— МИНЕРАЛОГИЯ — —

УДК 548.3; 553.21

НОВОЕ СЕМЕЙСТВО ПОЛИТИПНЫХ СОЕДИНЕНИЙ Pd_8T_3 (T = As, Sb)

© 2023 г. О. В. Каримова^{1,*}, А. А. Межуева¹, член-корреспондент РАН Н. Н. Еремин²

Поступило 01.09.2023 г. После доработки 10.09.2023 г. Принято к публикации 11.09.2023 г.

Политипия структур соединений Pd_8T_3 (T = As, Sb) выявлена с помощью метода графов. Проанализированы топология слоев и закономерность в последовательности их чередования. Рассматриваются упорядочение атомов сурьмы и мышьяка по позициям в узлах слоев-сеток и позиционный беспорядок в последовательности чередования слоев, которые приводят к образованию разных структурных политипов.

Ключевые слова: графы, двумерные сетки, плотнейшая упаковка, структуры внедрения, упорядочение, порядок-беспорядок, позиционный беспорядок, политипия, соединения палладия **DOI:** 10.31857/S2686739723601990, **EDN:** UOPVPL

ВВЕДЕНИЕ

На примере структур группы соединений с общей формулой Pd_8T_3 (T = As, Sb) рассматривается применение графов для описания и анализа структур минералов платиноидов. В рассматриваемую группу входят: минералы стилватерит, Pd_8As_3 [1], арсенопалладинит, $Pd_8As_{2.5}Sb_{0.5}$ [2], мертиит, $Pd_8Sb_{2.5}As_{0.5}$ [3] и синтетическая фаза Pd_8Sb_3 [4, 5] (табл. 1).

Соединения ряда составов $Pd_8As_3 - Pd_8Sb_3$ характеризуются отсутствием полной изоморфной смесимости. В зависимости от соотношения содержания As/Sb в составе минерала меняется его структура. В ряду $Pd_8As_3 - Pd_8Sb_3$ реализуются три структурных типа: Pd_8As_3 , $Pd_8As_{2.5}Sb_{0.5}$ и Pd_8Sb_3 , которые обладают как общими чертами строения, так и характерными отличиями.

Структуры этих соединений могут быть описаны как производные внедрения от плотнейшей упаковки, образованной атомами пниктогенами – мышьяка либо сурьмы, пустоты которой заполнены атомами палладия.

Теория плотнейших упаковок применялась к описанию структур минералов многими авторами. Среди них особо хочется отметить так называемую "Синюю книгу" Н.В. Белова "Структуры ионных кристаллов и металлических фаз" [6]. Белов рассмотрел возможные варианты чередова-

Таблица 1	I. Кристаллохимические характеристики	co-
единений	а семейства Pd_8T_3 ($T = As, Sb$)	

Соединение	Сингония, простр. группа	Параметры элементарной ячейки	
Стилватерит Pd ₈ As ₃	Гексагональная Р 3	a = 7.4261, c = 10.3097 Å, $V = 492.38 \text{ Å}^3,$ Z = 3	
Арсенопал- ладинит Pd ₈ As _{2.5} Sb _{0.5}	Триклинная <i>Р</i> 1	$a = 7.3344,b = 7.3870,c = 7.5255 Å,a = 98.869,\beta = 102.566,\gamma = 119.096°,V = 331.19 Å3,Z = 2$	
Мертиит Pd ₈ Sb _{2.5} As _{0.5}	Гексагональная R 3с	a = 7.5172, c = 43.037 Å, $V = 2106.1 \text{ Å}^3,$ Z = 12	
Pd ₈ Sb ₃	Гексагональная <i>R</i> 3с	a = 7.6152, c = 43.032 Å, $V = 2161.1 \text{ Å}^3,$ Z = 12	

¹Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук, Москва, Россия ²Московский государственный университет имени М.В. Ломоносова, Москва, Россия

^{*}*E*-mail: oxana.karimova@gmail.com

ния слоев плотнейших упаковок и описал простые бинарные соединения преимущественно с ионным типом связи. Развитием идей Белова применительно к большому числу минеральных видов являются труды Лима-Де-Фария [7–11]. Томсон вводит количественный параметр для оценки дисторсии "анионного скелета" плотнейшей упаковки от идеального в структурах силикатов [12].

