— МИНЕРАЛОГИЯ —

УДК 549.752.13+548.736.5+551.231 (571.66)

НОВАЯ РАЗНОВИДНОСТЬ ХЛАДНИИТА ИЗ ВУЛКАНИЧЕСКИХ ЭКСГАЛЯЦИЙ. ГЕНЕТИЧЕСКАЯ КРИСТАЛЛОХИМИЯ ХЛАДНИИТА

© 2023 г. Член-корреспондент РАН И. В. Пеков^{1,*}, Н. В. Зубкова¹, А. А. Агаханов², А. Г. Турчкова¹, Е. С. Житова³, академик РАН Д. Ю. Пущаровский¹

Поступило 20.06.2023 г. После доработки 28.06.2023 г. Принято к публикации 04.07.2023 г.

В эксгаляциях активной фумаролы Арсенатной (вулкан Толбачик, Камчатка) установлена новая, необычная по химическому составу разновидность редкого фосфата из группы филловита – хладниита, обогащенная As⁵⁺ и лишенная Fe. Она входит в состав высокотемпературного (500–750°C) парагенезиса с кальциойохиллеритом, фторапатитом, метатенардитом, диопсидом, энстатитом, форстеритом и гематитом. Это новый генетический тип для минералов группы филловита. Решена кристаллическая структура толбачинского хладниита, R1 = 4.32%. Минерал тригональный, R-3, a = 14.9831(2), c = 42.8050(7) Å, V = 8322.1(3) Å³. Структурная формула: M13 (Na_{0.56} $\square_{0.44}$) M21 (Na_{0.81}Ca_{0.19})₂ M31 (Na_{0.97} $\square_{0.03}$) ${}^{M12}_6$ (Ca_{0.64}Na_{0.36}) ${}^{M1}_6$ Mn^{M2}(Mg_{0.54}Ca_{0.46}) ${}^{M3-9}$ Mg₃₀ M10 (Mg_{0.94}Ca_{0.06}) ${}^{M11}_6$ Mg₆(P_{33.53}As_{2.47})O₁₄₄ (Z = 3). На материале всех находок хладниита в метеоритах и земных объектах разных генетических типов обсуждаются его кристаллохимические особенности и их связь с обстановками образования.

Ключевые слова: хладниит, группа филловита, фосфат, кристаллическая структура, фумарольные эксгаляции, вулкан Толбачик

DOI: 10.31857/S2686739723601485, EDN: WHMDIJ

Хладниит — минерал с идеализированной формулой Na₃CaMg₁₁[PO₄]₉ — относится к группе филловита, куда также входят филловит Na₃CaMn₁₁²⁺ [PO₄]₉, джонсомервиллит Na₃CaFe₁₁²⁺ [PO₄]₉ и галилейит Na₃Fe²⁺Fe₁₁²⁺ [PO₄]₉. Все эти изоструктурные фосфаты тригональные, пространственная группа *R*–3, a = 14.9-15.3, c = 41.7-43.3 Å [1–8]. Такая запись их формул, с 36 атомами О на формулу (Z = 12), утверждена Международной минералогической ассоциацией лишь в 2021 г. после принятия новой номенклатуры группы филловита [8], исходно же хладниит был описан в 1994 г. с формулой Na₂CaMg₇[PO₄]₆ (Z = 18) [3]. Также отметим, что сторнесит-(Y),

¹ Московский государственный университет имени М.В. Ломоносова, Геологический факультет, Москва, Россия охарактеризованный в 2006 г. в качестве нового минерала группы филловита с формулой (Y,Ca) \Box_2 Na₆(Ca,Na)₈(Mg,Fe)₄₃(PO₄)₃₆ (Z = 3) [6], был при разработке этой номенклатуры отнесен к редкоземельной разновидности хладниита и, соответственно, дискредитирован как самостоятельный минеральный вид [8].

Хладниит сначала был обнаружен в метеоритах — железных [3] и каменных [9], а затем и на Земле — в метаморфических породах [6] и в обогащенных фосфатами гранитных пегматитах [7, 8]. Химический состав образцов хладниита из объектов разного генезиса заметно различается (табл. 1).

Новая, необычная по химическому составу разновидность хладниита обнаружена нами в составе высокотемпературных фумарольных эксгаляций на вулкане Толбачик (Камчатка), а именно в фумароле Арсенатной на Втором шлаковом конусе Северного прорыва Большого трещинного Толбачинского извержения (БТТИ) 1975–1976 гг. Эта крупная активная фумарола окислительного типа, получившая известность благодаря уникальному разнообразию и своеобразию эксгаляционных минералов, охарактеризована, в т.ч. в аспекте минералого-геохимической зонально-

²Минералогический музей им. А.Е. Ферсмана Российской академии наук, Москва, Россия

³Институт вулканологии и сейсмологии

Дальневосточного отделения Российской академии наук, Петропавловск-Камчатский, Россия

