———— МЕТАЛЛОГЕНИЯ ———

УДК [552.11:553.45] (571.651)

ЩЕЛОЧНЫЕ РИОЛИТЫ ПЕЧАЛЬНИНСКОГО РУДНОГО ПОЛЯ (СЕВЕРО-ВОСТОК РОССИИ) – ПОТЕНЦИАЛЬНЫЙ БОЛЬШЕОБЪЕМНЫЙ ИСТОЧНИК ТЯЖЕЛЫХ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

© 2023 г. Член-корреспондент РАН А. В. Волков^{1,*}, А. Л. Галямов¹, К. Ю. Мурашов¹

Поступило 13.01.2023 г. После доработки 18.01.2023 г. Принято к публикации 25.01.2023 г.

Трахириолиты и комендиты Печальнинского рудного поля содержат высокие потенциально-промышленные концентрации примесных элементов. Коэффициенты обогащения по сравнению с верхней корой варьируют от нескольких (Zn, Ga, LREE) до десятков раз (Be, Y, Zr, Nb, Rb и HREE). Распределение REE указывает на равномерное обогащение тяжелыми относительно легких REE, с соотношением (La/Yb)N в диапазоне 0.16–1.01. Все образцы демонстрируют сильно отрицательные аномалии Eu, со значениями Eu/Eu* – 0.13. Сравнительный анализ с известными в мире аналогичными объектами в щелочных вулканитах показал, что Печальнинское рудное поле может стать нетрадиционным большеобъемным источником HREE.

Ключевые слова: Северо-Восток России, Печальнинское рудное поле, трахириолит, комендит, редкие и редкоземельные металлы

DOI: 10.31857/S2686739723600054, EDN: FGKXQM

Поскольку в XXI веке редкоземельные элементы (REE) стали широко использоваться в высокотехнологичной промышленности для производства компьютеров, мобильных телефонов, магнитов, лазеров, плоских телевизоров, ветровых турбин, панелей солнечных электростанций, электромобилей и др., мировой спрос на них значительно увеличился [1]. Наибольшую озабоченность в настоящее время вызывают поставки тяжелых редкоземельных элементов (HREE), которые получают главным образом из южнокитайских месторождений ионно-адсорбционных глин, возможности дальнейшего развития и существенного увеличения добычи которых ограничены [2]. Поэтому в мире проводятся активные поиски альтернативных источников HREE.

В Печальнинском рудном поле, расположенном в Хурчан-Оротуканской металлогенической зоне, в центральной части Магаданской области (рис. 1), в 1999 г. были выявлены проявления редких металлов в щелочных вулканитах [5, 6]. В результате исследования образцов из этих пород в аналитическом центре коллективного пользования ИГЕМ РАН методом ИСП-МС были установлены потенциально-промышленные содержания ΣREE + Y.

В современном тектоническом плане Хурчан-Оротуканская зона – это зона глубинного субмеридионального разлома, пересекающая линейные складчатые структуры Инъяли-Дебинского синклинория и брахиформные структуры Балыгычано-Буяндинского антиклинального поднятия на протяжении более 400 км и шириной 30– 50 км [7].

В северной части зоны выходят на поверхность гранитоиды Верхне-Оротуканского массива (см. рис. 1) позднемелового возраста (80 млн лет, по K—Ar-данным [5], а также Rb—Sr-изохронного датирования [3]). Массив представляет собой в плане вытянутое в субмеридиональном направлении (24.8 км) тело овальной формы. В надинтрузивной зоне на периферии массива располагаются дочерние вулкано-купольные структуры (см. рис. 1). Вулканические породы субгоризонтально

