———— МИНЕРАЛОГИЯ ———

УДК 548.3

КАРИОХРОИТ – РЕДКИЙ МИНЕРАЛ ИЗ ГРУППЫ ТИТАНОСИЛИКАТОВ: КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА, КРИСТАЛЛОХИМИЯ И ТЕРМИЧЕСКИЕ СВОЙСТВА

© 2023 г. С. В. Соболева¹, Н. М. Боева^{1,*}, П. М. Карташов¹, академик РАН Н. С. Бортников¹

Поступило 20.01.2023 г. После доработки 07.02.2023 г. Принято к публикации 17.02.2023 г.

С использованием данных рентгенограммы порошка и микродифракции электронов впервые определена кристаллическая структура для редкого минерала кариохроита. Выведена новая идеализированная

кристаллохимическая формула [Na(Sr_{0.5}Ca_{0.5)}Mg]₃[Fe³⁺₈Mn(Fe²⁺_{0.5} $\square_{0.5}$)]₁₀(Ti₂Si₁₂)O₃₇(OH)₁₄(H₂O)₃. Параметры элементарной моноклинной ячейки, уточненные методом наименьших квадратов, отвечают: *a* 16.550(3), *b* 5.281(2), *c* 24.25(3) Å, β 93.0°, *Z* = 2, пр. гр. *P2/n*. Кристаллическая структура кариохроита – пример нового типа Ti-Si-сетки, обусловливающей большой размер структурных каналов, способный вмещать склонные к обмену катионы и большее количество водных компонентов (групп OH и молекул воды).

Ключевые слова: титаносиликаты, кариохроит, кристаллическая структура, термический анализ **DOI:** 10.31857/S2686739723600339, **EDN:** UKZBDO

введение

Титаносиликаты – это редкие акцессорные минералы щелочных пород и связанных с ними пегматитов и метасоматитов. Синтетические пористые титаносиликаты обладают прекрасными сорбционными и ионообменными свойствами, применяются в качестве активных и селективных гетерогенных катализаторов для получения промышленных органических прекурсоров [1]. Эти термически стабильные и радиационно стойкие материалы способны эффективно очищать жидкие радиоактивные отходы от долгоживущих нуклидов [2]. Для того, чтобы облегчить процедуру синтеза материалов с заданными свойствами, необходимо как можно детальнее изучить кристаллохимические особенности природных соелинений.

Кристаллические структуры титаносиликатов, принадлежащих к большому семейству гетерофиллосиликатов, содержат трехэтажные слои, состоящие из центральной октаэдрической сетки и примыкающих к ней сверху и снизу сеток из заселенных Si тетраэдров и внедренных в эти сетки Ti-октаэдров. При этом в ряде минералов октаэдры вокруг Ti соединяются вершинами с образованием сложных трехмерных каркасов, пронизанных каналами, в которых размещаются группы OH, молекулы H_2O и некоторые дополнительные катионы.

Кариохроит –

 $(Na,Sr)_{3}(Fe^{3+},Mg)_{10}Ti_{2}Si_{12}O_{37}(H_{2}O,O,OH)_{17},$

относяшийся к группе титаносиликатов, в качестве нового минерала был утвержден Комиссией по Новым Минералам при Международной Минералогической Ассоциации в 2005 г. (ІМА 2005-031). Образцы для исследования были отобраны П.М. Карташовым в 1987 г. на отвалах Умбозерского подземного рудника на горе Аллуайв в Северо-западном секторе Ловозерского щелочного массива. Позднее было установлено, что на отвалы минерал попал из пегматита "Эльпидитовый", вскрытого подземными выработками рудника. Образцы представляли собой плотные, микропористые, сплошные массы размером до $9 \times 6 \times 5$ см. Минерал находился в тесной ассоциации с эльпидитом, пиритом, альбитом, натролитом и каплями твердого битуминозного вещества. На основании проведенных исследований удалось определить параметры моноклинной ячейки кариохроита: *a* 16.47, *b* 5.303, *c* 24.39 Å, β 93.5°. Также была предложена кристаллохимическая формула (Na,Sr)₃(Fe³⁺,Mg)₁₀[Ti₂Si₁₂O₃₇](H₂O,O,OH)₁₇, но при этом не была выявлена структура этого минерала

¹Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук, Москва, Россия

^{*}E-mail: boeva@igem.ru

Рис. 1. Кристаллическая структура: бафертисита: а – общий вид, б – конфигурация Н-сетки; астрофилита: в – общий вид, г – конфигурация Н-сетки.

