ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ, 2023, том 512, № 2, с. 165–173

———— ГЕОЛОГИЯ ————

УДК 550.93

ФРАГМЕНТ РАННЕКЕМБРИЙСКОЙ КОНТИНЕНТАЛЬНОЙ ОКРАИНЫ В СТРУКТУРЕ ТУВИНСКОГО СЕГМЕНТА ЦЕНТРАЛЬНО-АЗИАТСКОГО СКЛАДЧАТОГО ПОЯСА (ТЕРЕГТИГСКАЯ СВИТА): РЕЗУЛЬТАТЫ U-Pb-ДАТИРОВАНИЯ ЦИРКОНА И Sr-ХЕМОСТРАТИГРАФИИ

© 2023 г. А. В. Иванов^{1,*}, Е. Ф. Летникова¹, С. И. Школьник², член-корреспондент РАН А. В. Маслов³, Н. И. Ветрова¹

Поступило 26.09.2022 г. После доработки 29.03.2023 г. Принято к публикации 23.05.2023 г.

Получена оценка времени накопления (530—520 млн лет) терегтигской свиты юга Тувы на основе результатов U—Pb-датирования зерен детритового циркона из терригенных и Sr-хемостратиграфии карбонатных пород. Показано, что основным источником поступления обломочного материала являлись гранитоиды с возрастом 580 млн лет. Присутствие представительной популяции зерен детритового циркона докембрийского возраста указывает на накопление отложений терегтигской свиты в пределах блока континентальной коры с длительной историей развития. В составе эродируемой суши при накоплении грубозернистых пород терегтигской свиты находились так же породы Агардагского комплекса офиолитов, о чем свидетельствуют многочисленные неокатанные обломки оливинов, пироксенов и хромшпинелидов в матриксе конгломератов.

Ключевые слова: ранний палеозой, Тува, Sr-хемостратиграфия, U–Pb-датирование, циркон, хромит, континентальная окраина, Агардагский комплекс офиолитов **DOI:** 10.31857/S2686739722602034, **EDN:** WGZBIC

введение

Одной из проблем геологии Тувинского сегмента Центрально-Азиатского складчатого пояса (ЦАСП) является отсутствие современных данных о возрасте и генезисе осадочных и осадочновулканогенных пород, что затрудняет понимание последовательности их формирования и принадлежности к тектоническим блокам с различной геодинамической историей. В этой работе мы приводим первые геохронологические, изотопные и минералогические данные, полученные при изучении осадочных пород терегтигской свиты Агардагской шовной зоны офиолитов и меланжа, расположенной между Сангиленским и Таннуольским комплексами в юго-западной части Тувинского сегмента ЦАСП (рис. 1). Агардагская шовная зона в последнее время является объектом изучения многих исследователей, но данные о ее строении, возрасте и взаимоотношениях с соседними структурами все еще дискуссионны. Одни авторы, сравнивая магматизм древних бассейнов Тувы с тихоокеанским бассейном Вудларк, считают, что офиолиты Агардагского и Карашатского комплексов формировались предположительно 570 млн лет назад под влиянием плюмовых источников на начальных стадиях раскрытия палеоокеана [1]. Другие полагают, что офиолиты Южной Тувы связаны с расколом древнего сиалического блока и образованием океанической коры, сравнивая их с офиолитами Тихама-Азир, возникшими при формировании бассейна, сходного с красноморским [2]. Вескими аргументами при решении проблемы тектонического строения юга Тувинского сегмента ЦАСП могут стать изотопные данные, интерпретация которых позволит получить информацию об обстановках и времени седиментации осадочных толщ Агардагской зоны, а также составе и возрасте пород-источников обломочного материала для них. С этой целью нами изучены осадочные породы терегтигской свиты, непосредственно контактирующей с Карашатским офиолитовым комплексом (рис. 1).

