УДК 569.33:551.793(729.1)

СМЕНА ЗУБОВ У NESOPHONTIDAE (LIPOTYPHLA, MAMMALIA) ИЗ ПЛЕЙСТОЦЕНА КУБЫ

© 2021 г. Академик РАН А. В. Лопатин*

Поступило 11.11.2020 г. После доработки 21.11.2020 г. Принято к публикации 22.11.2020 г.

На материалах по *Nesophontes major* Arredondo, 1970 и *N. micrus* Allen, 1917 из пещеры Эль-Аброн (Республика Куба, провинция Пинар-дель-Рио, поздний плейстоцен) впервые для Nesophontidae обнаружено наличие молочных премоляров и установлена смена C^1 , P^2 , P^4 , I_1 , I_2 , I_3 , P_2 и P_4 . В онтогенезе смена зубов (кроме P^1 и P_1) происходила после прорезывания моляров, но до достижения животным взрослых размеров. По характеру процесса зубной смены незофонтиды отличаются от большинства представителей Lipotyphla и сближаются с Solenodontidae.

Ключевые слова: Nesophontes, Nesophontidae, молочные премоляры, смена зубов, поздний плейстоцен, Куба

DOI: 10.31857/S2686738921020189

Незофонты (Nesophontidae) известны в ископаемой летописи островов Карибского региона с позднего плейстоцена до позднего голоцена. Последние представители этого эндемичного семейства насекомоядных вымерли около 500 лет назад [1, 2].

В настоящее время морфологически хорошо обоснована валидность семи видов Nesophontes: N. edithae Anthony, 1916 (Пуэрто-Рико, Вьекес, Сент-Джон, Сент-Томас), N. zamicrus Miller, 1929, N. paramicrus Miller, 1929 (Гаити), N. hypomicrus Miller, 1929 (Гаити, Гонав), N. major Arredondo, 1970 (Куба), N. micrus Allen, 1917 (Куба, Хувентуд) и N. hemicungulus Morgan et al., 2019 (Кайман-Брак, Большой Кайман) [3–5]. Эти выводы согласуются с новейшими результатами протеомного анализа [6] и молекулярно-генетических исследований [7].

Незофонты известны по многочисленным ископаемым и субфоссильным остаткам из пещерных местонахождений. В некоторых местах найдены остатки сотен особей, включая многочисленные черепные и нижнечелюстные фрагменты с зубами [4, 8]. При этом некоторые характеристики зубной системы незофонтов остаются плохо изученными. В частности, до настоящего времени имелось очень мало сведений о смене и порядке прорезывания зубов у незофонтов [4, 9, 10], полностью отсутствовали данные о молочных премолярах.

Г. Энтони [9, с. 74] отметил наличие субпремоляриформного молочного нижнего клыка (DC₁) у молодой половозрелой особи *N. edithae*. У этого экземпляра в одной альвеоле с DC₁ находится постоянный клык (C₁), вершина которого видна у основания молочного клыка. DC₁ существенно ниже C₁, сильнее наклонен вперед и имеет лучше развитый задний выступ. Энтони полагал [9, с. 90], что на этой возрастной стадии функционировали молочные резцы.

С. Макдауэлл [10, с. 160] с помощью рентгенографии обнаружил у изученной Энтони молодой особи N. edithae эмалевый колпачок зачаточного второго резца (I_2) в глубине альвеолы DI_2 , но не отметил каких-либо следов DI₁, DI₃ и молочных премоляров. Макдауэлл полагал, что столь скудная представленность молочных зубов в весьма обильных по числу особей материалах может быть связана с тем, что молочные зубы незофонтов выпадали очень рано в онтогенезе - еще до того, как зверьки начинали активно самостоятельно питаться на поверхности земли, становясь добычей хишных птиц и попадая в пешерные тафоценозы [10, с. 149]. Для молочных премоляров он рассматривал также альтернативную возможность - предполагал, что именно молочная смена функционировала в течение жизни животных, тогда как постоянная смена не проявлялась вовсе [10, с. 150, 160]. В итоге Макдауэлл предложил следующую последовательность прорезывания

Палеонтологический институт им. А.А. Борисяка Российской академии наук, Москва, Россия *e-mail: alopat@paleo.ru

нижних зубов у *Nesophontes*: $-DI_2-DC_1---M_1M_2M_3I_1I_2I_3C_1P_1P_2-P_4$ (при зубной формуле $I^{1-3}/_{1-3}C^1/_1P^{1-2,4}/_{1-2,4}M^{1-3}/_{1-3}$), и заключил, что наличие молочной смены зубов (по меньшей мере, DI_2 и DC_1) резко отличает незофонтид от землеройковых (Soricidae) [10, с. 160].