^{*}E-mail: igorpekov@mail.ru

Гаолица 1. Лимический состав хладниита из метеоритов $(1-3)$ и земных объектов $(4-7)$							
N⁰	1	2	3	4	5	6	7
мас. %							
Na ₂ O	6.6	6.75	7.14	5.62	5.53	5.04	6.51 (6.19–6.81)
CaO	6.59	3.87	6.65	5.52	4.88	5.66	6.07 (5.82-6.45)
MgO	33.5	19.8	29.86	11.56	9.42	23.16	33.31 (32.68-33.87)
MnO	0.30	8.61	1.37	14.42	13.96	0.24	1.33 (1.11–1.52)
FeO	2.2	14.4	5.11	17.37	15.98	15.55	-
Fe ₂ O ₃					5.53		-
Y_2O_3						1.43	_
SiO ₂	0.59	_	0.63			0.02	_
P_2O_5	49.9	46.4	48.74	45.29	44.02	48.11	45.54 (44.86-46.65)
As ₂ O ₅							7.58 (6.38-8.37)
Сумма	99.68	99.89*	100.05*	100.15*	99.35*	99.53*	100.34
число атомов на формулу (а.ф.), рассчитанную на 36 атомов кислорода (Z = 12)							
Na	2.67	2.99	2.94	2.59	2.58	2.17	2.67
Ca	1.48	0.95	1.52	1.41	1.26	1.35	1.38
Mg	10.44	6.73	9.47	4.10	3.38	7.68	10.52
Mn	0.05	1.66	0.25	2.90	2.85	0.05	0.24
Fe ²⁺	0.38	2.75	0.91	3.45	3.22	2.89	-
Fe ³⁺					1.00		-
Y						0.17	_
Si	0.12	—	0.13			_	_
Р	8.83	8.96	8.78	9.11	8.97	9.05	8.17
As							0.84
ΣM	15.02	15.09	15.18	14.51	14.30	14.33	14.81
ΣT	8.95	8.96	8.91	9.11	8.97	9.06	9.01

Таблица 1. Химический состав хладниита из метеоритов (1-3) и земных объектов (4-7)

1 – железный метеорит Карлтон, Техас, США [3]; 2 – каменный метеорит GRA 95209, Вост. Антарктика [9]; 3 – железный метеорит Эльга, Якутия [10]; 4 – гранитный пегматит Таблада I, Кордоба, Аргентина [7]; 5 – гранитный пегматит Сапукайя, Минас Жерайс, Бразилия [8]; 6 – парагнейс, Ларсманн Хиллс, Вост. Антарктика: "сторнесит-(Y)" [6]; 7 – фумарола Арсенатная, вулкан Толбачик, Камчатка: наши данные (среднее по 13 анализам, в скобках – разброс значений). *В сумму анализа входят также (мас. %): 2 – NiO 0.06 (= 0.01 a.ф. Ni); 3 – TiO₂ 0.55 (= 0.09 a.ф. Ti); 4 – ZnO 0.37 (= 0.06 a.ф. Zn); 5 – K₂O 0.01, Al₂O₃ 0.02 (= 0.01 a.ф. Al); 6 – SrO 0.02, Yb₂O₃ 0.24 (= 0.02 a.ф. Yb), UO₂ 0.01, SO₃ 0.05 (= 0.01 a.ф. S). ΣM – сумма всех катионов металлов, $\Sigma T = P + As + Si + S$. Прочерк означает содержание компонента ниже предела обнаружения, пустая ячейка – нет данных.

сти, в [11]. Несмотря то что после окончания БТТИ прошло почти полвека, многочисленные фумаролы Второго конуса остаются активными, и температура газа, регулярно измерявшаяся нами в период 2012–2022 гг., в них достигает 500°С.

Хладниит найден в июле 2017 г в глубокой (около 3 м от дневной поверхности) наиболее горячей зоне фумаролы Арсенатной, в богато минерализованных полостях, где температура в момент отбора проб составляла 450—480°С. Этот минерал образует бесцветные водяно-прозрачные со стеклянным блеском изометричные или вытянутые кристаллы размером до 0.5 мм (рис. 1 а) и их ажурные сростки до 2 мм. Кристаллы хладниита (класс симметрии -3) образованы гранями двух гексагональных призм, нескольких ромбоэдров и пинакоида. Степень их совершенства разная — от достаточно четких многогранников (рис. 1 б) до грубых, иногда округлой формы индивидов. Они нарастают на стенки полостей, сложенные базальтовым шлаком, переработанным фумарольными газами. С хладниитом в составе эксгаляционных инкрустаций тесно ассоциируют Р-содержащий кальциойохиллерит NaCaMg₃[(As,P)O₄]₃, As-содержащий фторапатит Ca₅[(P,As)O₄]₃F, метатенардит, диопсид, энстатит, форстерит и гематит.

Рис. 1. Кристаллы хладниита из фумаролы Арсенатной (Толбачик): а – бесцветный кристалл размером 0.5 мм с бледно-сиреневым кальциойохиллеритом (фото: И.В. Пеков и А.В. Касаткин); б – сросток кристаллов (СЭМ-изображение во вторичных электронах).

Химический состав толбачинского хладниита определен электронно-зондовым методом на микроанализаторе JEOL 733 при ускоряющем напряжении 20 кВ и токе зонда 10 нА. Стандарты: Na – альбит, Mg – хромит, Ca – волластонит, Mn – Mn, P – LaPO₄, As – InAs. Содержания остальных элементов с атомными номерами >8 оказались ниже пределов обнаружения. Состав нашего образца приведен в табл. 1 (ан. 7) в сравнении с составами хладниита из других объектов. Все эмпирические формулы в табл. 1 рассчитаны по единой схеме в соответствии с действующей номенклатурой группы филловита [8].