¹Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук, Новосибирск, Россия

²Институт земной коры Сибирского отделения

Российской академии наук, Иркутск, Россия

ЗГеологический институт Российской академии наук,

Москва, Россия

^{*}E-mail: ivanovav@igm.nsc.ru

Рис. 1. Расположение района исследований (а), положение Агардагской зоны в южной части Тувинского сегмента ЦАСП (б) и схема геологического строения междуречья Тес-Хем и Терегтиг-Саир (в), по [16] с изменениями. *1* – кайнозойские отложения, *2* – Тануольский островодужный комплекс, *3* – Сангиленский метаморфический комплекс, *4* – Агардагский комплекс офиолитов и меланжа, *5* – граниты палеозоя; терегтигская свита (*6*–*8*): *6* – конгломераты, 7 – терригенные отложения, *8* – карбонатные породы; *9* – метаморфизованные карбонатные породы; *10* – вулканиты основного и среднего составов; *11* – лейкограниты и аляскитовые граниты тануольского комплекса палеозоя; *12* – докембрийские породы Карашатского массива офиолитов; *13* – габбро тесхемской серии, венд (?); *14* – Эрзинский метаморфический комплекс.

СТРОЕНИЕ И СОСТАВ ТЕРЕГТИГСКОЙ СВИТЫ

Изучаемые терригенные и карбонатные породы распространены в междуречье Тес-Хем и Терегтиг-Саир. В основании разреза залегают тонкослоистые аргиллиты (мощностью 5–7 м) и галечно-валунные конгломераты (до 7 м). В последних гальки имеют уплощенную форму и строго ориентированы по слоистости, а валуны (до 30 см в диаметре) хорошо окатаны. Среди обломков преобладают кварц, осадочные породы, граниты (SiO₂ – 72–74, Na₂O – 4.4–4.7, K₂O – 0.2–0.5 мас. %) и, реже, диориты (SiO₂ – 60.5, Na₂O – 4.1, K₂O – 0.4 мас. %) и низкощелочные риолиты (SiO₂ – 77, Na₂O – 4.0, K₂O – 0.1 мас. %).

Матрикс конгломератов состоит в основном из неокатанных зерен кварца, полевого шпата, слюд, измененных темноцветных минералов, циркона, апатита, рудных минералов, хлорита и карбонатов. Изучение состава матрикса с помощью сканирующего электронного микроскопа (СЭМ) TESCAN в Центре коллективного пользования научным оборудованием многоэлементных и изотопных исследований СО РАН (ЦКП МИИ СО РАН, г. Новосибирск) позволило установить в нем присутствие значительного количества неокатанных зерен пироксена, оливина и хромшпинелидов (рис. 2 а). Последние по составу отвечают хромитам, ферриалюмохромитам и субалюмоферрихромитам и подобны таким же разновидностям хромшпинелидов в верлитах, дунитах и гарцбургитах Агардагского комплекса офиолитов (рис. 2 б, в).

На конгломератах согласно залегают карбонатные отложения. В них в 3 м выше подошвы наблюдается линза кварцевых гравелитов. Хорошо окатанные обломки кварца в гравелитах сцементированы кремнистым материалом. В средней части разреза в значительном количестве присутствуют дайки долеритов.

РЕЗУЛЬТАТЫ U—РЬ-ДАТИРОВАНИЯ ПОРОД ТЕРЕГТИГСКОЙ СВИТЫ

Проведено U-Pb-изотопное датирование зерен циркона из матрикса конгломератов и кварцевого гравелита терегтигской свиты, а также трех валунов из конгломератов – гранита, диорита и кислого вулканита. Внутреннее строение циркона изучено на СЭМ JEOL JSM 6510LV и LEO 1430VP (ЦКП МИИ СО РАН). U-Pb-датирование циркона из матрикса конгломератов проведено методом LA-ICP-MS в ГЕОХИ РАН на масс-спектрометре Element XR ("ThermoFinnigan") с системой лазерной абляции UP-213. Использованы внешние стандарты – 91500 и GJ-1. U-Pb-датирование циркона остальных проб про-

Рис. 2. Хромиты из матрикса валунно-галечных конгломератов терегтигской свиты (а, изображения получены с помощью СЭМ), положение фигуративных точек хромитов на диаграмме Al–Cr–Fe [17] (б) и вариации содержания Al₂O₃ и Cr₂O₃ в хромшпинелидах теригтигской свиты и Агардакского комплекса офиолитов (в). (б): поля диаграммы: 1 – хромит, 2 – субферрихромит, 3 – алюмохромит, 4 – субферриалюмохромит, 5 – ферриалюмохромит, 6 – субалюмоферрихромит, 7 – феррихромит; *1*– хромшпинелиды теригтигской свиты; *2*–*4* – Агардагский комплекс офиолитов (*2* – гарцбургиты, *3* – дуниты, *4* – верлиты, по [18]).