Б. Ржебик-Ковальская и Б. Волошин [4, с. 159, рис. 3H, табл. 4] отметили DC₁ у двух субфоссильных молодых экземпляров *N. major* (Куба, Хувентуд; минимальное число особей в выборке – 102). Они показали, что у этого вида DC₁ также отличается от C₁ меньшими размерами (включая высоту) и субпремоляриформным строением коронки.

Для исследования смены зубов у незофонтов необходимо изучение массовых материалов при целенаправленном внимании к остаткам наиболее молодых особей.

В настоящей статье приведены результаты исследования наиболее полных образцов Nesophontes major и N. micrus из верхнеплейстоценовых отложений пещеры Эль-Аброн в горах Сьерра-дела-Гуира (Sierra de La Güira), муниципалитет Лос-Паласиос (Los Palacios), провинция Пинардель-Рио Республики Куба (координаты 22°40' с.ш., 83°28' з.д.) [11]. В ноябре 2019 г. здесь проводила сборы ископаемых остатков Совместная российско-кубинская палеонтологическая экспедиция (СРКПЭ). Основной изученный материал происходит из слоя (уровня) VII (радиоуглеродная датировка 17406±161 лет, калиброванный возраст 20050-21474 лет; см. [11]), дополнительно изучены образцы из нижележащих слоев IX и VIII и вышележаших слоев VI и V.

Материал хранится в Палеонтологическом институте им. А.А. Борисяка РАН (ПИН) в Москве. Фотографии сделаны с помощью сканирующего электронного микроскопа Tescan Vega II XMU, рентгенографическое и томографическое исследование проведено на рентгеновском микротомографе SkyScan 1172 в ПИН. Измерения в мм.

Всего изучено более 40 черепных фрагментов и свыше 200 нижнечелюстных костей *N. major*, а также около 20 черепных фрагментов и более 100 нижнечелюстных костей *N. micrus*. Представлены экземпляры с С¹, Р¹, Р², Р⁴, М¹, М², М³, I₁, I₂, I₃, С₁, P₁, DP₂, P₂, DP₄, P₄, M₁, M₂, M₃ (включая C¹, P², I₁, I₂, I₃, C₁, P₂, P₄ в состоянии прорезывания). В их числе экз. ПИН, №№ 5807/253, 254 из слоя VIII (глубина 2.35 м), экз. ПИН, № 5807/255 из слоя VII (глубина 1.5–1.54 м), экз. ПИН, №№ 5807/261–266 из слоя VII (глубина 1.2–1.5 м), экз. ПИН, № 5807/260 из слоя VII (глубина 1.25 м), экз. ПИН, №№ 5807/67, 71, 75, 77, 78, 267 из слоя VII (без указания глубины), экз. ПИН, №№ 5807/269–273 из слоя VI (без указания глубины), экз. ПИН, №№ 5807/275–277 из слоя V (глубина 0.45–0.5 м).