Рентгеновское исследование монокристалла толбачинского хладниита выполнено на дифрактометре Xcalibur S CCD для полной сферы обратного пространства. Кристаллическая структура минерала определена и уточнена в программном комплексе SHELX [12] с использованием структурной модели филловита [2] в качестве исход-Кристаллографические характеристики, ной. данные монокристального эксперимента и параметры уточнения структуры приведены в табл. 2, координаты атомов, параметры атомных смещений, кратность и заселенность позиций – в табл. 3, межатомные расстояния – в табл. 4. Атомные позиции обозначены буквами М (катионы металлов), Р (тетраэдрически координированные компоненты) и О (атомы кислорода), согласно [8]. По результатам уточнения структуры получена кристаллохимическая формула (Z = 3): $^{M13}(Na_{0.56}\Box 0.44)_2^{M21}(Na_{0.81}Ca_{0.19})_2^{M31}(Na_{0.97}\Box 0.03)_6^{M12}$ $(Ca_{0.64}Na_{0.36})_6^{M1}Mn^{M2}(Mg_{0.54}Ca_{0.46})^{M3-9}Mg_{30}^{M10}(Mg_{0.94}$ Ca_{0.06})^{M11}Mg₆(P_{33.53}As_{2.47})O₁₄₄. Она хорошо соответствует электронно-зондовым данным (ан. 7 в табл. 1).

Атомная структура хладниита (рис. 2) топологически идентична структурам других членов группы филловита. Различия между ними заключаются в характере и степени заселенности позиций, а также в конфигурации М-центрированных полиэдров. Структурные особенности филловитоподобных соединений подробно описаны в [2] с использованием схемы гексагональной мозаики полиэдрических стержней, предложенной из П.Б. Муром [13]. В этих структурах выделяются три типа вытянутых вдоль оси с стержней (I, II и III) из полиэдров *М*-катионов и тетраэдров PO₄; стержни I и III разорванные, т.е. содержат вакансии (рис. 3). Как и у других структурно изученных образцов минералов группы филловита, у толбачинского хладниита стержень I состоит из соединенных по общим граням М-полиэдров и вакансий (□) в последовательности ^{VI}M1-□-^{VI}M3- $^{\text{VI}}M13 - ^{\text{IX}}M21 - ^{\text{VI}}M4 - ^{\text{VI}}M5 - \Box - ^{\text{VI}}M2 - \Box - ^{\text{VI}}M5 -$ ^{VI}*M*4-^{IX}*M*21-^{VI}*M*13-^{VI}*M*3-□ (римскими цифрами обозначены координационные числа М-катионов). Стержень II сформирован из соединенных через общие ребра и вершины M-полиздров в по-следовательности $V^{III}M12 - VM9 - VIIM31 - VIM8 - VIIIM31 - VIM8 - VIM8 - VIIIM31 - VIM8 - V$ $V_{III}M_{12}-V_{M9}-V_{II}M_{31}-V_{IM8}-V_{III}M_{12}-V_{M9}-V_{II}M_{31}-V_{II$ ^{VI}M8. а стержень III объединяет тетраэдры (P,As)O₄ (в него входят все шесть кристаллографически неэквивалентных тетраэдров Р: см. табл. 3), М-полиэдры и вакансии в последовательности P6-^VM11-P4-^{VI}M6-P1-□-P5-^{VI}M7- $P2-\Box-VIM10-P3-\Box$.

Ранее были структурно исследованы четыре образца хладниита [4, 6–8]. Они представляют его различные химические разновидности, по составу отвечающие ан. 1, 4, 5 и 6 в табл. 1. В табл. 5 мы привели сравнительные данные по заселенности позиций M во всех пяти структурно изученных образцах хладниита. Сравнивать заселение позиций Р смысла нет, поскольку для нашего образца эта информация дана в табл. 3, а во всех ранее исследованных образцах позиции Р заняты, по сути,

Формула (из структурных данных)	$Na_{10.71}Ca_{5.05}Mg_{42.18}Mn_{1.00}(P_{33.53}As_{2.47})O_{144}$
Формульный вес	5056.58
Температура, К	293 (2)
Излучение и длина волны, Å	Μο <i>Κ</i> α; 0.71073
Сингония, пространственная группа, Z	Тригональная, <i>R</i> -3, 3
Параметры элементарной ячейки, Å	a = 14.9831 (2)
	c = 42.8050 (7)
<i>V</i> , Å ³	8322.1 (3)
Расчетная плотность, г/см ³	3.027
Коэффициент поглощения µ, мм ⁻¹	2.037
F ₀₀₀	7459
Размеры кристалла, мм	$0.10 \times 0.11 \times 0.13$
Поправка на поглощение	мультискан
$\theta_{_{MИH}}/_{_{MAKC}}$, град	2.719 / 28.282
Интервалы сканирования	$-19 \le h \le 19, -19 \le k \le 19, -57 \le l \le 57$
Число измеренных рефлексов	48884
Число независимых рефлексов	$4584 \ (R_{\rm int} = 0.0653)$
Число независимых рефлексов [$I \ge 2\sigma(I)$]	4254
Метод уточнения	МНК по <i>F</i> ²
Число уточняемых параметров	374
$R\left[I \ge 2\sigma(I)\right]$	$R1 = 0.0432, wR2^* = 0.0663$
<i>R</i> (по всем данным)	$R1 = 0.0499, wR2^* = 0.0682$
GoF	1.242
$\Delta \rho_{\text{Marc}}/_{\text{Muh}}, e/Å^3$	0.80/-0.95