ведено в ЦКП МИИ СО РАН методом LA-ICP-MS на масс-спектрометре "Thermo Scientific" Element XR с системой лазерной абляции Analyte Excite (внешние стандарты — 91500, Plesovice и GJ-1). Погрешности единичных определений изотопных отношений и возрастов в обоих случаях приведены на уровне 1σ. В работе использованы данные значений U—Pb-возраста с дискордантностью менее 5%.

Основная популяция детритового циркона (80 из 92 зерен) из матрикса конгломератов имеет возраст в интервале 614—558 млн лет с максимумом 580 млн лет (рис. 3). Зерна циркона имеют осцилляторную зональность и не окатаны, что указывает на близость их источников к бассейну седиментации. Средневзвешенное значение возраста наиболее молодой популяции циркона (6 зерен) составило 538 млн лет. Это позволяет считать, что накопление терегтигской свиты происходило не древнее раннего кембрия. Присутствуют единичные окатанные зерна докембрийского возраста (1780, 1490, 1364, 883, 654 млн лет).

Основная популяция (12 из 27зерен) детритового циркона из кварцевого гравелита имеет возраст в диапазоне 594—571 млн лет (максимум — 580 млн лет) (рис. 4). Зерна циркона данной популяции имеют осцилляторную зональность и не окатаны, наиболее молодые из них имеют возраст 542 и 550 млн лет. Другие цирконы в этой пробе представлены окатанными зернами с возрастом 2880, 2806, 2802, 2781, 2683, 2466, 1888, 1871, 1860, 1848, 1078, 838 и 777 млн лет.

Рис. 3. Гистограмма и кривая относительной вероятности возраста зерен детритового циркона и средневзвешенный возраст наиболее молодой популяции зерен детритового циркона из матрикса конгломератов терегтигской свиты. *N* – количество зерен детритового циркона с конкордантными значениями.

Рис. 4. Гистограмма и кривая относительной вероятности возраста зерен детритового циркона из кварцевого гравелита терегтигской свиты. *N* – количество зерен детритового циркона с конкордантными значениями.

Изотопное U–Pb-датирование (LA-ICP-MS) зерен циркона из валунов конгломератов дало следующие результаты: диорит – 579.8 \pm 1.9 млн лет, гранит – 576.9 \pm 1.7 млн лет, риолит – 574.4 \pm \pm 3.8 млн лет (рис. 5).

ХЕМОСТРАТИГРАФИЯ КАРБОНАТНЫХ ПОРОД ТЕРЕГТИГСКОЙ СВИТЫ

Для исследования изотопного состава Sr и C в карбонатных породах терегтигской свиты отобра-

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 512 № 2 2023

но 9 проб из нижней части разреза, где отсутствуют дайки долеритов. Химическое разложение проб выполнено в ЦКП МИИ СО РАН. Изотопные отношения ⁸⁷Sr/⁸⁶Sr измерены на масс-спектрометре Triton Plus "Thermo Fisher" (ИГГ УрО РАН, Екатеринбург). Для анализа изотопного состава кислорода и углерода в карбонатном веществе использован приборный комплекс, состоящий из масс-спектрометра "Finnigan" МАТ-253 и линии пробоподготовки – Gas Bench II (ЦКП МИИ СО РАН).

Карбонатные породы представлены известняками (Mg/Ca 0.003–0.009). Две пробы исключены из исследований изотопного состава Sr, так как имеют низкие значения δ^{18} O и высокие концентрации Fe и Mn, указывающие на их постседиментационные изменения (табл. 1). Величина δ^{13} C в известняках изменяется в диапазоне от – 1.1% до +2.9‰ (рис. 6). Отношение ⁸⁷Sr/⁸⁶Sr варьирует от 0.70794 до 0.70826. С учетом данных об изотопном составе Sr в воде Мирового океана в докембрии и раннем палеозое [3–5] и результатов U–Pb-датирования зерен детритового циркона из нижележащих терригенных пород терегтигской свиты, можно оценить время седиментации этой свиты в интервале 530–520 млн лет (рис. 7).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Проведенные исследования осадочных пород терегтигской свиты позволили получить новую информацию о времени и обстановках ее накопления, составе и возрасте пород источников сноса. Так, уплощенная форма галек и их ориентация по слоистости, значительное количество обломков валунной размерности в конгломератах, присутствие в разрезе кварцевых гравелитов и карбонатных отложений указывают на накопление свиты в прибрежно-морских обстановках.