¹Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук, Москва, Россия

^{*}E-mail: tma2105@mail.ru

Рис. 1. Геологическая карта северной части Хурчан-Оротуканской металлогенической зоны с элементами рельефа по [3, 4] с изменениями: *1* – четвертичные аллювиальные отложения; *2* – позднемеловые щелочные вулканиты; *3* – ранне-среднеюрские чероносланцевые толщи, *4*–*6* – терригенные толщи: *4* – позднетриасовые, *5* – среднетриасовые, *6* – раннетриасовые; *7* – позднемеловые граниты, гранит-порфиры; *8* – трахириолиты, комендиты, *9* – трахибазальты; *10* – песчаники; *11*– алевролиты; *12* – аргиллиты; *13* – ограничение вулканоструктур; *14*–*15* – рудопроявления: *13* – Аu–Аg-эпитермальные, *14* – редких металлов и REE; *15* – рамка карты, *16* – автодорога федерального значения "Колыма" и ее ответвление "Стрелка-Сеймчан". ИДС – Инъяли-Дебинский синклинорий; ББП – Буяндино-Балыгычанское антиклинальное поднятие.

покрывают смятые в складки и ороговикованные терригенные отложения триаса и юры.

В основании эффузивной толщи залегает пачка полимиктовых конгломератов и конглобрекчий с линзами и прослоями разнозернистых песчаников и гравелитов. Выше располагаются покровы миндалекаменных трахибазальтов, трахиандезибазальтов, местами трахидолеритов. Завершается разрез покровами трахидолеритов. Завершается разрез покровами трахириолитов и комендитов, в которых была выявлена редкометальная минерализация [5]. Синхронно с покровными образованиями сформировались субвулканические дайки трахибазальтов, трахидолеритов, трахиандезитобазальтов, монцодиорит-порфиритов, латитов, а также дайки, силлы, штоки и экструзии трахириолитов, комендитов, щелочных гранит-порфиров и лейкогранит-порфиров, дайкообразные тела эруптивных брекчий. Возраст вулканического комплекса установлен как позднемеловой на основании пересечений позднемеловых лейкогранитов Верхне-Оротуканского массива субвулканическими дайками трахидолеритов, комендитов и щелочных гранит-порфиров [5].

По геохимическим характеристикам — высокой калиевой щелочности, высоким концентрациям Nb, Ta, Zr, Hf, REE, при очень низких содержаниях Sr вулканиты Хурчан-Оротуканской зоны отвечают типичным кислым членам бимодального внутриплитного комплекса и близки по составу палеогеновым щелочным эффузивным породам Амгуэмо-Канчаланского вулканического поля Восточной Чукотки [5, 8].

В составе трахириолитов и комендитов Печальнинского рудного поля преобладает SiO₂ (74.61–81.21%), присутствуют заметные концентрации Al₂O₃ (8.89–10.37), K₂O (5.0–5.8), Na₂O (1.63–2.91), Fe₂O₃ (2.15–7.49), а также TiO₂ (0.26); характерны очень низкие значения CaO, MgO, P₂O₅ и MnO (<0.1) (табл. 1). На классификационной диаграмме эти породы попадают в область риолита, а другие вмещающие породы, распространенные на рудном поле, — в области трахибазальта и трахиандезита (рис. 2 а).

Результаты анализа микроэлементного состава и REE представлены в табл. 1 и на рис. 2 в, где они нормированы по отношению к средним значениям для верхней коры [13]. Спектры РЗЭ, нормированные по отношению к средним значениям для хондритов [12], показаны на рис. 2 в.

Редкометальные трахириолиты и комендиты Печальнинского рудного поля обогащены Be, Y, Zr, Nb, Rb, Zn, Ga и REE (рис. 2 в) по сравнению со средними значениями в верхней коре [11]. Коэффициенты обогащения варьируют от нескольких раз (Zn, Ga, LREE) до десятков (Be, Y, Zr, Nb, Rb и HREE), что свидетельствует об их синхронном участии в рудообразовании.

Все образцы трахириолитов и комендитов содержат чрезвычайно высокие концентрации ряда микроэлементов (см. табл. 1), таких как Zr (от 3732 до 5015 г/т), Nb (от 241 до 356 г/т), Rb (от 630 до 1097 г/т), Y (от 170 до 1084 г/т), а также высокие содержания Σ HREE (289–295 г/т) – в районе потенциально-промышленного качества руды [2].