На фрагментарном черепе Nesophontes major (экз. ПИН, № 5807/269) впервые обнаружены свидетельства смены верхних зубов в локусах С¹, P^2 и P^4 (рис. 1). Левый C^1 и оба P^2 не прорезались из альвеол, их вершины лишь немного выступают за альвеолярный край верхнечелюстных костей. Основание и корни клыка не сформированы, межкорневой перегородки нет, коронка развернута в альвеоле (передняя сторона обращена лингвально) и наклонена вперед. Передняя и антеролингвальная бороздки C¹ (предположительно, служившие для стока яда, см. [12]) хорошо выражены. Альвеолы P¹ с межкорневой перегородкой без следов резорбции, что указывает на отсутствие смены зубов в этом локусе. Р² одновершинный, вершина слегка загнута назад, корни короткие. Межкорневая перегородка альвеолы DP^2/P^2 резорбирована. Оба P^4 не сохранились, но их альвеолы широко раскрыты и не имеют межкорневых перегородок, что указывает на недавнюю (или неоконченную) смену зубов этого локуса. М¹ апикально стертые, с резкими, едва стертыми гребнями. Альвеолярная длина С1-М3 -11.5 (левые), 11.3 (правые). Размеры М¹ (длина × × ширина): 2.4 × 2.9 (левый, правый).

Среди материалов по *N. тајог* представлены нижнечелюстные кости с I_3 , C_1 , P_2 и P_4 на разных стадиях прорезывания, а также фрагмент нижней челюсти молодой особи (экз. ПИН, № 5807/254) с несформированными краями альвеол M_1 – M_3 (табл. 1).

Сохранившийся I₃ (экз. ПИН, № 5807/271; рис. 2а–2в) смещен из своей альвеолы в альвеолу DC₁/C₁ (из-за резорбции и частичного разрушения вентральной части межальвеолярной стенки DI₃/DC₁) и налегает сверху на клык C₁.

На наиболее ранней внутриальвеолярной стадии C_1 лежит в основании альвеолы DC_1 и не виден с боковых сторон зубной кости (экз. ПИН, №№ 5807/261, 271; рис. 2а–2в). Судя по рентгенографическим наблюдениям, минерализована лишь верхняя часть коронки этого зуба. На следующей стадии клык имеет сформированное основание коронки с задним выступом и короткий корень, вершина коронки слегка возвышается над альвеолярным краем зубной кости (экз. ПИН, №№ 5807/67, 270).

У большинства экземпляров с непрорезавшимися зубами (например, экз. ПИН, №№ 5807/262, 263; рис. 2г–2е) Р₁ уже полностью функциональный (хотя и не стертый) и имеет альвеолу с полной (нерезорбированной) межкорневой перегородкой; лишь на экз. ПИН, № 5807/78 межкорневая перегородка неполная, что указывает либо на недавнее прорезывание Р₁, либо на особенность его строения — сильно сближенные корни. Видимо, передние премоляры (Р¹ и Р₁) незофонтид не

Рис. 1. Nesophontes major Arredondo, 1970, экз. ПИН, № 5807/269, фрагмент черепа молодой особи, передняя часть с вентральной стороны; Куба, пещера Эль-Аброн (слой VI); верхний плейстоцен.

имели смены (как у большинства плацентарных) и прорезывались в одно время с молярами.

На ранней стадии Р2 и Р4 были полностью скрыты в альвеолах, а функционировали DP2 и DP₄. От DP₂ сохранился только короткий задний корень, под которым находится талонид скрытого в альвеоле Р₂ (экз. ПИН, № 5807/271; рис. 2в). Альвеолы переднего и заднего корней молочных премоляров широко расставлены, а вентральнее DP₂ и DP₄ располагаются минерализованные коронки сменяющих зубов. На экз. ПИН, № 5807/71 в сломе стенки альвеолы утраченного DP₄ виден участок эмали находящегося внутри челюсти зуба, который еще не прорезался с окклюзиальной стороны (рис. 2ж). Рентгенографическое и томографическое изучение показало наличие в этой области крупной полости с коронкой Р₄ в стадии формирования.