[3]. При изучении кариохроита была установлена структурная аналогия с нафертиситом [4]. Оба эти минерала относятся к группе титаносиликатов, структуры которых содержат слюдоподобные трехэтажные слои (НОН): центральной октаэдрической сетки (О) из соединенных ребрами октаэдров, к которой сверху и снизу примыкают сетки (Н) из образующих кольца Si-тетраэдров, связанных одиночными Ti-октаэдрами [5, 6]. В состав некоторых минералов, наряду с атомами Ti, входят также атомы Nb и Zr. В пустотах трехмерного каркаса в ряде случаев располагаются катионы Na⁺, K⁺, Ba²⁺ и др., группы OH и молекулы H₂O.

Разнообразие структур минералов группы титаносиликатов определяется рядом факторов природой октаэдрических катионов, конфигурацией и составом Н-сетки, природой и количеством внекаркасных катионов. Большое число минералов этой группы (порядка 75) характеризуются структурами, содержащими диортогруппы Si₂O₇, связанные октаэдрами вокруг атомов Ti, Zr и/или Nb. Наиболее простыми минералами этой группы являются бафертисит $Ba_2Fe_4^{2+}Ti_2(Si_2O_7)_2O_2(OH)_2F_2$ (рис. 1 а, б) [7, 8] И сурхобит $(Ba,K)_2CaNa(Mn,Fe^{2+},Fe^{3+})_8Ti_4(Si_2O_7)_4O_4(F,OH,O)_6$ [9]. Некоторые минералы этой группы характеризуются более сложными структурами вследствие вхождения тетраэдров PO_4 (ломоносовит $Na_5Ti_2[Si_2O_7][PO_4]O_2$ [10, 11], соболевит Na_{13} - $Ca_2Mn_2Ti_3(Si_2O_7)_2(PO_4)_4O_3F_3$ [12] или треугольными группировками CO₃ (буссенит Na_2 - $Ba_2Fe^{2+}[TiSi_2O_7][CO_3]O(OH)(H_2O)F$ [13]. Минералам с H-сетками состава Ti(Zr,Nb)- Si_2O_7 посвящена серия статей [8, 11, 14, 15], в которых приведены расшифровки структур ряда минералов и выявлены взаимосвязи между ними.

Гораздо меньшее количество минералов характеризуется структурами с Н-сетками состава Ti(Zr,Nb)₂Si₈O₂₆. Наиболее распространенным в природе минералом этой группы является астротрофиллит $K_2 NaFe_7^{2+} Ti_2 Si_8 O_{26} (OH)_4 F$, структура которого уточнялась неоднократно для образцов различного состава (рис. 1 в, г) [16, 17]. Н-сетка в этой структуре представлена двумя неполными тетраэдрическими кольцами, связанными одиночными Ті-октаэдрами. Другими представителями минералов этой группы являются булгакит Li₂(Ca,Na)Fe₇²⁺Ti₂Si₈O₂₆(OH)₄(F,O)(H₂O)₂, налив-кинит Li₂Na(Fe²⁺,Mn²⁺)₇Ti₂Si₈O₂₆(OH)₄F [18] и лаверовит K₂NaMn₇Zr₂Si₈O₂₆(OH)₄F [19]. Несмотря на значительно больший размер каналов по сравнению со структурами минералов с группами Si_2O_7 , минералы с H-сетками $Ti(Zr,Nb)_2Si_8O_{26}$ не содержат дополнительных радикалов РО4 или

Рис. 2. Н-сетка в структуре нафертисита.