Обобщение данных U-Pb-датирования зерен циркона из терригенных пород и результатов хемостратиграфических исследований карбонатных отложений позволило ограничить время накопления терегтигской свиты интервалом 530— 520 млн лет.

Петрографические и минералогические исследования терригенных пород позволили выделить следующие основные источники поступления обломочного материала:

1. Осадочные породы. Следует отметить, что присутствие в разрезе кварцевых гравелитов указывает на накопление отложений терегтигской свиты в пределах блока земной коры, часть которого длительное время представляла собой сушу, где происходил рециклинг обломочного материала вплоть до образования сугубо кварцевых обломочных пород. Как правило, это характерно для континентальных обстановок.

Рис. 5. Диаграммы с конкордией для циркона из валунов диорита, лейкогранита и риолита из конгломератов терегтигской свиты. *N* – количество зерен циркона, для которых получены конкордантные значения возраста.

2. Магматические и вулканические породы кислого и среднего составов – диориты, граниты, риолиты. Валуны и гальки этих пород преоблада-

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 512 № 2 2023

Havan	Положение образца, м	Доля силикоклас- тической примеси %	Содержание, г/т					$\delta^{13}C$	$\delta^{18}O$		⁸⁷ Sr/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr
образца			Mn	Fe	Sr	Mg	Ca	%	oo	⁸⁷ Rb/ ⁸⁶ Sr	измерен- ное	первич- ное
K43/19	2	5.03	925	2380	282	1200	388000	0.7	18.0	0.00062	0.707690	0.707685
K44/19	5	23.33	1500	8080	344	3660	398000	2.9	17.7	_	_	_
K45/19	11	4.85	157	2560	358	2550	404000	2.7	20.2	0.00057	0.708208	0.708204
K46/19	13	6.64	853	2570	496	3110	392000	2.4	19.1	0.00038	0.708190	0.708187
K47/19	18	3.27	231	1190	304	2250	409000	2.9	19.8	0.00079	0.708260	0.708254
K48/19	20	3.94	254	2230	368	2810	413000	2.4	19.2	0.00073	0.707994	0.707989
K49/19	24	5.44	357	2420	403	2900	438000	2.3	19.1	0.00076	0.707942	0.707936
K53/19	26	_	_	_	_	_	_	0.4	18.1	_	_	_
K54/19	28	4.05	522	1930	313	2910	449000	-1.1	17.4	0.00019	—	—

Таблица 1. Геохимическая и Rb-Sr-изотопная характеристики кембрийских карбонатных пород терегтигской свиты

ют среди обломков конгломератов. Присутствие валунов указывает на близость их источников к осадочному бассейну.

3. Ультраосновные породы. Установлены на основе присутствия среди обломков песчаной размерности в матриксе конгломератов большого количества не окатанных зерен хромшпинелидов и измененных темноцветных минералов - оливина и пироксена. Источниками этих минералов были ультраосновные породы Агардагского комплекса офиолитов. Таким образом, можно считать, что породы названного комплекса в момент накопления терегтигской свиты находились вблизи от области седиментации в пределах эродируемой суши. Рассматривать более удаленные источники нет оснований, т.к. хромиты могут переноситься на значительное расстояние, а оливин и пироксен – не могут, т.к. не устойчивы в зоне гипергенеза [6, 7].

Возраст основной популяции зерен циркона из матрикса и валунов конгломератов, а также кварцевых песчаников одинаков и составляет 580-570 млн лет. Магматические или вулканические породы такого возраста на юге Тувы практически не распространены, встречаются единичные массивы – прорывающие офиолиты Агардагского комплекса на юге Тувы и в Озерной зоне Монголии [8]. При этом на северо-востоке Тувинского сегмента ЦАСП на основе датирования циркона из валунов лейкоплагиогранита в конгломератах раннекембрийской баянкольской свиты получен возраст 588 млн лет, а в туфах из разреза этой свиты, имеющих возраст 530 млн лет, возраст основной популяции ксеногенного циркона составляет 585-570 млн лет [9]. Все это указывает на проявление магматической активности в Тувинском сегменте ЦАСП в раннем вендe.