На стадии резорбции межкорневых перегородок и раскрытия альвеол P_2 и P_4 имеют полностью сформированные коронки с параконидом и талонидом и короткие корни (экз. ПИН, №№ 5807/78, 261, 262, 264, 271; рис. 2е). Широкое раскрытие и частичная резорбция краев и перегородок альвеол P_2 и P_4 , свидетельствующие о незавершенном

Рис. 2. Nesophontes major Arredondo, 1970: а–в – экз. ПИН, № 5807/271, левая нижнечелюстная кость с фрагментом DP₂, M₁–M₃ и непрорезавшимися I₃, C₁, P₂ и P₄: а – с лабиальной стороны, б – с окклюзиальной стороны с лингвальным наклоном; г–е – экз. ПИН, № 5807/262, левая нижнечелюстная кость с P₁, M₁–M₃ и непрорезавшимися P₂ и P₄ в альвеолах: г – с окклюзиальной стороны, с тороны, е – рентгенограмма с лабиальной стороны; ж – экз. ПИН, № 5807/71, передняя часть с окклюзиальной стороны; ж – экз. ПИН, № 5807/71, передняя часть с окклюзиальной стороны; к – с лабиальной стороны; куба, пещера Эль-Аброн (а–в – слой VI; г–ж – слой VII); верхний плейстоцен.

процессе прорезывания зубов этих локусов, фиксируется у ряда экземпляров с апикально стертыми молярами, у которых P_2-P_4 не сохранились (экз. ПИН, № 5807/67, 75, 77, 253, 270, 275).

На следующем этапе прорезывания P_4 приблизительно на треть высоты главного бугорка возвышается над альвеолярным краем зубной кости, тогда как P_2 полностью скрыт в альвеоле (экз. ПИН, № 5807/276). У P_4 , прорезавшегося над альвеолярным краем зубной кости примерно на половину высоты главного бугорка, корни приблизительно вдвое уступают по длине корням моляров (экз. ПИН, № 5807/263).

Среди остатков *Nesophontes micrus* представлены нижнечелюстные кости с резцами (I_1 , I_2 , I_3), клыком (C_1) и премолярами (P_2 , P_4) на разных стадиях прорезывания (табл. 2), а также один об-

Таблица 1. Размеры (в мм) нижней челюсти и зубов *Nesophontes major* Arredondo, 1970 из верхнего плейстоцена пещеры Эль-Аброн, Куба (обозначения: AL – альвеолярная длина; L – наибольшая длина; W – наибольшая ширина; D – высота горизонтальной ветви под M₂/M₃; HCP – высота венечного отростка; WAC – ширина суставного мыщелка)

Экземпляр ПИН, №	Длина зубных рядов и альвеол	Размеры зубов (L × W)	D	НСР	WAC
5807/67	$L M_1 - M_3$: 6.6	$M_1: 2.3 \times 1.65; M_2: 2.3 \times 1.7; M_3: 2.1 \times 1.35$	2.8	_	2.7
5807/71	AL M ₁ -M ₃ : 5.0	$M_3: 2.0 \times 1.4$	2.6	—	2.6
5807/75	$L M_1 - M_3$: 6.6	$M_1: 2.4 \times 1.6; M_2: 2.3 \times 1.7; M_3: 2.2 \times 1.45$	2.7	6.4	2.6
5807/77	$L M_1 - M_3$: 6.3	$M_1: 2.2 \times 1.55; M_2: 2.2 \times 1.6; M_3: 2.0 \times 1.35$	2.7	_	2.5
5807/78	AL M ₁ -M ₃ : 6.0	$M_3: 2.2 \times 1.45$	3.1	_	2.45
5807/253	L M ₁ -M ₃ : 5.9	M_1 : 2.1 × 1.4; M_2 : 2.1 × 1.5; M_3 : 1.9 × 1.3	2.6	6.7	2.7
5807/254	AL M ₁ -M ₃ : 5.9	—	2.6	6.0	2.3
5807/261	AL M ₁ : 2.0	_	2.8	_	—
5807/262	$L M_1 - M_3$: 6.7	$P_1: 2.0 \times 0.8; M_1: 2.4 \times 1.55; M_2: 2.4 \times 1.7; M_3: 2.1 \times 1.45$	2.8	6.5	2.7
5807/263	$L M_1 - M_3$: 6.3	$P_1: 2.0 \times 0.8; M_1: 2.3 \times 1.5; M_2: 2.3 \times 1.6; M_3: 1.9 \times 1.4$	2.8	7.0	3.0
5807/264	AL M ₁ -M ₃ : 6.3	_	3.0	6.4	2.4
5807/270	$L M_1 - M_3$: 6.4	$M_1: 2.2 \times 1.5; M_2: 2.2 \times 1.6; M_3: 2.05 \times 1.4$	2.5	6.6	2.4
5807/271	$L M_1 - M_3$: 6.0	M_1 : 2.2 × 1.5; M_2 : 2.3 × 1.55; M_3 : 1.9 × 1.3	2.6	_	—
5807/275	L M ₁ -M ₃ : 6.15	$P_1: 1.9 \times 0.8; M_1: 2.2 \times 1.5; M_2: 2.2 \times 1.6; M_3: 1.95 \times 1.4$	2.6	6.3	—
5807/276	L M ₁ -M ₃ : 6.0	M_{3} : 1.9 × 1.4	2.6	6.2	2.5