Таблица 2. Кристаллографические характеристики, данные монокристального эксперимента и параметры уточнения структуры толбачинского хладниита

* $w = 1/[\sigma^2(F_o^2) + (0.0098P)^2 + 58.1670P]; P = \{[\max \text{ of } (0 \text{ or } F_o^2)] + 2F_c^2\}/3.$

только атомами фосфора. Из табл. 5 видно, что крупные катионы (Na⁺, Ca²⁺, REE³⁺ и наиболее крупный из среднеразмерных – Mn²⁺) концентрируются в первую очередь в позициях M31, M21, M12, M13 и M1, причем полиэдр M13 демонстрирует явную тенденцию к вакансионности. Исключением в какой-то мере можно считать образец из гранитного пегматита Сапукайя в Бразилии [8], где в позициях М13 и М1, наоборот, преобладает самый малый катион Mg²⁺, а в *M*4 – крупный Na⁺. Такая инверсия может быть следствием искажения структуры в результате вхождения в минерал необычно большого общего количества Fe и Mn. В группе позиций M2-11 наиболее изоморфно емкими в отношении катионов крупнее Mg²⁺ можно считать *M*2, *M*6–7 и *M*9–11.

Из табл. 1 видны две главные индивидуальные особенности химического состава толбачинского фумарольного хладниита — значительное обогащение As, замещающим P, и отсутствие примеси Fe. Это позволяет выделить новую безжелезистую мышьяксодержащую разновидность минерала. Надо отметить, что в части катионов металлов (M) наш образец ближе к идеальной формуле Na₃CaMg₁₁[PO₄]₉, чем хладниит из всех ранее известных для этого минерала объектов: суммарное содержание примесей в M-позициях (т.е. любых M-катионов, кроме Na, Ca и Mg) в нем наименьшее. Эти примеси представлены в толбачинском хладниите только Mn (1.3 мас. % MnO), обособившимся в позиции M1 (табл. 1, 3 и 5).

Широкий изоморфизм между P^{5+} и As⁵⁺ характерен для многих минералов высокотемпературных парагенезисов толбачинских фумарол окислительного типа. Он зафиксирован здесь у представителей структурных типов апатита, титанита, вагнерита — см. обзор в [14]. В нашем случае интересно сравнить распределение P и As между тесно ассоциирующими (рис. 1 а) и, судя по их взаимоотношениям, одновременно кристаллизовавшимися P-содержащим арсенатом кальциойохиллеритом NaCaMg₃[(As,P)O₄]₃ и As-содержащим фосфатом