CO₃, чем объясняется малочисленность этих минералов – к настоящему времени выявлено только 15 минералов этой группы.

Определение кристаллической структуры редкого минерала нафертисита $(Na,K)_3(Fe^{2+},Fe^{3+}\Box)_{10}[Ti_2(Si,Fe^{3+},Al)_{12}O_{37}](O,OH)_6$ [4] выявило новый тип H-сеток идеализированного состава $Ti_2Si_{12}O_{37}$ (рис. 2), представленных цепочками из трех групп Si_2O_7 , соединенных одиночными Ti-октаэдрами. Кариохроит, очевидно, является вторым представителем этой группы минералов.

В статье впервые описана кристаллическая структура кариохроита, в частности, определено положение катионов, групп ОН и молекул воды в каналах каркаса, предложена его кристаллохимическая формула, охарактеризованы термические свойства.

МЕТОДЫ ИССЛЕДОВАНИЯ

С целью получения комплекса экспериментальных данных были использованы следующие методы: рентгенографический (порошковый дифрактометр марки "Siemens" D-500, СиКα-излучение, интервал сканирования 20-70° 20), электронно-микроскопический (просвечивающий электронный микроскоп (ПЭМ) марки "Philips" СМ12 с приставкой EDAX 9800) и термографический (синхронный термический анализ, прибор STA 449 F1 Jupiter "Netzsch", масса навески 40 мг, скорость съемки – 10°С/мин, атмосфера – Ar, тигель корундовый с закрытой крышкой). Для уточнения кристаллохимической формулы использованы данные энергодисперсионного анализа (табл. 1). Для получения структурных данных применили теоретическое моделирование с помощью программ ATOMS и CARINE, позволяющее оценивать межатомные расстояния в различных координационных окружениях катионов и рассчитывать дифракционные характеристики

Рис. 3. Картина морфологии и микродифракции для тонкодисперсных образцов кариохроита. ПЭМ.

(данные рентгенограмм порошка и картин микродифракции).

РЕЗУЛЬТАТЫ

Рентгенофазовый анализ. Полученная рентгенограмма порошка для образцов кариохроита демонстрирует большое сходство с данными, приведенными в статье П.М. Карташова и соавт. [3]. Некоторые расхождения в экспериментальных значениях интенсивностей могут быть обусловлены тенденцией тонкодисперсного образца к образованию текстурированных препаратов (табл. 1).

Просвечивающая электронная микроскопия (ПЭМ). Морфология частиц кариохроита по данным ПЭМ представлена очень тонкими лентами (рис. 3), не позволяющими, в отличие от аналогичных пластинчатых частиц нафертисита, получить качественные картины микродифракции. Единственная полученная картина микродифракции, представленная в виде врезки на рис. 3, представляет плоскость обратной решетки (001)* со всеми целочисленными индексами k, в то время как в направлении [100]* проявляются рефлексы с индексами h = 2n.

По данным рентгенограммы порошка и картины микродифракции, уточненным методом наименьших квадратов, определены параметры элементарной моноклинной ячейки *a* 16.550(3), *b* 5.281(2), *c* 24.25(3) Å, β 93.0°. Данные рентгенограммы порошка отвечают условию *h* + *l* = 2*n*, т.е. *B*-центрированной решетки. Единственно возможная пространственная группа *B*2/*n* запрещает наличие двух интенсивных отражений 101 и 101 в малоугловой области, и, как следствие, для кариохроита была выбрана пространственная группа *P*12/*n*1.