Таблица 2. Размеры (в мм) нижней челюсти и зубов *Nesophontes micrus* Allen, 1917 из верхнего плейстоцена пещеры Эль-Аброн, Куба (обозначения см. табл. 1)

Экземпляр ПИН, №	Длина зубных рядов и альвеол	Размеры зубов (L × W)	D	НСР	WAC
5807/255	AL M ₁ : 1.7; AL M ₂ : 1.8	_	2.2	—	_
5807/260	$L M_1 - M_3 : 6.0$	DP_4 : 1.6 × 0.75; M_1 : 2.15 × 1.5; M_2 : 2.05 × 1.5; M_3 : 1.9 × 1.2	2.2	5.7	2.15
5807/265	AL M ₁ -M ₃ : 5.7	-	2.0	5.5	2.0
5807/266	AL M ₁ -M ₃ : 5.7	—	2.2	_	2.0
5807/267	L M ₁ -M ₃ : 5.9	$M_1: 2.1 \times 1.4; M_2: 2.0 \times 1.45; M_3: 1.9 \times 1.2$	2.1	5.9	_
5807/272	L I ₁ -M ₃ : ~11.7; L M ₁ -M ₃ : 5.9	$P_1: 1.6 \times 0.6; M_1: 2.2 \times 1.3; M_2: 2.1 \times 1.4; M_3: 1.9 \times 1.15$	2.0	5.7	2.0
5807/273	L M ₁ -M ₃ : 5.9	$M_1: 2.2 \times 1.4; M_2: 2.1 \times 1.45; M_3: 1.85 \times 1.2$	2.0	5.65	2.1
5807/277	AL M ₁ -M ₃ : 5.0; L M ₂ -M ₃ : 3.9	$M_2: 2.2 \times 1.4; M_3: 1.9 \times 1.2$	2.0	5.1	1.7

разец (экз. ПИН, № 5807/260) с DP_4 – это первая находка сохранившегося молочного предкоренного зуба у Nesophontidae, если не считать описанный выше фрагмент $DP_2 N. major. DP_4$ имеет широко расставленные корни (рис. 3а–3в) и характеризуется сравнительно низким и узким протоконидом и широким двухбугорковым талонидом (рис. 3б). Альвеолы P_2 и P_4 на начальной стадии раскрытия, над альвеолярным краем зубной кости возвышаются только вершины главных бугорков этих зубов, протоконид P_4 упирается в вентральную часть основания DP_4 . Рентгенография показала наличие сформированных коротких корней у P_2 и P_4 (рис. 3в).

На экз. ПИН, № 5807/272 (рис. 3г–3е) в глубине альвеолы переднего резца (DI₁) видна сравнительно широкая коронка I₁ с несформированным корнем (рис. 3е). Зуб полностью находится внутри альвеолы и компактно в нее вмещается, впереди него имеется небольшое пространство для корня DI₁. На этой стадии вершина C₁ немного возвышается над альвеолярным краем зубной кости (экз. ПИН, №№ 5807/265, 272, 273), его коронка не вполне сформирована, корень отсутствует. Р₁ крупный, узкий, с коротким талонидом, без следов стирания (рис. 3г, 3д). Его корни полностью сформированные, длинные, передний существенно тоньше заднего. Вершина Р₂ не выступает из альвеолы, над его коронкой сохранилась перемычка верхней части межкорневой перегородки альвеолы DP₂ (рис. 3д). Вершина Р₄ едва возвышается над альвеолярным краем зубной кости, альвеолы корней DP₄ широко расставлены.