В образцах трахириолитов и комендитов содержание $\Sigma REE - 602-859$ г/т (см. табл. 1). Закономерности распределения REE в этих породах указывают на относительно равномерное обогащение HREE относительно LREE (см. рис. 2 б), с соотношением (La/Yb)N в диапазоне 0.16–1.01 (см. табл. 1). Все образцы демонстрируют сильно отрицательные аномалии Eu, со значениями Eu/Eu* – 0.13 (см. табл. 1).

Особенности геологического строения и вещественный состав позволяют отнести рудопроявления Печальнинского рудного поля к большеобъемному типу месторождений, связанных с щелочными лавами, туфами и экструзиями [2]. Ближайшие аналоги: REE месторождение Раунд Топ Пик в риолитах (Техас, США) [9, 14] и месторождение ниобиевых туфов Брокман (Австралия) [10]. Эти месторождения — близповерхностная разновидность известных редкометальных месторождений, связанных с рудообразующей системой субщелочных и щелочных литий-фтористых гранитов [2]. Подобные объекты имеют сложный

Таблица 1. Элементный состав (г/т) и некоторые другие параметры представительных проб трахириолитов и комендитов Печальнинского рудного поля

Элементы	Трахириолит	Комендит	Трахириолит
Be	23.48	17.47	22.64
Zn	251.96	130.58	245.88
Ga	42.49	39.91	38.60
Nb	241	356	330
Rb		1097	630
Zr	3732	5015	4600
Y	170	1804	712
La	18.98	11.45	71.72
Ce	127.04	111.29	243.45
Pr	19.64	16.40	29.67
Nd	131.96	115.91	158.31
Sm	58.97	57.18	62.02
Eu	1.39	1.30	1.36
Gd	71.29	67.00	70.76
Tb	12.40	11.78	12.11
Dy	82.24	79.23	80.05
Но	17.23	16.72	16.80
Er	50.90	50.34	49.98
Tm	7.50	7.73	7.63
Yb	47.46	49.41	48.41
Lu	6.77	7.13	6.98
ΣREE	653.77	602.87	859.25
ΣLREE	357.98	313.53	566.53
ΣHREE	295.79	289.34	292.72
ΣLREE/ΣHREE	1.21	1.08	1.94
LaN/YbN	0.27	0.16	1.01
Eu/Eu*	0.13	0.13	0.13
Ce/Ce*	1.11	1.13	1.16

Метод плазменной масс-спектрометрии с индуктивно-связанной плазмой (ICP-MS), аналитический центр коллективного пользования ИГЕМ РАН (аналитик Я.В. Бычкова).

химический состав и всегда аномально обогащены многими литофильными редкими металлами (Be (Li), Ga, Rb, Zr (Hf), Nb (Ta), Sn, REE+Y, U, Th). Кроме того, они постоянно сильно обогащены фтором, играющим важнейшую роль в образовании позднемагматической минерализации и в постмагматических гидротермальных процессах, приводящих к ее перераспределению [2]. Обогащенные фтором магматические породы об-

Рис. 2. Геохимические особенности вулканических пород Печальнинского рудного поля. а – классификационная диаграмма вулканитов Печальнинского рудного поля и вмещающих пород эталонных месторождений для сравнительного анализа: I – рудовмещающие вулканиты Печальнинского рудного поля [5]; 2 – риолиты редкометального месторождения Раунд Топ Пик (Texac, CШA) [9]; вулканические породы редкометального месторождения Брокман (Австралия) [10]; поле пород трахитового комплекса Тяньбао (Южный Циньдинь, КНР), обогащенные редкими металлами [11]. б – распределение РЗЭ, нормированное на хондрит [12]: I–3 – Печальнинское рудное поле (табл. 1): I, 3 – трахириолиты; 2 – комендит; 4 – руда месторождения Раунд Топ Пик (Texac, CШA) [9]; руда месторождения Брокман (Австралия) [10]; в – распределение микроэлементов, нормированное на средние значения для верхней коры [13] в трахириолите и комендите Печальнинского рудного поля.