Сходство экспериментальных значений интенсивностей и межплоскостных расстояний, а также параметров элементарной ячейки, с данными, приведенными в работе П.М. Карташова и соавт. дают основание воспользоваться приведенными там же данными энергодисперсионного анализа, подкрепленные результатами мокрого химического анализа и спектрами Мессбауэра, определившими трехвалентное состояние железа [3]. Детальный анализ приведенной в этой работе кристаллохимической формулы:

$$(Na_{1.19}Sr_{0.62}Ca_{0.41}Mn_{0.35}K_{0.26})_{2.83}(Fe_{7.98}^{3+}Mg_{1.15}Mn_{0.49}Fe_{0.38}^{2+})_{10}(Ti_{1.87}Fe_{0.13}^{3+})_{2}(Si_{11.74}Al_{0.26})_{12}O_{54.1}OH_{20.4}OH_{20.4}OH_{20.4}OH_{20.4}OH_{20.4}OH_{20.4}OH_{20.4}OH_{20.4}OH_{20.4}OH_{20.4}OH_{20.4}OH_{2$$

(молекулярный вес 1968.970), показал, что приведенное количество катионов Fe^{2+} составляет лишь 4.48% от всего количества железа, в то вре-

Таблица 1. Экспериментальные и вычисленные данные рентгенограммы порошка кариохроита

I (эксп.)	<i>I</i> (выч.)	d (эксп.)	<i>d</i> (выч.)	hkl	
20	16	14.10	14.00	101	
35	40	13.30	13.33	101	
100	100	12.10	12.11	002	
5	8	6.049	6.054	004	
10	15	4.390	4.398	$21\overline{1}$	
6	8	3.895	3.899, 3.851, 3.849	114, 213, 402	
4	4	3.630	3.634	$21\overline{4}$	
4	5	3.541	3.546, 3.538	305, 214	
5	8	3.399	3.422	107	
10	13	3.000	3.027	008	
5	5	2.911	2.917, 2.892, 2.872	$\overline{4}14, \overline{2}08, \overline{1}17$	
12	15	2.689	2.703, 2.694, 2.684	512, 217, 513	
12	11	2.638	2.640, 2.634, 2.626, 2.611	020, 109, 018, 513	
8	7	2.575	2.579, 2.576	022, 118	
6	7	2.507	2.509	023	
5	6	2.465	2.473	515	
5	9	2.386	2.380	515	
4	4	2.226	2.229, 2.226	614, 517	
4	5	1.988	1.990, 1.985	$028, \overline{5}19$	
4	4	1.590	1.603, 1.590, 1.584	$0.2.12, 726, \overline{5}.1.13$	
6	4	1.549	1.552 1.548	$53\overline{1}, 531$	
6	3	1.533	1.533, 1.530	533, 1.1.15	

мя как по данным спектров Мессбауэра это количество составляет примерно 7%. При предположении, что катионы железа, размещенные в вышеприведенной формуле вместе с Ті, также представлены двухвалентным железом, общее количество катионов Fe^{2+} возрастает до значения 0.51, что составляет примерно 6% от общего количества железа. При этом с кристаллохимической точки зрения представляется более оправданным размещение всех катионов железа в октаэдрической сетке, где также могут быть сконцентрированы все атомы марганца, близкие к железу как по ионному радиусу, так и по проявлению в двухи трехвалентном состоянии.

В то же время представляется неоправданным размещение атомов Mg в октаэдрической сетке, так как во многих разбухающих смешанослойных глинистых минералах (например, в монтмориллоните) Mg находится в межслоевом пространстве и является типичным обменным катионом, а кариохроит характеризуется катионообменными свойствами [3]. В силу этого более оправданным является размещение атомов Mg вместе с атомами Na, Ca и Sr в каналах предполагаемой для кариохроита структуры. Как результат проведенного анализа для кариохроита предложена новая идеализированная кристаллохимическая формула:

$$\begin{split} & Fe_{8.0}^{3+}Mn_{1.0}(Fe_{0.5}^{2+}\Box_{0.5})_{10.0}(Ti_{2}Si_{12})O_{37}(OH)_{6} \cdot \\ & \cdot [Na_{1.0}(Sr_{0.5}Ca_{0.5})Mg_{1.0}]_{3.0}(OH)_{8}(H_{2}O)_{3} \end{split}$$