На экз. ПИН, № 5807/267 (рис. 3ж, 3з) I₁ слегка выступает из альвеолы, имеет широкую коронку шпателевидной формы и, судя по рентгенографии, сравнительно короткий корень. Межкорневая стенка альвеолы P₂ резорбирована. Р₄ в стадии прорезывания почти на половину высоты коронки выступает над альвеолярным краем зубной кости.

У экз. ПИН, № 5807/255 двухлопастная коронка I₂ лежит в основании альвеол, причем ее передняя лопасть располагается под альвеолами DI₁ и DI₂, а задняя лопасть видна в сломе стенки альвеолы DI₃. Двухлопастная коронка I₃ в глубине альвеолы DI₃ сохранилась на экз. ПИН, № 5807/266.

На экз. ПИН, № 5807/277 Р₂ в стадии прорезывания развернут в альвеоле передней стороной вверх; вершина Р₄ едва выступает над альвеолярным краем зубной кости.

Суммируя приведенные данные, можно отобразить набор одновременно функционирующих и находящихся в процессе смены зубов у Nesophontes рядом последовательных состояний. Для краткости при их характеристике ниже использованы оригинальные формулы зубной смены (DRF, dental replacement formula), в которых буквой "e" (erupting) перед символом зуба (I, C, P) обозначены зубы в состоянии прорезывания, частично показавшиеся над альвеолой (после выпадения молочного предшественника), а буквой "а" (alveolar) обозначены зубы, полностью или почти полностью скрытые в альвеолах, при фактическом или реконструированном наличии молочного предшественника; отсутствующие из-за состояния сохранности зубы в формулах пропущены (знак "-"); полностью прорезавшиеся функциональные зубы не имеют специального знака перед символами; моляры опущены, поскольку не имеют смены.

Для верхних зубов *N. major* известны два состояния: ---еС¹Р¹еР²еР⁴ (экз. ПИН, № 5807/269) и I¹I²I³C¹Р¹Р²Р⁴ (взрослые экземпляры). Для нижних зубных рядов фактически установлены следующие сочетания сменяющихся зубов: --aI₃aC₁-DP₂aP₂aP₄ (экз. ПИН, № 5807/271), ---aC₁-aP₂aP₄ (экз. ПИН, № 5807/261), ----P₁aP₂aP₄ (экз. ПИН, № 5807/262), -----аP₂aP₄ (экз. ПИН, № 5807/78),

Рис. 3. Nesophontes micrus Allen, 1917: а–в – экз. ПИН, № 5807/260, левая нижнечелюстная кость с DP_4-M_3 и непрорезавшимися P_2 и P_4 : а – с лабиальной стороны, б – передняя часть с окклюзиальной стороны, в – рентгенограмма с лабиальной стороны; г–е – экз. ПИН, № 5807/272, левая нижнечелюстная кость с P_1 и M_1-M_3 , с непрорезавшимися I_1 , C_1 , P_2 и P_4 : г – с лабиальной стороны, е – передняя часть с окклюзиальной стороны, е – передняя часть с передней стороны; ж, з – экз. ПИН, № 5807/267, левая нижнечелюстная кость с M_1-M_3 и полупрорезавшимися I_1 и P_4 : ж – с окклюзиальной стороны стороны, з – передняя часть с окклюзиальной стороны с мингвальным наклоном; Куба, пещера Эль-Аброн (а–в, ж, з – слой VII; г–е – слой VI); верхний плейстоцен.

-----DP₄aP₄ (экз. ПИН, № 5807/71), ----P₁-еP₄ (экз. ПИН, № 5807/263), ----аP₂еP₄ (экз. ПИН, № 5807/276). Объединение этих данных позволяет реконструировать следующую последовательность состояний DRF: --аI₃aC₁P₁DP₂aP₂DP₄aP₄ → ---еC₁P₁aP₂eP₄ → I₁I₂I₃C₁P₁P₂P₄ (у взрослых экземпляров).

