуде от известных магнитных пульсаций и не наблюдаются до и после рассматриваемого вулканического извержения в течение трех суток.

волили зарегистрировать его на значительном расстоянии от источника, а также выраженными геомагнитными вариациями и вариациями электрического поля. При этом следует особо отметить, что вызванные вариации магнитного поля зарегистрированы на всех магнитных обсерваториях примерно в один и тот же период времени, что может свидетельствовать о глобальном характере возмущений. Характерно, что максимальные амплитуды вызванных вариаций магнитного поля не сильно изменяются в достаточно широком диапазоне расстояний: от ~300 до ~6600 км.

Рис. 3. Вариации горизонтальной компоненты геомагнитного поля по данным MHV и некоторых обсерваторий ИНТЕРМАГНЕТ в период максимальной активности извержения вулкана Стромболи 09.10.2022 г. (вертикальная штриховая линия – время максимальной эксплозивной активности вулкана).

Рис. 4. Вариации горизонтальной и вертикальной компонент геомагнитного поля в MHV в период прихода акустического сигнала, вызванного извержением вулкана Стромболи 09.10.2022 г. (вертикальная штриховая линия — время прихода акустического сигнала в MHV).

Отдельный интерес представляет ионосферный эффект вулканического извержения. Этот вопрос требует проведения дополнительных, более детальных исследований, не только в части интерпретации обнаруженного эффекта, но также поиска наиболее вероятного механизма возмущающего влияния эксплозий и интенсивного лавового потока на физические характеристики ионосферы.

По мнению авторов, полученные данные окажутся полезными исследователям при разработке теоретических и расчетных моделей воздействия вулканов на геофизическую среду, выступая в качестве необходимой основы для их верификации.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследования выполнены в рамках Государственного задания № 122032900185-5 "Проявление процессов природного и техногенного происхождения в геофизических полях".

СПИСОК ЛИТЕРАТУРЫ

- Адушкин В.В., Гостинцев Ю.А., Фирстов П.П. О природе воздушных волн при сильных эксплозивных извержениях // Вулканология и сейсмология. 1984. № 5. С. 3–11.
- Спивак А.А., Рыбнов Ю.С., Рябова С.А., Соловьев С.П., Харламов В.А. Акустический, магнитный и электрические эффекты извержения вулкана Стромболи (Италия) в июле-августе 2019 г. // Физика Земли. 2020. № 5. С. 117–130.

Рис. 5. Вариации вертикальной компоненты напряженности электрического поля в MHV в период максимальной активности вулкана Стромболи 09.10.2022 г.

Рис. 6. Вариации критической частоты F_2 -слоя ионосферы f_0F_2 за 09.10.2022 г. и разности Δf_0F_2 между значениями f_0F_2 за 09.10.2022 г. и медианными значениями за октябрь 2022 г.

- 3. Спивак А.А., Рябова С.А. Магнитный и электрические эффекты эксплозивной стадии извержения вулкана Стромболи (03.07.2019 г., Италия) // Доклады РАН. Науки о Земле. 2020. Т. 493. № 1. С. 54–57.
- 4. Фирстов П.П., Акбашев Р.Р., Холзворт Р., Чернева Н.В., Шевцов Б.М. Атмосферно-электрические эффекты во время эксплозии вулкана Шивелуч 16 ноября 2014 г. // Известия РАН. Физика атмосферы и океана. 2017. Т. 53. № 1. С. 29–37.
- 5. James M.R., Lane S.J. Gilbert J.S. Volcanic plume electrification: experimental investigation of a fracturecharging mechanism // Journal of Geophysical Research: Solid Earth. 2000. № 105. B7. P. 16641–16649.
- Mather T.A., Harrison R.G. Electrification of volcanic plumes // Surveys in Geophysics. 2006. V. 27. № 4. P. 387–432.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 509 № 2 2023

- Адушкин В.В., Овчинников В.М., Санина И.А., Ризниченко О.Ю. "Михнево": от сейсмостанции № 1 до современной геофизической обсерватории // Физика Земли. 2016. № 1. С. 108–120.
- 8. Спивак А.А., Локтев Д.Н., Рыбнов Ю.С. и др. Геофизические поля мегаполиса // Геофизические процессы и биосфера. 2016. Т. 15. № 2. С. 39–54.
- 9. Куличков С.Н., Авилов К.В., Буш Г.А., Попов О.Е. и др. Об аномально быстрых инфразвуковых при-

ходах на больших расстояниях от наземных взрывов // Известия РАН. Физика атмосферы и океана. 2004. Т. 40. № 1. С. 3–12.

- Адушкин В.В., Соловьев С.П., Спивак А.А. Электрические поля техногенных и природных процессов. М.: ГЕОС, 2018. 464 с.
- 11. http://ionos.ingv.it/spaceweather/start.htm.
- 12. https://www.ct.ingv.it

GEOPHYSICAL EFFECTS OF THE ACTIVE STAGE OF THE STROMBOLI VOLCANO ERUPTION ON OCTOBER 9, 2022

A. A. Spivak^{a,#}, D. N. Loktev^{a,##}, Yu. S. Rybnov^{a,###}, S. A. Riabova^{a,####}, and A. V. Tikhonova^{a,#####}

^a Sadovsky Institute of Geosphere Dynamics of the Russian Academy of Sciences, Moscow, Russian Federation

#E-mail: aaspivak 100@gmail.com ##E-mail: dloctev@idg.ras.ru ###E-mail: rybnov.y@mail.ru #####E-mail: ryabovasa@mail.ru #####E-mail: tikhonova@idg.ras.ru Presented by Academician of the RAS V.V. Adushkin December 3, 2022

Using the results of instrumental observations carried out in the surface atmosphere, the response of the microbaric background, variations of the Earth's magnetic and electric fields to the paroxysmal activity of the Stromboli volcano (October 9, 2022, Italy) is analyzed. It is shown that the active stage of a volcanic eruption was accompanied by the generation of an acoustic signal and pronounced variations in the geomagnetic and atmospheric electric fields at considerable distances both during the period of volcano activity and during the arrival of an infrasonic wave at the observation point. It was also noted that the volcanic eruption caused a response in the ionosphere in the form of a change in the critical frequency of the F_2 layer.

Keywords: volcanic eruption, microbaric background, variations, magnetic field, electric field, critical frequency of the F_2 layer