В строении Тувинского сегмента не установлены комплексы раннедокембрийского возраста. При этом ранее в составе Агардагской шовной зоны нами изучена осадочно-вулканогенная шурмакская свита [10], которая образовалась 500 млн лет назад. Валуны и гальки туфоконгломератов этой свиты являются пролуктами разрушений плагиогранитов и риолитов с возрастом 790 млн лет -3.4, модельный возраст $T_{\rm Nd}(\rm DM)$ $(\varepsilon_{\rm Nd}(t))$ 1.85 млрд лет). Учитывая палеопротерозойский модельный возраст от 2.4 до 1.7 млрд лет и отрицательные значения $\varepsilon_{Nd}(t)$ от -3.4 до -8.6 для матрикса из конгломератов и вулканомиктового песчаника, нами ранее установлено, что шурмакская свита формировалась в пределах древнего континентального блока [10]. Присутствие зерен циркона с палеопротерозойским, реже архейским, возрастом в отложениях терегтигской свиты указывает так же на ее накопление в осадочном бассейне в пределах блока континентальной коры с длительной историей развития.

Состав пород терегтигской свиты и значительное количество разновозрастных зерен детритового циркона в них указывает на то, что эти породы не могут являться частью океанической короткоживущей системы. Их накопление происходило в прибрежно-морском осадочном бассейне, в пределах континентального блока после совмещения с последним Агардагского офиолитового комплекса, который в раннем кембрии был частью эродируемой суши и играл заметную роль в поступлении в бассейн кластики.

Подобная обстановка в раннем палеозое на северо-востоке ЦАСП не уникальна. Так, ранее нами установлено, что в венд-кембрийских отложениях чехла Тувино-Монгольского микроконтинента наряду с зернами циркона докембрийского возраста в песчаниках и бокситах присутствуют

Рис. 6. Изотопный состав Sr и C карбонатных пород терегтигской свиты. *1* – конгломераты, *2* – известняки, *3* – аргиллиты, *4* – кварцевые песчаники, *5* – ограничение возраста на основе данных U–Pb-датирования зерен детритового циркона, *6* – места отбора проб карбонатных пород для Sr- и C-хемостратиграфии.

хромиты из пород Дунжугурского комплекса офиолитов, обдуцированных во время предвендской коллизии на этот континентальный блок [11, 12]. Другим примером могут служить вендкембрийские терригенные отложения Джидинского островодужного террейна [13]. Для них на основе данных U–Pb-датирования зерен детритового циркона выделена популяция с докембрийским возрастом. Здесь также установлено тесное соседство пород офиолитовой ассоциации и терригенных пород, образовавшихся за счет более древней, чем офиолиты, континентальной коры.

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований установлено, что накопление отложений терегтигской свиты происходило в осадочном бассейне древнего континентального блока в прибрежноморских обстановках. Источниками обломочного материала для них служили вендские и, в меньшей степени, кембрийские магматические породы, при участии более древних докембрийских пород, в том числе, ультрабазитов Агардагского офиолитового комплекса. Исходя из данных U-Рb-датирования зерен детритового циркона и изучения изотопного состава Sr и C, время накопления отложений терегтигской свиты можно оценить в интервале 530-520 млн лет. Присутствие пород Агардагского офиолитового комплекса среди источников кластики при накоплении пород терегтигской свиты однозначно указывает на ошибочное отнесение этой свиты к Агардагской зоне офиолитов, как и более молодых раннекембрийских осадочно-вулканогенных пород шурмакской свиты. Таким образом, возраст и геодинамические обстановки формирования Агардагского офиолитового комплекса остаются открытыми, но на основе результатов проведенных исследований можно утверждать, что они были надвинуты на породы древнего континентального блока и в составе суши участвовали в поставке обломочного материала в его кембрий-

Рис. 7. Оценка временного интервала седиментации карбонатных пород терегтигской свиты на основе данных о вариациях изотопного состава Sr и C в воде Мирового океана в позднем докембрии и раннем палеозое. 1 – величина 87 Sr/ 86 Sr в воде палеоокеана, по [3, 4]; 2 – вариации δ^{13} C, по [5]; 3 – вариации δ^{13} C, по [3, 4]. Звездочкой отмечен возраст, ограничивающий нижнюю временную границу седиментации карбонатных пород терегтигской свиты (получена на основе данных датирования зерен детритового циркона из подстилающих терригенных отложений).