Для нижних зубных рядов *N. micrus* фактически установлены следующие сочетания зубов: аI₁--аC₁P₁aP₂aP₄ (экз. ПИН, № 5807/272), -аI₂-аC₁---(экз. ПИН, № 5807/255), --аI₃--аP₂aP₄ (экз. ПИН,

Рис. 4. Схема основных стадий смены нижних зубов у Nesophontes (полный левый зубной ряд с лабиальной стороны): а – стадия молочных зубов и моляров (DI₁aI₁DI₂aI₂DI₃aI₃DC₁aC₁P₁DP₂aP₂DP₄aP₄M₁M₂M₃); б – стадия прорезывания передних зубов (eI₁eI₂eI₃eC₁P₁P₂P₂P₄M₁M₂M₃); в – взрослая стадия (I₁I₂I₃C₁P₁P₂P₄M₁M₂M₃). Черным цветом обозначены молочные зубы, темно-серым – постоянные зубы, светло-серым – передний премоляр с одной установленной сменой.

№ 5807/266), -----а $P_2DP_4aP_4$ (экз. ПИН, № 5807/260), -----а P_2aP_4 (экз. ПИН, № 5807/277), е I_1 -----е P_4 (экз. ПИН, № 5807/267). Синтез этих данных позволяет реконструировать следующую последовательность состояний DRF: а $I_1aI_2aI_3aC_1P_1DP_2aP_2DP_4aP_4 \rightarrow eI_1$ -----е $P_4 \rightarrow I_1I_2I_3C_1P_1P_2P_4$.

В итоге для изученных видов *Nesophontes* можно реконструировать следующую последовательность основных стадий прорезывания и смены нижних зубов и состояний DRF (с учетом моляров): $DI_1aI_1DI_2aI_2DI_3aI_3DC_1aC_1P_1DP_2aP_2DP_4aP_4M_1M_2M_3$ (рис. 4a) \rightarrow eI_1eI_2eI_3eC_1P_1eP_2eP_4M_1M_2M_3 (рис. 4б) \rightarrow $I_1I_2I_3C_1P_1P_2P_4M_1M_2M_3$ (рис. 4в). Предполагаемая последовательность прорезывания клыка и премоляров – P₁, C₁, P₄, P₂.

Судя по изученным материалам, после завершения смены зубов рост животных продолжался. Последующие изменения в строении передней части зубного аппарата незофонтов, включающие формирование заметных межзубных промежутков в ряду премоляров, были связаны с удлинением челюстей.

Итак, у незофонтид в молочной зубной смене представлены резцы, клыки и премоляры. В онтогенезе смена всех этих зубов (кроме P_1) происходила после прорезывания моляров, но до достижения животным взрослых размеров. Таким образом, по характеру процесса зубной смены незофонтиды существенно отличаются от большинства представителей Lipotyphla и сближаются с Solenodontidae [см. 10, 13, 14].

БЛАГОДАРНОСТИ

Автор благодарит доктора Ф.М. Гонсалеса Бермудеса и К.А. Мендеса Гарсия (Министерство науки, технологии и окружающей среды Республики Куба, СІТМА) за организационную помощь и дружескую поддержку, Э. Перес Лоренсо (Национальный музей естественной истории Кубы), Н.В. Зеленкова, А.К. Агаджаняна (ПИН) и всех сотрудников СРКПЭ – за участие в экспедиции 2019 г., А.В. Пахневича и Р.А. Ракитова (ПИН) – за техническую помощь в проведении томографии и подготовке фотографий на СЭМ.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследование проведено в рамках работ Совместной российско-кубинской палеонтологической экспедиции при частичной поддержке гранта РФФИ и СІТМА № 18-54-34004 "Позднечетвертичные позвоночные Кубы: реликтовые фауны на пороге голоценового вымирания".