Примеров описания структур минералов и синтетических соединений в виде сеток и графов в кристаллохимии множество. Не ставя задачу процитировать их все, приведем здесь некоторые, на наш взгляд, ключевые примеры. В 1954 г. Вельс использовал понятие сеток в описании и систематике структур соединений [13, 14]. Автор приводит основные принципы выделения трехмерных сеток в структурах — сети соединенных между собой точек с трехмерной периодичностью: 1) каждая точка соединена с тремя соседними, 2) расстояние между двумя соединенными точками всегда меньше, чем до любой другой, 3) сеть не имеет петель.

Теория графов применялась Смитом и Ринальди для описания тетраэдрических каркасов [15, 16]. Принципы, разработанные Смитом, послужили основой систематики, охватывающей огромное количество синтетических силикатов со структурами каркасного типа, построенными из колец связанных вершинами тетраэдров. Речь идет о цеолитах, которые благодаря наличию в их каркасах каналов, способных вмещать не только атомы, но и целые молекулы, нашли обширное практическое применение в качестве молекулярных сит.

Мур [17] и Хауторн [18] использовали графы для описания минералов. Для природных соединений некоторых классов, таких как фосфаты и сульфаты, характерно отсутствие полимеризации анионных полиэдров. Поэтому Мур при разработке систематики фосфатов опирался на выделение кластеров из октаэдрически координированных катионов, рассматривая степень их полимеризации, типы сочленения, а также типы соединения катионных октаэдров и анионных тетраэдров. Хауторн [18, 19] проводит топологический анализ типов объединения октаэдрических и тетраэдрических полиэдров в кластеры в структурах оксидов и оксисолей и описывает их с помощью графов.

МЕТОДИКА

В предлагаемом нами подходе к описанию структур палладиевых минералов структуры "раскладываются" на слои-сетки из атомов. Выбор такого описания для палладиевых минералов группы Pd_8T_3 (T = As, Sb) обусловлен особенно-

стью их строения и характером химической связи. Атомы палладия и мышьяка (либо сурьмы) распределены по разным слоям в структуре, которые параллельны плоскости *ab* и чередуются вдоль оси *c* в разных соотношениях. Если рассматривать атомы в качестве узлов сетки и соединить между собой ближайшие узлы (все атомы, принадлежащие одному слою) линиями связности – образуется сетка. Геометрия распределения линий и узлов в сетке – определяет топологию слоя атомов. По сути, такая сетка представляет собой двумерный граф. Структура соединения в целом описывается в виде набора сеток с определенной последовательностью их укладки.

Аналогичный принцип использовался в систематике Пирсона [20], которая на наш взгляд является наиболее фундаментальным обобщением в области кристаллохимии соединений с металлическим типом связи — интерметаллидов. Пирсон проанализировал кристаллохимические свойства и систематизировал строение более 500 металлических фаз на основе выделения сеток атомов.

Выделение сеток атомов и анализ их топологии позволяют формализовать описание структуры и выявить закономерности в строении минералов палладия. Рассмотрим структуры соединений семейства Pd_8T_3 (T = As, Sb).

Слои атомов мышьяка и сурьмы имеют одинаковую топологию во всех структурах ряда Pd₈As₃— Pd₈Sb₃: это треугольные сетки 3⁶. Именно такую топологию имеют слои в плотнейших упаковках расположение шаров, образующих упаковку, соответствует расположению узлов сетки 3⁶. Схематическое изображение сеток представлено на рис. 1.