НОВАЯ РАЗНОВИДНОСТЬ ХЛАДНИИТА

Позиция	x	у	z	$U_{ m eq}$	s.o.f.	Q
<i>M</i> 1	0.0	0.0	0.0	0.0019(2)	Mn _{1.00}	3
<i>M</i> 2	0.0	0.0	0.5	0.0068(7)	$Mg_{0.54(2)}Ca_{0.46(2)}$	3
М3	0.0	0.0	0.10402(4)	0.0092(4)	$Mg_{1.00}$	6
<i>M</i> 4	0.0	0.0	0.32485(4)	0.0087(3)	$Mg_{1.00}$	6
<i>M</i> 5	0.0	0.0	0.39635(4)	0.0097(4)	$Mg_{1.00}$	6
<i>M</i> 6	0.43132(8)	0.25383(8)	0.05191(2)	0.0113(2)	$Mg_{1.00}$	18
<i>M</i> 7	0.11221(8)	0.57469(9)	0.03883(2)	0.0133(2)	$Mg_{1.00}$	18
<i>M</i> 8	0.00275(8)	0.32325(8)	0.08160(2)	0.0079(2)	$Mg_{1.00}$	18
<i>M</i> 9	0.25978(8)	0.32750(8)	0.08609(2)	0.0075(2)	$Mg_{1.00}$	18
<i>M</i> 10	0.57631(9)	0.08057(8)	0.12418(3)	0.0173(4)	$Mg_{0.940(9)}Ca_{0.060(9)}$	18
M 11	0.22464(9)	0.11063(9)	0.13516(3)	0.0201(3)	$Mg_{1.00}$	18
<i>M</i> 12	0.26710(6)	0.29378(6)	0.00023(2)	0.0141(3)	$Ca_{0.642(8)}Na_{0.358(8)}$	18
<i>M</i> 13	0.0	0.0	0.17628(9)	0.0134(13)	$Na_{0.559(10)}$	6
<i>M</i> 21	0.0	0.0	0.24680(5)	0.0199(8)	$Na_{0.811(15)}Ca_{0.189(15)}$	6
<i>M</i> 31	0.07871(12)	0.42914(12)	0.16524(3)	0.0215(5)	$Na_{0.970(6)}$	18
P1	0.18953(5)	0.43443(5)	0.02798(2)	0.0041(2)	$P_{0.959(3)}As_{0.041(3)}$	18
P2	0.53166(5)	0.11541(5)	0.03808(2)	0.0052(2)	$P_{0.963(3)}As_{0.037(3)}$	18
P3	0.54602(5)	0.09218(5)	0.19939(2)	0.0069(2)	$P_{0.880(3)}As_{0.120(3)}$	18
P4	0.22049(5)	0.12694(5)	0.21050(2)	0.0082(2)	$P_{0.918(3)}As_{0.082(3)}$	18
P5	0.22395(5)	0.46069(5)	0.22280(2)	0.0053(2)	$P_{0.919(3)}As_{0.081(3)}$	18
P6	0.46773(5)	0.21493(5)	0.27830(2)	0.0073(2)	$P_{0.949(3)}As_{0.051(3)}$	18
O1	0.16194(16)	0.38256(16)	-0.00461(5)	0.0105(4)	O _{1.00}	18
O2	0.25342(17)	0.55422(16)	0.02566(5)	0.0127(4)	O _{1.00}	18
O3	0.25529(17)	0.39725(17)	0.04559(5)	0.0129(5)	O _{1.00}	18
O4	0.08795(16)	0.41008(17)	0.04439(5)	0.0127(5)	O _{1.00}	18
05	0.45555(16)	0.13013(16)	0.05876(5)	0.0123(4)	O _{1.00}	18
O6	0.55428(17)	0.03310(17)	0.05076(5)	0.0140(5)	O _{1.00}	18
O7	0.63883(16)	0.21713(16)	0.03847(5)	0.0109(4)	O _{1.00}	18
O8	0.48914(18)	0.09298(17)	0.00463(5)	0.0145(5)	O _{1.00}	18
O9	0.54310(17)	0.03150(17)	0.16981(5)	0.0151(5)	O _{1.00}	18
O10	0.63619(17)	0.20551(17)	0.19844(5)	0.0158(5)	O _{1.00}	18
O11	0.44108(17)	0.09176(17)	0.20202(5)	0.0136(5)	O _{1.00}	18
O12	0.54856(17)	0.03495(17)	0.22982(5)	0.0136(5)	O _{1.00}	18
O13	0.2373(2)	0.0844(2)	0.18007(6)	0.0319(7)	O _{1.00}	18
O14	0.12780(17)	0.14360(18)	0.20868(6)	0.0180(5)	O _{1.00}	18
O15	0.89277(16)	0.23562(16)	0.11435(5)	0.0120(4)	O _{1.00}	18
O16	0.19575(18)	0.04031(17)	0.23535(5)	0.0174(5)	O _{1.00}	18
O17	0.26663(18)	0.52752(18)	0.19388(5)	0.0175(5)	O _{1.00}	18
O18	0.10209(16)	0.39550(17)	0.22111(5)	0.0128(5)	O _{1.00}	18
O19	0.25454(17)	0.37565(17)	0.22366(5)	0.0129(5)	O _{1.00}	18
O20	0.25269(16)	0.52438(16)	0.25364(5)	0.0112(4)	O _{1.00}	18
O21	0.5310(2)	0.2434(2)	0.24820(7)	0.0329(7)	O _{1.00}	18
O22	0.37674(16)	0.10017(16)	0.27302(5)	0.0131(5)	O _{1.00}	18
O23	0.41992(18)	0.28365(17)	0.28296(5)	0.0153(5)	O _{1.00}	18
O24	0.5236(2)	0.2113(2)	0.30744(7)	0.0320(7)	O _{1.00}	18

Таблица 3. Координаты и эквивалентные параметры смещений (U_{eq} , Å²) атомов, заселенность (s.o.f.) и кратность (Q) позиций в структуре толбачинского хладниита

Таблица 4. Избранные межатомные расстояния (Å) в структуре толбачинского хладниита