СПИСОК ЛИТЕРАТУРЫ

- 1. *MacPhee R.D.E., Flemming C., Lunde D.P.* "Last occurrence" of the Antillean insectivoran *Nesophontes*: new radiometric dates and their interpretation // American Museum Novitates. 1999. № 3261. P. 1–20.
- Orihuela J., Vinola L.W., Jiménez Vásquez O., et al. Assessing the role of humans in Greater Antillean land vertebrate extinctions: new insights from Cuba // Quaternary Science Reviews. 2020. V. 249: 106597.
- Condis Fernández M.M., Jiménez Vásquez O., Arredondo C. Revisión taxonómica del género Nesophontes (Insectivora: Nesophontidae) en Cuba: análisis de los caracteres diagnóstico // Monografies de la Societat d'Història Natural de les Balears. 2005. № 12. P. 95– 100.
- Rzebik-Kowalska B., Wołoszyn B.W. New data on Nesophontes subfossil populations from Cuba and Isla de la Juventud (Cuba) // Neues Jahrbuch für Geologie und Paläontologie Abhandlungen. 2012. V. 263. № 2. P. 155–166.
- 5. Morgan G.S., MacPhee R.D.E., Woods R., Turvey S.T. Late Quaternary fossil mammals from the Cayman Islands, West Indies // Bulletin of the American Museum of Natural History. 2019. № 428. P. 1–79.

- Buckley M., Harvey V.L., Orihuela J., et al. Collagen sequence analysis reveals evolutionary history of extinct West Indies Nesophontes (island-shrews) // Molecular Biology and Evolution. 2020. V. 37. № 10. P. 2931–2943.
- 7. Woods R., Turvey S.T., Brace S., et al. Rapid size change associated with intra-island evolutionary radiation in extinct Caribbean "island-shrews" // BMC Evolutionary Biology. 2020. V. 20. № 106. P. 1–12.
- 8. *Silva Taboada G., Suárez Duque W., Díaz Franco S.* Compendio de los mamíferos terrestres autóctonos de Cuba vivientes y extinguidos. La Habana: Museo Nacional de Historia Natural, 2007.
- Anthony H.E. Mammals of Porto Rico, living and extinct. Chiroptera and Insectivora. In: Scientific Survey of Porto Rico and the Virgin Islands. New York: New York Acad., 1927. V. 9, Pt. 1. P. 140–149.

- McDowell S.B. The Greater Antillean insectivores // Bulletin of the American Museum of Natural History. 1958. № 115. P. 113–214.
- Suárez W., Díaz-Franco S. A new fossil bat (Chiroptera: Phyllostomidae) from a Quaternary cave deposit in Cuba // Caribbean Journal of Science. 2003. V. 39. № 3. P. 371–377.
- Turvey S.T. Evolution of non-homologous venom delivery systems in West Indian insectivores? // Journal of Vertebrate Paleontology. 2010. V. 30. № 4. P. 1294– 1299.
- 13. Orihuela J. Endocranial morphology of the extinct Antillean shrew Nesophontes (Lipotyphla: Nesophontidae) from natural and digital endocasts of Cuban taxa // Palaeontologia Electronica. 2014. V. 17. № 2. P. 1–21.
- Brace S., Thomas J.A., Dalén L., et al. Evolutionary history of the Nesophontidae, the last unplaced Recent mammal family // Molecular Biology and Evolution. 2016. V. 33. № 12. P. 3095–3103.

DENTAL REPLACEMENT IN NESOPHONTIDAE (LIPOTYPHLA, MAMMALIA) FROM THE PLEISTOCENE OF CUBA

Academician of the RAS A. V. Lopatin[#]

Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russian Federation [#]e-mail: alopat@paleo.ru

The presence of deciduous premolars and erupting C^1 , P^2 , P^4 , I_1 , I_2 , I_3 , P_2 and P_4 in Nesophontidae is established for the first time on the remains of *Nesophontes major* Arredondo, 1970, and *N. micrus* Allen, 1917 from El Abrón Cave (Republic of Cuba, Pinar del Río Province, Late Pleistocene). During ontogenesis, the replacement of teeth (except P^1 and P_1) occurred after the molar eruption, but before the animal reached adult size. By the dental replacement pattern nesophontids differ from most members of Lipotyphla and are close to Solenodontidae.

Keywords: Nesophontes, Nesophontidae, deciduous premolars, dental replacement, Late Pleistocene, Cuba

124