Структуры семейства Pd_8T_3 (T = As, Sb) образованы двумя типами треугольных сеток пниктогенов. Узлы сеток Т заселены либо атомами мышьяка, либо атомами сурьмы. В сетках первого типа узлы не эквивалентны – имеют разную симметрию (узлы Т2 и Т3 на рис. 1), таким сеткам присвоен буквенный код "А". Именно в этих слоях в позиции ТЗ располагаются атомы примесного компонента. В сетках второго типа все узлы (узлы T1 на рис. 1) эквивалентны и заняты одним сортом атомов. Таким сеткам присвоен буквенный код "В". Развернутая кристаллохимическая формула соединений данной группы записывается в виде: Pd₈*T*1_{1.5}*T*2₁*T*3_{0.5}. Слои *A* и *B* отличаются также симметрией, и характеризуются разными группами двумерной симметрии (табл. 2).

В общем виде возможны несколько вариантов заселения узлов сеток атомами двух сортов. В структурах крайних членов все узлы сеток заняты атомами одного сорта. В соединениях, содержащих примесь второго компонента, реализуется разная степень порядка—беспорядка. При полном разупорядочении примесь атомов второго

Рис. 1. Схематическое изображение сеток из атомов пниктогенов в соединениях семейства Рd₈T₃.

сорта распределяется по всем позициям T в структуре. При полном упорядочении примесь занимает полностью только одну из трех позиций T. Также при достаточной концентрации примеси возможен вариант, когда одна позиция занята атомами одного сорта, вторая атомами другого сорта, а третья — атомами двух сортов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Четыре варианта заполнения узлов сеток атомами мышьяка и сурьмы реализуются в структурах Pd_8T_3 (T = As, Sb) (табл. 3). Все узлы заселены атомами мышьяка в структуре стилватерита: $Pd_8As1_{1.5}As2_1As3_{0.5}$. Все узлы заняты атомами сурьмы в структуре фазы $Pd_8Sb1_{1.5}Sb2_1Sb3_{0.5}$. Одна позиция из трех возможных занята атомами мышьяка в мертиите — $Pd_8Sb_{1.5}Sb_1As_{0.5}$. Одна из трех позиций занята атомами сурьмы в структуре арсенопалладинита $Pd_8(As1_1As1'_{0.5})As2_1Sb3_{0.5}$.

Слои атомов мышьяка и сурьмы в структурах данного семейства расположены параллельно плоскости *ab* элементарной ячейки. Слои разного типа *A* и *B* чередуются вдоль оси *c* ячейки (рис. 2).

Последовательность чередования слоев пниктогенов в структуре мышьяковой разновидности минерале стилватерите — трехслойная, искаженная кубическая: *ABB*... (рис. 2, табл. 4).

В структурах соединений Pd_8T_3 , содержащих в составе сурьму, последовательность чередования слоев пниктогенов иная: она является производной от гексагональной двухслойной плотнейшей упаковки: *АВАВАВ*... В структуре арсенопалладинита в элементарной ячейке содержится два слоя пниктогенов – *АВ*... (рис. 2, табл. 4). Но "идеальная" гексагональная плотнейшая упаковка иска-

жена — атомы мышьяка и сурьмы смещены из высокосимметричных позиций — структура триклинная, сохраняется лишь общая топология слоя 3⁶.

В структурах мертиита, Pd₈Sb_{2.5}As_{0.5}, и в чисто сурьмяной разновидности, фазе Pd₈Sb₃, наблюдается явление позиционного беспорядка. Эти соединения изоструктурны, и обладают ячейкой с 12-слойной последовательностью укладки сеток пниктогенов: *ABA'B'A'BAB'A'B''A'B*... (рис. 2, табл. 4). Происходит смещение слоев пниктогенов в плоскости *ab* друг относительно друга, и только тринадцатый слой повторяет первый.