аолица 4. изоран	пные межатомные р	асстояния (А) в ст	руктуре толоачине	кого хладниита	
<i>M</i> 1 – O24	$2.290(3) \times 6$	<i>M</i> 9 – O18	2.002(2)	<i>M</i> 31 – O9	2.319(3)
		- O22	2.014(2)	- O17	2.460(3)
M2 - O17	$2.149(2) \times 6$	- O3	2.042(2)	- O18	2.505(3)
		- O12	2.080(2)	- O19	2.511(3)
<i>M</i> 3 – O21	$1.965(3) \times 3$	- O11	2.238(2)	- O9	2.516(3)
- O10	2.179(2) × 3			- O11	2.716(3)
		<i>M</i> 10 – O14	1.977(2)	- O17	2.730(3)
M4 - O7	2.031(2) × 3	- O9	2.058(3)		
-O2	$2.096(2) \times 3$	- O16	2.088(3)	P1 – O4	1.545(2)
		- O18	2.119(2)	- O3	1.549(2)
M5 - O20	$1.985(2) \times 3$	- O19	2.302(3)	- O1	1.549(2)
-O2	2.193(2) × 3	- O13	2.594(3)	- O2	1.559(2)
<i>M</i> 6 – O22	2.014(2)	<i>M</i> 11 – O11	1.962(2)	P2 – O6	1.532(2)
-O7	2.056(2)	- O13	1.990(3)	- O8	1.535(2)
- O16	2.059(3)	- O15	2.006(2)	- O5	1.544(2)
- O5	2.080(2)	- O10	2.019(3)	- O7	1.567(2)
- O1	2.125(2)	- O21	2.459(3)		
- O6	2.594(2)			P3 – O9	1.547(2)
		<i>M</i> 12 – O23	2.356(2)	- O10	1.554(2)
<i>M</i> 7 – O8	1.965(2)	- O1	2.475(2)	- O12	1.570(2)
- O6	1.974(2)	- O1	2.528(2)	- O11	1.573(2)
- O20	2.031(2)	- O3	2.546(2)		
- O4	2.319(2)	- O24	2.550(3)	P4 O13	1.525(3)
- O2	2.353(2)	- O8	2.586(2)	P4 O14	1.531(2)
- O3	2.374(3)	- O4	2.740(2)	P4 O15	1.561(2)
		- O22	2.805(2)	P4 O16	1.572(2)
M8 - O4	2.049(2)				
- O15	2.059(2)	<i>M</i> 13 – O14	$2.470(3) \times 3$	P5 O17	1.518(2)
- O23	2.120(2)	- O10	$2.478(4) \times 3$	P5 O19	1.555(2)
- O19	2.120(2)			P5 O20	1.558(2)
- O12	2.157(2)	<i>M</i> 21 – O7	$2.591(3) \times 3$	P5 O18	1.584(2)
- O5	2.233(2)	- O14	2.615(3) × 3		
		- O16	$2.727(2) \times 3$	P6 O24	1.518(3)
				P6 O21	1.529(3)
				P6 O23	1.533(2)
				P6 O22	1.588(2)
		-			

хладниитом $Na_3CaMg_{11}[(P,As)O_4]_9$. Эти оксосоли имеют один и тот же набор катионов металлов, но первый относится к структурному типу аллюодита [15], а второй — филловита. Их парагенезис четко указывает на относительное сродство этих структурных типов к As и P соответственно.

Толбачинский хладниит интересен не только необычными химическими особенностями и тем, что здесь найдены крупнейшие обособления этого минерала и впервые встречены его хорошо ограненные кристаллы. Вулканические эксгаляции – новый генетический тип в целом для минералов группы филловита, находки которых ранее были известны только в метеоритах (все члены группы), гранитных пегматитах (филловит, джонсомервиллит, Fe–Mn-разновидности хладниита) и метаморфических породах (джонсомервиллит, Fe–*REE*-разновидность хладниита). Фу-

Рис. 2. Кристаллическая структура толбачинского хладниита. Мд-доминантные полиэдры (*M*2–11) синие, Са-доминатный (*M*12) темно-зеленый, Nа-доминантные (*M*13, *M*21 и *M*31) светло-зеленые. Жирной черной линией показана элементарная ячейка.

маролы окислительного типа на Толбачике характеризуются сочетанием высоких температуры и фугитивности кислорода с атмосферным давлением. По данным [11], кристаллизация минералов в зоне, где найден хладниит, происходила в

температурном интервале 500-750°С. Именно окислительная среда обусловила главные индивидуальные особенности минерала из этого объекта – существенную примесь As⁵⁺ и "стерильность" в отношении железа, в отличие от всех других объектов, как земных, так и внеземных, где Fe²⁺ выступает главным примесным компонентом в этом фосфате (табл. 1). Практически все железо в фумарольных инкрустациях, содержащих хладниит, сосредоточено в гематите. В то же время марганец в хладниите двухвалентен, на что четко указывают межатомные расстояния М1-О (табл. 4), т.е. эту обстановку нельзя назвать предельно окислительной. Отметим, что при близких РТ-параметрах, но в резко восстановительной обстановке, в горящем отвале угольной шахты в Копейске (Ю. Урал) образовался техногенный аналог галилейита Na₃Fe²⁺₁₂(PO₄)₉ [16] члена группы филловита, наиболее богатого Fe²⁺.

В целом состав хладниита хорошо отражает химизм минералообразующей системы, что уже отмечалось, хотя и на менее представительном, чем сейчас, материале, в [7]. Так, образцы из гранитных пегматитов наиболее богаты одновременно Fe и Mn, из метаморфических пород — обога-

Рис. 3. Полиэдрические стержни в структуре хладниита.