разовались во внутриплитной геодинамической обстановке [2].

По химическому составу трахириолиты и комендиты Печальнинского рудного поля, наиболее близки (см. рис. 2 б) к высококремнистым риолитам месторождения Раунд Топ Пик (Техас, США), наиболее важном из потенциально перспективных REE месторождений в мире [2]. Раунд Топ Пик – один из пяти риолитовых лакколитов Сьерра-Бланка в районе Транс-Пекос Техаса и единственное разведанное месторождение, содержащее REE в риолитах [9]. Значительная часть REE-минерализации, по-видимому, образовалась в результате высокотемпературной активности богатого летучими соединениями пара на наиболее поздней стадии кристаллизации, что вызвало частичное растворение силикатных минералов в пределах лаколита и образование обильной пористости, которую заполнили фториды REE [15].

В связи с глобальным редкоземельным кризисом подобные месторождения в риолитах рассматриваются в мире как перспективный потенциальный источник HREE и иттрия [2]. Это связано с благоприятными факторами: высокой долей дефицитных металлов и достаточно легкообогатимым минеральным (в основном фториды, фторкарбонаты и оксигидроксиды) составом REE. Кроме того, большеобъемный характер риолитов в сочетании с тем, что они выходят на поверхность, делает их идеально подходящими для более экономичной добычи открытым способом, особенно учитывая возможность извлечения редких металлов и REE кучным выщелачиванием. Например, извлечение последних из руд месторождения Раунд Топ Пик достигает 70% [2]. Поэтому, несмотря на невысокие (0.07–0.3%) концентрации REE и тонкодисперсный характер минерализации, подобные объекты могут представлять интерес для промышленного освоения [2]. Риолиты, обогащенные REE, можно рассматривать как потенциальные аналоги крупнотоннажных Си-порфировых месторождений.

Все это, также, относится и к рудопроявлениям Печальнинского рудного поля. Их руды по среднему содержанию REE занимают промежуточное положение между рудами Раунд Топ Пик и Брокмана (см. рис. 2 б). Близкую форму имеют и REE-спектры руд этих объектов. Для них типичны небольшие Се-максимумы, глубокие Еuминимумы и обогащение тяжелыми REE относительно легких.

Таким образом, сравнительный анализ с известными в мире аналогичными объектами в щелочных вулканитах показал, что Печальнинское рудное поле может стать нетрадиционным большеобъемным источником HREE. Щелочные вулканиты Печальнинского рудного поля, в частности, и Верхнеортуканского рудного района, в целом, требуют дальнейшего изучения и потенциально интересны для развития геологоразведочных работ. Благоприятный фактор, стимулирующий это развитие, — близость к Колымской трассе и Среднеканской ГЭС.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при финансовой поддержке темы Госзадания ИГЕМ РАН (№ госрегистрации 121041500227-9).

СПИСОК ЛИТЕРАТУРЫ

- 1. Бортников Н.С., Волков А.В., Галямов А.Л., Викентьев И.В., Лаломов А.В., Мурашов К.Ю. Фундаментальные проблемы развития минерально-сырьевой базы высокотехнологичной промышленности и энергетики России // Геология рудн. месторождений. 2022. Т. 64. №. 6. С. 617–633.
- Jowitt S.M., Medlin Ch.C., Cas R.A.F. The rare earth element (REE) mineralization potential of highly fractionated rhyolites: A potential low-grade, bulk tonnage source of critical metals // Ore Geology Reviews. 2017. V. 86. P. 548–562.
- Государственная геологическая карта Российской Федерации. Масштаб 1:1000000 (третье поколение). Серия Верхояно-Колымская. Лист Р-56 –

Сеймчан. Объяснительная записка. СПб.: "ВСЕ-ГЕИ", 2008. 426 с.