Величина параметра с элементарной ячейки соединений этого семейства пропорциональна расстоянию между двумя соседними слоями пниктогенов, которое равно примерно 3.7 Å. В стилватерите, имеющем три слоя пниктогенов в элементарной ячейке, параметр *с* ячейки равен 10.311 Å. Арсенопалладинит содержит два слоя атомов пниктогенов в ячейке, соответственно параметр *с* ячейки равен 7.5255 Å. В мертиите и фазе Pd_8Sb_3 содержится 12 слоев атомов мышьяка и

Таблица 2. Симметрия сеток пниктогенов в структурах семейства Pd_8T_3 (T = As, Sb)

Соелицение	Симметрия слоя			
Соединение	А сетка	<i>В</i> сетка		
Стилватерит Pd ₈ As ₃	p32	<i>p</i> 3		
Арсенопалладинит $Pd_8As_{2.5}Sb_{0.5}$	<i>p</i> 2	<i>p</i> 2		
Мертиит Pd ₈ Sb _{2.5} As _{0.5}	p3m	<i>p</i> 3		
Pd ₈ Sb ₃	p3m	<i>p</i> 3		

НОВОЕ СЕМЕЙСТВО ПОЛИТИПНЫХ СОЕДИНЕНИЙ

	А сетка					Всетка			
	Т3 позиция		Т2 позиция			Т1 позиция			
Соединение	Заселенность	Вайкофф символ	Симметрия позиции	Заселенность	Вайкофф символ	Симметр. позиции	Заселенность	Вайкофф символ	Симметр. позиции
Стилватерит Pd ₈ As1 _{1.5} As2 ₁ As3 _{0.5}	As	1a	3	As	2d	3	As	6g	1
Арсенопалладинит	Sb	1a	$\overline{1}$	As	2i	1	As*	1h/2i	$\overline{1}/1$
$Pd_{8}{As1_{1}As1_{0.5}}As2_{1}Sb3_{0.5}$									
Мертиит Pd ₈ Sb1 _{1.5} Sb2 ₁ As3 _{0.5}	As	6b	3	Sb	12c	3	Sb	18e	2
$Pd_8Sb1_{1.5}Sb2_1Sb3_{0.5}$	Sb	6b	3	Sb	12c	3	Sb	18e	2

Таблица 3. Заселенность узлов сеток пниктогенов в структурах семейства Pd_8T_3 (T = As, Sb)

* В структуре арсенопалладинита позиция Т1 расщеплена на две симметрийно не эквивалентные позиции.

сурьмы, параметр c ячейки увеличивается до 43.037 Å.

Атомы палладия в структурах Pd_8T_3 (T = As, Sb) располагаются в пустотах искаженной плотнейшей упаковки (ПУ) из атомов мышьяка и(или) сурьмы (рис. 3). В структуре стилватерита Pd_8As_3 атомы палладия занимают 8/9 октаэдрических и 8/9 тетраэдрических пустот ПУ. В структурах арсенопалладинита $Pd_8As_{2.5}Sb_{0.5}$, мертиита, $Pd_8Sb_{2.5}As_{0.5}$, и фазы Pd_8Sb_3 атомы палладия заселяют все октаэдрические пустоты и 5/6 тетраэдрических пустот ПУ.

Рис. 2. Последовательность чередования слоев пниктогенов в соединениях семейства Pd₈*T*₃ (черным цветом обозначены атомы мышьяка, синим – атомы сурьмы).

Соединение	Последовательность слоев пниктогенов	Полная последовательность слоев			
Стилватерит Pd ₈ As ₃	ABBA	Ade Bff BedA			
Арсенопалладинит $Pd_8As_{2.5}Sb_{0.5}$	<i>ABA</i>	AdeBedA			
Мертиит Pd ₈ Sb _{2.5} As _{0.5}	ABA'B'A''BAB'A'B''A'B	AdeBedA'deB'edA''deBedA'deBedA'deB''edA'deBed			
Pd ₈ Sb ₃	ABA'B'A''BAB'A'B''A'B	AdeBedA`deB'edA''deBedA`deBedA`deB''edA`deBed			

Таблица 4. Последовательность чередования слоев в структурах соединений семейства Pd_8T_3 (T = As,Sb)

Рассмотрим строение слоев атомов палладия в структурах соединений Pd_8T_3 (T = As, Sb). Атомы палладия смещены из геометрического центра пустот: одна часть к "нижнему" слою пниктогенов, другая часть к "верхнему" слою. Таким образом, между каждой парой соседних слоев пниктогенов располагается два слоя атомов палладия. Этот пакет можно назвать структурным модулем соединений Pd_8T_3 (рис. 4).