Позиция	метеорит Карлтон, Техас, США*	парагнейс, Ларсманн Хиллс, Вост. Антарктика	гранитный пегматит Таблада I, Кордоба, Аргентина	гранитный пегматит Сапукайя, Минас Жерайс, Бразилия	фумарола Арсенатная, вулкан Толбачик, Камчатка
<i>M</i> 1	Ca _{1.00}	$Y_{0.68}Ca_{0.26}Yb_{0.06}$	$Mn_{0.59}Fe_{0.20}^{2+}Ca_{0.18}Mg_{0.03}$	$Mg_{0.60}Mn_{0.40}$	Mn _{1.00}
<i>M</i> 2	$Mg_{1.00}$	$Fe_{0.51}^{2+}Mg_{0.49}$	$Mg_{0.80}Mn_{0.11}Ca_{0.09}$	$Mn_{0.54}Fe_{0.46}^{2+}$	$Mg_{0.54}Ca_{0.46}$
М3	Mg _{1.00}	$Mg_{0.97}Fe_{0.03}^{2+}$	$Mg_{0.94}Fe_{0.06}^{2+}$	$Mg_{0.90}Fe_{0.10}^{2+}$	$Mg_{1.00}$
<i>M</i> 4	$Mg_{1.00}$	$Mg_{0.97}Fe_{0.03}^{2+}$	$Mg_{0.92}Fe_{0.08}^{3+}$	Na _{0.90} □ _{0.10}	$Mg_{1.00}$
<i>M</i> 5	Mg _{1.00}	$Mg_{1.00}$	Mg _{0.96} Ca _{0.04}	$Mg_{0.70}Fe_{0.30}^{3+}$	Mg _{1.00}
<i>M</i> 6	Mg _{1.00}	$Mg_{0.72}Fe_{0.28}^{2+}$	$Fe_{0.50}^{2+}Mg_{0.40}Fe_{0.10}^{3+}$	$Fe_{0.60}^{2+}Mg_{0.20}Ca_{0.20}$	Mg _{1.00}
<i>M</i> 7	Mg _{1.00}	$Mg_{0.545}Fe_{0.455}^{2+}$	$Mn_{0.69}Ca_{0.15}Mg_{0.12}Zn_{0.04}$	$Mn_{0.50}Mg_{0.40}Fe_{0.10}^{2+}$	$Mg_{1.00}$
<i>M</i> 8	Mg _{1.00}	$Mg_{0.89}Fe_{0.11}^{2+}$	$Mg_{0.56}Mn_{0.37}Ca_{0.07}$	$Mg_{0.50}Fe_{0.50}^{2+}$	$Mg_{1.00}$
M9	Mg _{1.00}	$Mg_{0.63}Fe_{0.37}^{2+}$	$Fe_{0.46}^{2+}Mg_{0.30}Fe_{0.20}^{3+}Mn_{0.04}$	$Mn_{0.50}Fe_{0.30}^{2+}Mg_{0.20}$	$Mg_{1.00}$
<i>M</i> 10	Mg _{1.00}	$Mg_{0.79}Fe_{0.21}^{2+}$	$Mn_{0.68}Fe_{0.20}^{2+}\Box_{0.12}$	$Mn_{0.80}Mg_{0.20}$	$Mg_{0.94}Ca_{0.06}$
M 11	$Mg_{1.00}$	$Mg_{0.67}Fe_{0.33}^{2+}$	$Fe_{0.71}^{2+}Mg_{0.29}$	$Fe_{0.60}^{2+}Na_{0.20}Fe_{0.10}^{3+}Ca_{0.10}$	$Mg_{1.00}$
<i>M</i> 12	Ca _{0.69} Na _{0.31}	Ca _{0.58} Na _{0.42}	Ca _{0.65} Na _{0.35}	Na _{1.00}	Ca _{0.64} Na _{0.36}
<i>M</i> 13	Na _{0.81} □ _{0.19}	$\square_{0.94}$ Na _{0.06}	$\square_{0.52}$ Na _{0.48}	$Mg_{0.60}Fe_{0.40}^{3+}$	Na _{0.56} □ _{0.44}
<i>M</i> 21	Na _{1.00}	Ca _{0.68} Na _{0.32}	$Na_{0.60}Mn_{0.25}\Box_{0.15}$	Na _{0.90} Ca _{0.10}	Na _{0.81} Ca _{0.19}
<i>M</i> 31	Na _{1.00}	Na _{1.00}	Na _{0.98} □ _{0.02}	$Ca_{0.50}\square_{0.35}Fe_{0.15}^{3+}$	Na _{0.97} □ _{0.03}
Источник	[4]	[6]	[7]	[8]	наши данные

Таблица 5. Распределение катионов по *М*-позициям в структурно изученных образцах хладниита из разных объектов

* При уточнении структуры существенная примесь Fe (см. табл. 1) была авторами [4] проигнорирована. Судя по значениям параметров атомных смещений, приведенным в этой работе, железо, вероятно, входит в *M*2, а в меньшей степени в *M*9, *M*5 и *M*7.

щены Fe и *REE* (Y), однако обеднены Mn, в метеоритах присутствует высокомагнезиальная, но все равно с ощутимой примесью Fe (а в каменных – еще и Mn) разновидность, тогда как кристаллизовавшийся в фумарольной системе окислительного типа хладниит совсем лишен Fe, но содержит As⁵⁺ (табл. 1).

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при поддержке РНФ, грант 19-17-00050.

СПИСОК ЛИТЕРАТУРЫ

1. *Livingstone A*. Johnsomervilleite, a new transition-metal phosphate mineral from the Loch Quoich area, Scotland // Mineral. Mag. 1980. V. 43. P. 833–836.