- 4. Панычев И.А., Смирнов П.П. Геологическая карта СССР масштаба 1: 200 000. Серия Верхнеколымская. Лист Р-56-XV. Объяснительная записка. Магадан, 1979. 110 с.
- 5. Егоров В.Н., Жигалов С.В., Волков А.В., Сидоров А.А. О редкометальном оруденении в трахириолитах и комендитах Хурчан-Оротуканской металлогенической зоны // ДАН. 2005. Т. 405. № 2. С. 237–242.
- Глухов А.Н., Петров С.Ф. Магматические ассоциации, металлогения и геотектоническая позиция Хурчан-Оротуканской рифтогенной структуры (Северо-Восток России) // Геология, география и биологическое разнообразие Северо-Востока России. Материалы Дальневосточной региональной конференции. Магадан: СВНЦ ДВО РАН. 2006. С. 104–108.
- Кузнецов В.М. Строение, геодинамика и рудоконтроль Хурчан-Оротуканской зоны ТМА / Геологическое строение, магматизм и полезные ископаемые Северо- Востока Азии. Магадан, 1997. С. 50–52.
- Полин В.Ф., Молл-Столкап Э.Дж. Петролого-геохимические критерии тектонических условий формирования Чукотского звена Охотско-Чукотского вулканогенного пояса // Тихоокеанская геология. 1999. Т. 18. № 4. С. 29–47.
- 9. *Pingitore N., Clague J., Gorski D.* Round Top Mountain rhyolite (Texas, USA), a massive, unique Y-bearing-fluorite-hosted heavy rare earth element (HREE) deposit // Journal of Rare Earths. 2014. V. 32. № 1. P. 90–96.
- Taylor W.R., Esslemont G., Sun S.S. Geology of the volcanic-hosted Brockman rare-metals deposit, Halls Creek Mobile Zone, northwest Australia. II. Geochemistry and petrogenesis of the Brockman volcanics // Mineralogy and Petrology. 1995. V. 52. P. 231–255.
- Yan Sh., Niu H-C., Zhao X., Zhang Q-B., Zhang H-J., Zhao X-Ch. Rare metal enrichment of the Tianbao trachytic complex, North Daba Mountains (South Qinling): Insights from textures and geochemistry of trachytes and Nb-REE minerals // Ore Geology Reviews. 2022. V. 146. 104948. https://doi.org/10.1016/j.oregeorev.2022.104948
- 12. McDonough W.F., Sun S.S. The Composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.
- 13. Тейлор С.Р., Мак-Леннан С.М. Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с.
- Elliott B.A. Petrogenesis of Heavy Rare Earth Element Enriched Rhyolite: Source and Magmatic Evolution of the Round Top Laccolith, Trans-Pecos, Texas // Minerals. 2018. 8. 423. https://doi.org/10.3390/min8100423
- 15. *O'Neill L.C.* REE-Be-U-F mineralization of the Round Top laccolith, Sierra Blanca Peaks, Trans-Pecos Texas. University of Texas at Austin. Unpublished MS Thesis. 2014. 209 p.

ALKALINE RHYOLITES OF THE PECHALNINSKY ORE FIELD (NORTH-EAST OF RUSSIA) – A POTENTIAL LARGE-VOLUME SOURCE OF HEAVY RARE EARTH ELEMENTS

Corresponding Member of the RAS A. V. Volkov^{a,#}, A. L. Galyamov^a, and K. Y. Murashov^a

^aInstitute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences, Moscow, Russian Federation

[#]E-mail: tma2105@mail.ru

Trachyriolites and komendites of the Pechalninsky ore field contain high potentially industrial concentrations of a number of rare metals and REE. The enrichment coefficients vary from several times (Zn, Ga, LREE) to tens (Be, Y, Zr, Nb, Rb and heavy HREE). The REE distribution indicates a uniform enrichment of the HREE relative to the LREE, with a ratio (La/Yb)N in the range from 0.16-1.01). All samples show strongly negative Eu anomalies, with values of Eu/Eu* – 0.13. A comparative analysis with similar objects known in the world in alkaline volcanites has shown that the Pechalninsky ore field can become an unconventional large-volume source of HREE.

Keywords: North-East of Russia, Pechalninsky ore field, trachyriolite, komendite, rare metals and REE