Выделено три типа слоев атомов палладия с разной топологией: треугольные сетки 3⁶ ("*d*"),

Рис. 3. Заполнение атомами палладия (красные шары) пустот плотнейшей упаковки из атомов мышьяка и сурьмы в структуре арсенопалладинита.

сетки из треугольников и пятиугольников ("e"), сетки из четырехугольников и треугольников ("f") (рис. 5). Слои атомов палладия также расположены параллельно плоскости *ab* ячейки и чередуются в направлении оси *c*. При этом соблюдается определенная последовательность чередования.

Только структура стилватерита, Pd_8As_3 , содержит все три типа слоев атомов палладия. С учетом слоев палладия стилватерит характеризуется последовательностью слоев *Ade Bff Bed*.... Сурьмяные разновидности соединений Pd_8T_3 имеют в структурах слои из атомов палладия только двух типов: треугольные сетки (*d*), а также сетки из треугольников и пятиугольников (*e*). Арсенопалладинит, $Pd_8As_{2.5}Sb_{0.5}$, имеет всего 6 слоев в ячейке: *Ade Bed*... Мертиит, $Pd_8Sb_{2.5}As_{0.5}$, и синтетическая фаза Pd_8Sb_3 — обладают ячейкой из 36 слоев —

Рис. 4. Чередование слоев атомов палладия и слоев атомов пниктогенов в структуре арсенопалладинита, проекция *bc* (атомы палладия — красные шары, черные шары — атомы мышьяка, синие — атомы сурьмы).

Рис. 5. Топология слоев атомов палладия в структурах семейства Pd₈T₃.

AdeBedA'deB'edA''deBedA'deBedA'deB''edA'deBed... (табл. 4).

Описанные свойства структур соединений семейства Pd_8T_3 (T = As, Sb) свидетельствуют о том, что структуры являются политипными. Структура чисто мышьяковой разновилности – стилватерита, Pd₈As₃ - является тригональным политипом и производной от трехслойной плотнейшей кубической упаковки (КПУ) – структурой внедрения в КПУ типа NaCl. Структура арсенопалладинита, Pd₈As_{2.5}Sb_{0.5}, является триклинным политипом. Структуры мертиита, Pd₈Sb_{2.5}As_{0.5}, и фазы Pd₈Sb₃ – ромбоэдрические политипные разновидности в этом семействе. Структуры соединений в этом семействе, содержащие в своем составе сурьму, являются производными от двуслойной гексагональной плотнейшей упаковки (ГПУ) структурами внедрения в ГПУ типа NiAs.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена в рамках темы государственного задания ИГЕМ РАН.

СПИСОК ЛИТЕРАТУРЫ

- Karimova O.V., Mezhueva A.A., Zgurskiy N.A., Zolotarev A.A., Chareev D.A. The crystal structure of Pd8As3, a synthetic analogue of stillwaterite // Mineralogical Magazine. 2022. 86. P. 492–499.
- Karimova O.V., Zolotarev A.A., Johanson B.S., Evstigneeva T.L. The crystal structure of arsenopalladinite, Pd₈As_{2.5}Sb_{0.5}, and its relation to mertieite-II, Pd₈Sb_{2.5}As_{0.5} // Mineralogical Magazine. 2020. 84. P. 746-752.
- Karimova O.V., Zolotarev A.A., Evstigneeva T.L., Johanson B.S. Mertieite-II, Pd₈Sb_{2.5}As_{0.5}, crystal-structure refinement and formula revision // Mineralogical Magazine. 2018. 82 (S1). S247–S257.
- 4. *Wopersnow W., Schubert K.* Kristallstruktur von Pd₈Sb₃ // Journal Less-Common Metals. 1976. 48. P. 79–87.
- 5. *Marsh R.E.* The centrosymmetric-noncentrosymmetric ambiguity: some more examples // Acta Crystallographica. 1994. 50. P. 450–455.