(молекулярный вес 1957.795), Z = 2, d (выч.) – 3.012, в полном соответствии с d (эксп.) – 2.990. Первая часть формулы отражает состав слоев НОН, для которых общий положительный заряд катионов +83 не компенсируется полностью зарядом анионной части $O_{37}(OH)_6$ (-80). Необходимые для полной компенсации положительного заряда 3 группы ОН могут размещаться в пустотах каркаса вместе с катионами Na^+ , Sr^{2+} , Ca^{2+} и Mg^{2+} и компенсирующими общий положительный заряд этих катионов пятью группами ОН. В результате в пустотах каркаса размещаются 8 групп ОН. В предположении нахождения в пустотах каркаса также трех молекул Н₂О общее содержание воды составит 10 молекул (14 групп ОН отвечает семи молекулам H₂O), что составляет 9.20 мас. % – в полном соответствии с данными термического анализа – 9.17 мас. %. В классическом для титано-

силикатов виде приведенная выше кристаллохимическая формула имеет вид:

$$[Na(Sr_{0.5}Ca_{0.5})Mg]_{3}[Fe_{8}^{3+}Mn(Fe_{0.5}^{2+}\Box_{0.5})]_{10}(Ti_{2}Si_{12})O_{37}(OH)_{14}(H_{2}O)_{3}$$

Координаты атомов в структуре кариохроита определены с использованием программы Atoms в рамках пространственной группы P2/n, предполагающей кратность общего положения хуг четыре атома и кратность частных положений в центрах симметрии и на оси 2 (проходящей вдоль направления [010] на уровнях 0.25, у, 0.25 и 0.25, у, -0.25), составляет два атома. В соответствии с этим 4 октаэдрических катиона Fe³⁺ были расположены в общих положениях, а катионы Mn²⁺ и $(Fe_{0.5}^{2+}\Box_{0.5})$ локализованы в центрах симметрии. Все тетраэдрические катионы Si⁴⁺ и атомы Ti, а также атомы О (за исключением О19) и группы ОН слоя НОН занимают общие положения; атом О19, соединяющий 2 октаэдра вокруг атомов Ті, расположен на оси 2 (рис. 4, табл. 2).

В каналах, проходящих вдоль короткой трансляции *b*, необходимо разместить катионы Na⁺, Mg²⁺ и статистически распределенные $(Sr_{0.5}Ca_{0.5})^{2+}$, 8 групп ОН и 3 молекулы H₂O. Поскольку в рамках выбранной пространственной группы в каналах имеются лишь два частных положения (0.25, y 0.25 и 0,25, y, -0.25) с кратностью 2, наиболее оправданным представляется локализация Na⁺ в частном положении, а двухвалентных катионов – в общем положении. Аналогичным образом группы ОН были размещены в частных положениях (с кратностью 4), преимущественно в координации внекаркасных катионов.

Синхронный термический анализ. Дегидроксилизация кариохроита при нагревании происходит в три стадии (рис. 5). Потеря массы на термогравиметрических кривых при температуре до 130°С объясняется поверхностно связанной водой и не учитывается в химическом составе. В температурном интервале 130-250°С происходит удаление групп ОН из каналов каркаса, что составляет 2.76%. Далее, при более высокой температуре удаляются группы ОН, входящие в координацию размещающихся в пустотах катионов (6.18%). В последнюю очередь при высоких температурах выходят группы ОН, входящие в координацию октаэдрических катионов (0.77%), что приводит к полному разрушению структуры с образованием оксидов Fe_3O_4 , TiO₂ и SiO₂. Экзотермические пики с максимумами при 731.9. 766.8. 809°С на кривой дифференциальной сканирующей калориметрии связаны с перекристаллизацией и образованием этих фаз. Прибавка в весе на термогравиметрической кривой (0.35%) свидетельствует об окислении новообразованных фаз и подтверждает их наличие.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Определенная для кариохроита кристаллическая структура (табл. 2, рис. 5) характеризуется теоретически рассчитанными данными рентгенограммы порошка (*d* (выч.), *I* (выч.)), находящимися в хорошем соответствии с экспериментальными данными (табл. 1).

Межатомные расстояния в структуре находятся в рамках, характерных для структур других

Рис. 4. Кристаллическая структура кариохроита: а – в проекции вдоль оси b, б – конфигурация Н-сетки.