- Araki T., Moore P.B. Fillowite, Na₂Ca(Mn,Fe)₇(PO₄)₆: its crystal structure // Amer. Mineral. 1981. V. 66. P. 827–842.
- McCoy T.J., Steele I.M., Keil K., Leonard B.F., Endreb M. Chladniite, Na₂CaMg₇(PO₄)₆: A new mineral from the Carlton (IIICD) iron meteorite // Amer. Mineral. 1994. V. 79. P. 375–380.
- Steele I.M. Crystal structure of chladniite, Na₂CaMg₇(PO₄)₆, from Carlton (IIICD) iron meteorite // 25th Lunar and Planetary Science Conference (LPSC XXV). 1994. P. 1337–1338.
- Olsen E.J., Steele I.M. Galileiite: A new meteoritic phosphate mineral // Meteorit. Planet. Sci. 1997. V. 32. P. A155–A156.
- Grew E., Armbruster Th., Medenbach O., Yates M.G., Carson C.J. Stornesite-(Y), (Y,Ca)□₂Na₆(Ca,Na)₈ (Mg,Fe)₄₃(PO₄)₃₆, the first terrestrial Mg-dominant member of the fillowite group, from granulite-facies paragneiss in the Larsemann Hills, Prydz Bay, East Antarctica // Amer. Mineral. 2006. V. 91. P. 1412– 1424.

- Vallcorba O., Casas L., Colombo F., Frontera C., Rius J. First terrestrial occurrence of the complex phosphate chladniite: crystal-structure refinement by synchrotron through-the-substrate microdiffraction // Eur. J. Mineral. 2017. V. 29. P. 287–293.
- Hatert F., Grew E.S., Vignola P., Rotiroti N., Nestola F., Keller P., Baijot M., Bruni Y., Fransolet A.-M., Dal Bo F., Depret M. Crystal chemistry and nomenclature of fillowite-type phosphates // Can. Mineral. 2021. V. 59. P. 781–796.
- Floss C. Fe,Mg,Mn-bearing phosphates in the GRA 95209 meteorite: Occurrences and mineral chemistry // Amer. Mineral. 1999. V. 84. P. 1354–1359.
- Litasov K.D., Podgornykh N.M. Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite // J. Raman Spectr. 2017. V. 48. P. 1518–1527.
- 11. Pekov I.V., Koshlyakova N.N., Zubkova N.V., Lykova I.S., Britvin S.N., Yapaskurt V.O., Agakhanov A.A., Shchipalkina N.V., Turchkova A.G., Sidorov E.G. Fumarolic

arsenates – A special type of arsenic mineralization // Eur. J. Mineral. 2018. V. 30. P. 305–322.

- 12. *Sheldrick G.M.* Crystal structure refinement with SHELXL // Acta Cryst. 2015. V. C71. P. 3–8.
- Moore P.B. Complex crystal structures related to glaserite, K₃Na(SO₄)₂: evidence for very dense packings among oxysalts // Bull. Minéral. 1981. V. 104. P. 536– 547.
- 14. Кошлякова Н.Н., Пеков И.В., Вигасина М.Ф., Агаханов А.А., Назарова М.А. Новый изоморфный ряд вагнерит–арсеновагнерит // Докл. РАН. Науки о Земле. 2022. Т. 507. № 1. С. 56–60.
- Hatert F. A new nomenclature scheme for the alluaudite supergroup // Eur. J. Mineral. 2019. V. 31. P. 807–822.
- 16. Шарыгин В.В. Фосфатные включения в когените из "черных блоков" террикона шахты 45 г. Копейска, Челябинский угольный бассейн // Минералогия техногенеза. 2016. Миасс, 2016. С. 34–54.

A NEW VARIETY OF CHLADNIITE FROM VOLCANIC EXHALATIONS. GENETIC CRYSTAL CHEMISTRY OF CHLADNIITE

Corresponding Member of the RAS I. V. Pekov^{*a*,#}, N. V. Zubkova^{*a*}, A. A. Agakhanov^{*b*}, A. G. Turchkova^{*a*}, E. S. Zhitova^{*c*}, and Academician of the RAS D. Yu. Pushcharovsky^{*a*}

^aLomonosov Moscow State University, Faculty of Geology, Moscow, Russian Federation ^bFersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russian Federation ^cInstitute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Petropavlovsk-Kamchatsky, Russian Federation

[#]E-mail: igorpekov@mail.ru

A new, unusual Fe-free and As⁵⁺-enriched variety of chladniite, a rare phosphate of the fillowite group was found in exhalations of the active Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. It belongs to the high-temperature (500–750°C) paragenesis with calciojohillerite, fluorapatite, metathénardite, diopside, enstatite, forsterite and hematite. This genetic type is novel for fillowite-group minerals. The crystal structure of Tolbachik chladniite is solved, R1 = 4.32%. It is trigonal, R-3, a = 14.9831(2), c = 42.8050(7) Å, V = 8322.1(3) Å³. The structural formula is: ${}^{M13}(\text{Na}_{0.56}\Box_{0.44}){}^{M21}_2(\text{Na}_{0.81}\text{Ca}_{0.19}){}^{M12}_2(\text{Na}_{0.64}\text{Na}_{0.36}){}^{M1}_6\text{Mn}{}^{M2}(\text{Mg}_{0.54}\text{Ca}_{0.46}){}^{M3-9}\text{Mg}{}^{M10}_{30}(\text{Mg}_{0.94}\text{Ca}_{0.06}){}^{M11}_6\text{Mg}(\text{P}_{33.53}\text{As}_{2.47})\text{O}_{144}$ (Z = 3). The crystal chemical features of chladniite and their correlation with mode of occurrence are discussed for all chladniite findings known in meteorites and terrestrial objects of different genetic types.

Keywords: chladniite, fillowite group, phosphate, crystal structure, fumarolic sublimates, Tolbachik volcano