- 6. *Белов Н.В.* Структура ионных кристаллов и металлических фаз. Изд. АН СССР, 1947, 144 с.
- 7. *Lima-de-Faria J.* Structural mineralogy. An introduction. Dordrecht: Kluwer; 1994.
- Lima-de-Faria J. Structural classification of minerals. V. 1. Minerals with A, A_mB_n and A_pB_qC_r general chemical formulas. Dordrecht: Kluwer; 2001.
- Lima-de-Faria J. Structural classification of minerals. V. 2. Minerals with ApBqCrDs and ApBqCrDsExF general chemical formulas. Dordrecht: Kluwer; 2003.
- Lima-de-Faria J. Structural classification of minerals.
 V. 2. Minerals with A_pB_q ...E_xF_y general chemical formulas. Dordrecht: Kluwer; 2004.
- 11. *Lima-de-Faria J*. The close packing in the classification of minerals // Eur. J. Mineral. 2012. 24. P. 163–169.
- 12. *Thompson R.M., Downs R.T.* Quatifying distortion from ideal closest-packing in a crystal structure with analysis and application // Acta Crystallographica. 2001. B57. P. 119–127.
- Wells A.F. The geometrical basis of crystal chemistry. Part I // Acta Crystallographica. 1954. 7. P. 535–544.
- 14. *Wells A.F.* The geometrical basis of crystal chemistry. Part II // Acta Crystallographica. 1954. 7. P. 545–554.
- 15. *Smith J.V., Rinaldi F.* Framework structures formed from parallel four- and eight-membered rings // Mineralogical Magazine. 1962. 33. P. 202–212.
- 16. *Smith J.V.* Father discussion of framework structures built from four- and eight-membered rings // Miner-alogical Magazine. 1968. 36. P. 640–642.
- 17. *Moore P.B.* Structural hierarchies among minerals containing octahedrally coordinating oxygen. II. Systematic retrieval and classification of edge-sharing clusters an epistemological approach // Neues Jharbah fur Mineral Abh. 1974. 120. P. 205–227.
- Hawthorne F.C. Graphical enumeration of polyhedral clusters // Acta Crystallographica. 1983. A39. P. 724– 736.
- Hawthorne F.C. Structural aspects of oxide and oxysalt minerals // EMU Notes in Mineralogy. 1997. V. 1. № 5. P. 373–429.
- 20. *Pearson W.B.* The crystal chemistry and physics of metals and alloys. 1972. Wiley–Interscience. New York. 806 p.

THE NEW POLITYPES STRUCTURES Pd_8T_3 (T = As, Sb)

O. V. Karimova^{a,#}, A. A. Mezhueva^a, and Corresponding Member of the RAS N. N. Eremin^b

^aInstitute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Science, Moscow, Russian Federation

> ^bLomonosov Moscow State University, Moscow, Russian Federation [#]E-mail: oxana.karimova@gmail.com

The polytypic structures of Pd_8T_3 (T = As, Sb) compounds was revealed using the graph method. The topology of the layers and the pattern in the sequence of their alternation are analyzed. The ordering of antimony and arsenic atoms by positions at the nodes of layer-networks and the positional disorder in the sequence of alternating layers, which lead to the formation of different structural polytypes, are considered.

Keywords: graphs, nets, close packing, order-disorder, positional disorder, polytypes, palladium compounds

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 513 № 2 2023