Рис. 5. Термические кривые кариохроита: ТГ – термогравиметрическая, ДСК – дифференциальной сканирующей калориметрии, ДТГ – дифференциальной термогравиметрии.

силикатов. В H-сетках в тетраэдрах расстояния Si-O находятся в пределах 1.600–1.649 Å, причем наиболее длинные расстояния Si-O приурочены к атомам О, входящим в координацию атомов Ті. В октаэдрах вокруг Ті расстояния Ті-О в экваториальной плоскости (с атомами О-тетраэдров) находятся в пределах 2.005–2.027, в то время как расстояния с атомами О, входящими в координацию октаэдрических катионов и атомом О, общим для двух смежных Ті-октаэдров, эти расстояния гораздо длиннее — 2.304 и 2.390 Å соответственно.

В октаэдрической сетке слоя НОН межатомные расстояния Fe³⁺-O и Mn²⁺-O находятся в пределах 2.066-2.264, при этом наиболее протяженные контакты (2.219-2.264) приходятся на атомы О, входящие также в координацию Ті. В октаэдрах, заселенных катионами Fe²⁺ лишь на 50%, расстояния Fe–O находятся в пределах 2.148-2.159. Вследствие сильного отталкивания, у высокозаряженных катионов боковые ребра октаэдров намного короче базальных ребер.

Располагающиеся в каналах каркаса катионы Na⁺ находятся в окружении двух групп OH₆ на расстоянии 2.310, а статистически распределенные катионы $(Sr_{0.5}Ca_{0.5})^{2+}$ и Mg²⁺, заселяющие одно общее положение, координированы группами OH_4 и OH_5 на расстояниях 2.081 и 2.274. Молекулы H₂O и группа OH₇ не входят в координацию внекаркасных катионов и связаны с атомами ОН-

сетки и другими группами ОН, располагающимися в каналах, слабыми водородными связями.

Трехэтажные слои НОН связаны в единый каркас лишь атомом О19, соединяющим два смежных октаэдра TiO₆. Слабое межслоевое взаимодействие обусловливает тонкодисперсность образцов кариохроита и отсутствие даже очень мелких кристаллов, в то время как характеризующийся аналогичной структурой минерал нафертисит проявляется в природе в виде тончайших игольчатых кристаллов, позволяющих получать качественные картины микродифракции.

выводы

Структуры минералов кариохроита и нафертисита представляют собой новый тип слоев НОН с существенно иной и более объемной Н-сеткой идеализированного состава Ti₂Si₁₂O₃₇ по сравнению с ранее известными титаносиликатами. При этом существенными отличиями структуры кариохроита являются большой диаметр пронизывающих каркас каналов и большее количество находящихся в этих каналах водных компонентов (групп ОН и молекул Н₂О). Эти особенности в первую очередь обусловлены преимущественным содержанием в октаэдрической сетке высокозаряженных катионов Fe³⁺. Кариохроит, в отличие от других титаносиликатов Ловозера, очевидно является самым низкотемпературным и, вероят-

171

Atoms	х	У	Z	Atoms	Х	У	Z
Si1	0.423	0.390	0.885	O8	0.516	0.413	0.870
Si2	0.169	0.386	0.877	09	0.393	0.145	0.849
Si3	0.020	0.650	0.108	O10	0.392	0.650	0.851
Si4	0.121	0.140	0.100	O11	0.235	0.595	0.839
Si5	0.397	0.662	0.100	O12	0.210	0.145	0.850
Si6	0.302	0.148	0.095	O13	0.070	0.360	0.867
Ti	0.300	0.900	0.838	O14	0.924	0.602	0.883
Fe1	0.097	0.509	-0.008	O15	0.930	0.090	0.874
Fe2	0.300	0.550	-0.013	O16	0.784	0.855	0.876
Fe3	0.200	0.043	-0.018	O17	0.655	0.587	0.886
Fe4	0.402	0.023	-0.012	O18	0.639	0.072	0.878
Fe ²⁺	0.5	0.5	0	O19	0.25	0.800	0.75
Mn	0	0	0	OH1	0.092	0.863	-0.050
A*	0.520	0.840	0.280	OH2	0.496	0.145	0.044
Na	0.25	0.400	0.25	OH3	0.202	0.696	0.026
01	0.400	0.365	-0.052	OH4	0.530	0.450	0.270
O2	0.192	0.402	-0.058	OH5	0.400	0.870	0.760
O3	0.010	0.660	0.042	OH6	0.390	0.400	0.250
O4	0.110	0.160	0.034	OH7	0.650	0.295	0.303
05	0.303	0.175	0.029	H_2O1	0.25	0.250	0.75
06	0.400	0.690	0.035	H ₂ O2	0.660	0.450	0.227
O 7	0.300	0.900	-0.067				