ские прибрежно-морские бассейны. Обдукция рассматриваемых офиолитов происходила не раньше 580 млн лет назад. Ограничение возраста этого события основано на данных о возрасте прорывающих их гранитов [14], которые в дальнейшем так же служили источниками, в том числе грубообломочного материала при накоплении кембрийских терригенных отложений юга Тувы.

Таким образом, в структуре Тувинского сегмента ЦАСП реконструирован фрагмент раннепалеозойского прибрежно-морского бассейна древнего континентального блока. Это согласуется с современными представлениями о широком распространении древней континентальной коры в структуре ЦАСП, возможно, в составе поздненеопротерозойского, пока безымянного, супертеррейна [15].

БЛАГОДАРНОСТИ

Авторы признательны А.В. Котлярову за помощь при выборе объекта исследований в пределах Агардаг-

ской шовной зоны и В.А. Беляеву за консультации при изучении хромитов.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Исследования выполнены при поддержке гранта Российского научного фонда № 22-77-10069 (изучение и U—Рb-датирование терригенных пород). Работа выполнена по государственному заданию ИГМ СО РАН (№ 122041400214-9) и Геологического института РАН (экспедиционные и хемостратиграфические исследования, подготовка рукописи).

СПИСОК ЛИТЕРАТУРЫ

- Симонов В.А., Сафонова И.Ю., Ковязин С.В., Котляров А.В. Физико-химические параметры неопротерозойского и раннекембрийского плюмового магматизма Палеоазиатского океана (данные по расплавным включениям) // Геология и геофизика. 2010. Т. 51. № 5. С. 648–664.
- 2. *Куренков С.А., Диденко А.Н., Симонов В.А.* Геодинамика палеоспрединга. М.: ГЕОС, 2002. 294 с.
- Halverson G.P., Dudás F.Ö., Maloof A.C., Bowring S.A. Evolution of the ⁸⁷Sr/⁸⁶Sr composition of Neoprotero-

zoic seawater // Paleogeogr. Paleoclimatol. Paleoecol. 2007. V. 256. № 3–4. P. 103–129.

- Halverson G.P., Wade B.P., Hurtgen M.T., Barovich K.M. Neoproterozoic chemostratigraphy // Precambrian Res. 2010. V. 182. P. 337–350.
- Melezhik V.A., Ihlen P.M., Kuznetsov A.B., Gjelle S., Solli A., Gorokhov I.M., Fallick A.E., Sandstad J.S., Bjerkgård T. Pre-Sturtian (800–730 Ma) depositional age of carbonates in sedimentary sequences hosting stratiform iron ores in the Uppermost Allochthon of the Norwegian Caledonides: a chemostratigraphic approach // Precambrian Res. 2015. V. 261. P. 272–299.
- 6. Staddon L.G., Parkinson I.J., Cavosie A.J., Elliott T., Valley J.W., Fournelle J., Kemp A.I.S., Shirey S.B. Detrital chromite from Jack Hills, Western Australia: signatures of metamorphism and constraints on provenance // Journal of Petrology. 2021. V. 62. №. 12. P. 1–30.
- 7. Захарова Е.М. Атлас минералов россыпей. М.: ГЕОС, 2006. 276 с.
- 8. *Khukhuudei U., Kusky T., Otgonbayar O., Wang L.* The Early Palaeozoic mega-thrusting of the Gondwana-derived Altay–Lake zone in western Mongolia: implications for the development of the Central Asian Orogenic Belt and Paleo-Asian ocean evolution // Geological Journal. 2020. V. 55. № 3. P. 2129–2149.
- 9. Бродникова Е.А., Ветров Е.В., Летникова Е.Ф., Иванов А.В., Руднев С.Н. Позднерифейские и вендские гранитоиды в источниках сноса раннекембрийских грубозернистых пород баянкольской свиты Систигхемского прогиба Тувы // Геология и геофизика. 2022. Т. 63. № 6. С. 783–800.
- Иванов А.В., Летникова Е.Ф., Школьник С.И., Прошенкин А.И., Бродникова Е.А. Возраст пород шурмакской свиты по данным U-Pb датирования цирконов методом LA-ICP-MS (Юго-Восточная Тува) // Вестник Санкт-Петербургского университета. Науки о Земле. 2020. Т. 65. № 4. С. 702–716.
- Летникова Е.Ф., Школьник С.И., Летников Ф.А., Караковский Е.А., Костицын Ю.А., Вишневская И.А., Резницкий Л.З., Иванов А.В., Прошенкин А.И. Основные этапы тектоно-магматической активности