Таблица 2. Координаты атомов в структуре кариохроита

но, самым поздним по абсолютному времени образования.

Впервые выявленная кристаллическая структура кариохроита, обусловливающая большой размер структурных каналов, способных вмещать склонные к обмену катионы и большее количество водных компонентов, демонстрирует уникальность кариохроита и возможность синтеза титаносиликатов, обладающих сорбционными свойствами.

БЛАГОДАРНОСТИ

С.В. Соболева выражает глубокую признательность профессору Дж. Феррарису за неизменную поддержку и ценные консультации во время ее работы в университете г. Турина в статусе приглашенного ученого.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при финансовой поддержке госзадания ИГЕМ РАН № 121041500220-0, аналитические исследования проведены в ЦКП "ИГЕМ АНАЛИТИКА"

СПИСОК ЛИТЕРАТУРЫ

- 1. *Huybrechts D.R.C., De Bruycker L., Jacobs P.A.* Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite // Nature. 1990. V. 345. P. 240–242.
- Noh Y.D., Komarneni S., Mackenzie K.J.D. Titanosilicates: Giant exchange capacity and selectivity for Sr and Ba // Sep. Purif. Technol. 2012. V. 95. P. 222–226.
- Kartashov P.M., Ferraris G., Soboleva S.V., Chukanov N.V. Caryochroite, a new heterophyllosilicate mineral species related to nafertisite from the Lovozero massif (Kola Peninsula, Russia) // Canad. Mineral. 2006. V. 44. P. 1331–1339.

https://doi.org/10.2113/gscanmin.44.6.1331

- Ferraris G., Ivaldi G., Khomyakov A.P., Soboleva S.V., et al. Nafertisite, a layer titanosilicate member of a polysomatic series including mica. // European Journal of Mineralogy. 1996. V. 8. P. 241–249.
- 5. *Ferrarls G., Makovicky E., Merlino S.* Crystallography of Modular Materials // Kindle Edition. 2004. 384 p.
- 6. *Rastsvetaeva R.K., Aksenov S.M.* Crystal chemistry of silicates with three-layer TOT and HOH modules of layered, chainlike, and mixed types // Crystallography Reports. 2011. № 56. P. 910–934.
- Гуан Я.С., Симонов В.И., Белов Н.В. Кристаллическая структура бафертисита BaFe₂TiO[Si₂O₇](OH)₂ // ДАН. 1963. Т. 149. С. 1416–1419.
- Cámara F., Sokolova E., Abdu Y.A., Pautov L.A. From Structure Topology to Chemical Composition. XIX. Titaniumsilicates: Revision of the Crystal Structure and Chemical Formula of Bafertisite, Ba₂Fe₂+4Ti₂(Si₂O₇)₂O₂(OH)₂F₂, a Group-II TS-Block Mineral // Canad. Mineral. 2016. V. 54. P. 49– 63.
- Rastsvetaeva R.K., Eskova E.M., Dusmatov V.D. Surkhobite: revalidation and redefinition with the new formula, (Ba,K)₂CaNa(Mn,Fe²⁺,Fe³⁺)₈Ti₄(Si₂O₇)₄O₄(F,OH,O)₆ // European Journal of Mineralogy. 2008. V. 20, P. 289– 295.
- Расцветаева Р.М., Симонов В.И., Белов Н.В. Кристаллическая структура ломоносовита, Na₅Ti₂[Si₂O₇][PO₄]O₂ // ДАН. 1971. Т. 197. С. 81– 84.
- Camara F., Sokolova E., Hawthorne F.C., Abdu Y. From structure topology to chemical composition. IX. Titanium silicates: revision of the crystal chemistry of lomonosovite and murmanite // Mineralogical Magazine. 2008. V. 72. P. 1207–1228.
- Sokolova E., Egorov-Tismenko Yu. K., Khomyakov A.P. Crystal structure of sobolevite // Soviet Physics. Doklady. 1988. V. 33. P. 711–714.
- Zhou H., Rastsvetaeva R.K., Khomyakov A.P., Ma Z., Shi N. Crystal structure of new micalike titanosilicate – bussenite, Na₂Ba₂Fe²⁺[TiSi₂O₇][CO₃]O(OH)(H₂O)F // Crystallography Reports. 2002. V. 47. P. 43–46.
- Sokolova E. From structure topology to chemicalcomposition. I. Structural hierarchy and stereochemistryin titanium disilicate minerals // Canad. Mineral. 2006. V. 44. P. 1273–1330.
- Sokolova E., Day M., Hawthorne F.C. From Structure Topology to Chemical Composition. XXIX. Revision of the Crystal Structure of Perraultite, NaBaMn₄Ti₂(Si₂O₇)₂O₂(OH)₂F, a Seidozerite-Supergroup TS-Block Mineral from the Okty-