Тувино-Монгольского микроконтинента в докембрии: данные U-Pb датирования цирконов // ДАН. 2017. Т. 474. № 5. С. 599–604.

- Школьник С.И., Иванов А.В., Летникова Е.Ф., Аносова М.О. Источники сноса вендских высокоглиназемистых пород Тункинских гольцов, Восточный Саян: результаты изотопных, геохимических и минералогических исследований // Стратиграфия. Геол. корреляция. 2020. Т. 28. № 3. С. 27–47.
- Резницкий Л.З., Ковач В.П., Бараш И.Г., Плоткина Ю.В., Ван К.-Л., Чун С.-Л. Возраст и источники терригенных пород Джидинского террейна: результаты U–Th–Pb (LA-ICP-MS) геохронологических исследований детритовых цирконов // Стратиграфия. Геол. корреляция. 2018. Т. 26. № 5. С. 3– 29.
- Pfander J.A., Jochum K.P., Kozakov I., Kroner A., Todt W. Coupled evolution of back-arc and island arc – like mafic crust in the late – neoproterozoic Agardagh Tes-Chem ophiolite, Central Asia: evidence from trace element and Sr-Nd-Pb isotope data // Contrib. Mineral. Petrol. 2002. V. 143. P. 154–174.
- 15. *Ярмолюк В.В., Деетярев К.Е.* Докембрийские террейны Центрально-Азиатского орогенного пояса: сравнительная характеристика, типизация и особенности тектонической эволюции // Геотектоника. 2019. № 1. С. 3–43.
- 16. Изох А.Э., Владимиров А.Г., Ступаков С.И. Магматизм Агардагской шовной зоны (Юго-Восточная Тува) // Геолого-петрологические исследования Юго-Восточной Тувы. Новосибирск: ИГиГ СО АН СССР, 1988. С. 19–74.
- Павлов Н.В. Химический состав хромшпинелидов в связи с петрографическим составом пород ультраосновных интрузивов // Труды Геологического института РАН. 1949. Вып. 103. 91 с.
- Котляров А.В. Петрология офиолитовых ассоциаций Южной и Восточной Тувы. Дисс. ... канд. геол.-минерал. наук. Новосибирск: ИГМ СО РАН, 2010. 185 с.

EARLY CAMBRIAN DEPOSITS OF THE CONTINENTAL MARGIN (SOUTH OF TUVA, TEREGTIG FORMATION): RESULTS OF U-Pb DATING OF DETRITAL ZIRCONS AND Sr-CHEMOSTRATIGRAPHY

A. V. Ivanov^{*a*,#}, E. F. Letnikova^{*a*}, S. I. Shkolnik^{*b*}, Corresponding Member of the RAS A. V. Maslov^{*c*}, and N. I. Vetrova^{*a*}

^aSobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation ^bInstitute of the Earth's Crust Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation ^cInstitute of Geology Russian Academy of Sciences, Moscow, Russian Federation [#]E-mail: ivanovav@igm.nsc.ru

The sedimentation interval (530–520 Ma) of the Teregtig Formation deposits in southern Tuva is estimated based on U–Pb dating of detrital zircons from terrigenous deposits and Sr-chemostratigraphy of carbonate rocks. The main source area for clastic material, containing a large amount of detrital zircon grains, were rocks with an age of 580 Ma. The presence of a wide diversity of Precambrian detrital zircons indicates that sedimentation of the Teregtig Formation took place within a block of continental crust with a long evolutionary history. The presence of numerous chromites in their matrix indicates that the rocks of the Agardag ophiolite complex were also part of the eroded land during the accumulation of conglomerates of the Teregtig Formation.

Keywords: Early Paleozoic, Tuva, Sr-chemostratigraphy, U–Pb dating, zircon, chromite, continental margin, Agardag ophiolite complex