abr'skii Massif, Ukraine, and Discreditation of Surkhobite // Canad. Mineral. 2021. 59 (2). P. 19–43.

- 16. *Woodrow P.J.* The crystal structure of astrophyllite // Acta Crystallographica. 1967. V. 22. P. 673–678.
- 17. *Sokolova E., Cámara F.* Re-investigation of the crystal structure of magnesium astrophyllite // European Journal of Mineralogy. 2008. V. 20. P. 253–260.
- 18. Agakhanov A.A., Pautov L.A., Sokolova E., Abdu Y.A., Karpenko V.Y. Two Astrophyllite-Supergroup Minerals:

Bulgakite, a New Mineral from the Darai-Pioz Alkaline Massif, Tajikistan and Revision of the Crystal Structure and Chemical Formula of Nalivkinite // Canad. Mineral. 2016. V. 54. P. 33–48.

 Sokolova E., Day M.C., Hawthorne F.C., Kasatkin A.V. Laverovite, K₂NaMn₇Zr₂(Si₄O₁₂)₂O₂(OH)₄F, a new Astrophyllite-Supergroup mineral from Mont Saint-Hilaire, Québec, Canada // Canad. Mineral. 2019. V. 57. P. 201–213.

CARYOCHROITE IS A RARE MINERAL FROM THE GROUP OF TITANOSILICATES: CRYSTAL STRUCTURE, CRYSTAL CHEMISTRY AND THERMAL PROPERTIES

S. V. Soboleva^a, N. M. Boeva^{a,#}, P. M. Kartashov^a, and Academician of the RAS N. S. Bortnikov^a

^aInstitute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences, Moscow, Russia [#]E-mail: boeva@igem.ru

E man. boera eigemina

The crystal structure of rare titanosilicate cariochroite was deternined using X-ray powder and srlected area diffraction da-

ta. The crystallochemical formula proposed – $[Na(Sr_{0.5}Ca_{0.5})Mg]_3[Fe_8^{3+}Mn(Fe_{0.5}^{2+}\Box_{0.5})]_{10}(Ti_2Si_{12})O_{37}(OH)_{14}(H_2O)_3$. Monoclinic unit cell parameters are: *a* 16.550(3), *b* 5.281(2), *c* 24.25(3) Å, β 93.0°, Z = 2, sp. gr. *P2/n*. The crystal structure represent the new type of complex Ti–Si–nrt, provided the big volume canals containng some exchange cations, OH groups and water molecules.

Keywords: titanosilicate, cariochroite, crystal structure, thermal analysis