УДК 57.032

НАКОПЛЕНИЕ β-АМИЛОИДА ПРИВОДИТ К СНИЖЕНИЮ ЭКСПРЕССИИ LYNX1 И LYPD6В В ГИППОКАМПЕ И УВЕЛИЧЕНИЮ ЭКСПРЕССИИ ПРОВОСПАЛИТЕЛЬНЫХ ЦИТОКИНОВ В ГИППОКАМПЕ И СЫВОРОТКЕ КРОВИ

© 2023 г. М. Л. Бычков¹, А. В. Кириченко¹, А. С. Парамонов¹, академик РАН М. П. Кирпичников^{1,2}, Е. Н. Люкманова^{1,2,3,*}

Поступило 22.02.2023 г. После доработки 20.03.2023 г. Принято к публикации 22.03.2023 г.

Болезнь Альцгеймера является быстропрогрессирующим нейродегенеративным заболеванием, развитие которого связано с накоплением олигомеров β-амилоида, дисфункцией никотинового рецептора ацетилхолина α7-nAChR и активацией воспаления. Ранее нами было показана конкуренция нейромодулятора Lvnx1, принадлежащего семейству Lv6/uPAR, с β-амилоидом(1-42) за связывание с α7-nAChR. В представленной работе мы изучили экспрессию и локализацию белков семейства Ly6/uPAR в гиппокампе трансгенных мышей 2хТg-AD, моделирующих БА и демонстрирующих повышенный амилоидоз в головном мозге. При помощи ПЦР в реальном времени мы показали падение экспрессии генов, кодирующих Lynx1, Lypd6b и постсинаптического маркера PSD95, а также увеличение экспрессии гена TNFα в гиппокампе мышей 2xTg-AD. Гистохимический анализ выявил, что в гиппокампе мышей 2xTg-AD Lynx1 не со-локализуется с α7-nAChR, что может приводить к развитию патологии при взаимодействии рецептора с олигомерным β-амилоидом. Также в мышах 2хТg-AD показана активация системного воспаления, что проявляется в падении в сыворотке крови уровня SLURP-1. белка семейства Lv6/uPAR. способного регулировать воспалительные процессы, а также в повышении содержания про-воспалительных цитокинов TNFα и $TNF\beta$. Таким образом, дисфункция α 7-nAChR и поддержание воспалительного микроокружения в мозге при болезни Альцгеймера могут быть связаны с уменьшением экспрессии белков семейства Ly6/uPAR, регулирующих работу α7-nAChR и воспаление.

Ключевые слова: болезнь Альцгеймера, никотиновый рецептор ацетилхолина, Ly6/uPAR, Lynx1, SLURP-1, Lypd6b

DOI: 10.31857/S2686738922600881, EDN: IYLGDX

Болезнь Альцгеймера (БА) является быстропрогрессирующим нейродегенеративным заболеванием, значительно снижающим качество жизни пациентов, причем как причины возникновения этой болезни, так и механизмы ее прогрессии остаются слабо изученными [1]. Важными молекулярными механизмами, опосредующими патогенез БА, является формирование нераствори-

Российской академии наук, Москва, Россия

²Междисциплинарная научно-образовательная школа "Молекулярные технологии живых систем и

синтетическая биология", Биологический факультет

мых олигомеров, состоящих из бета-амилоида $(A\beta)$, образуемого при расщеплении белка-предшественника амилоида (APP), а также образование внутриклеточных фибрилл, состоящих из тау-белка, ингибирующих синаптическую передачу [2, 3].

Известно, что развитие БА сопровождается дисфункцией никотинового рецептора ацетилхолина типа альфа 7 (α 7-nAChR), опосредующего синаптическую передачу, и играющего важную роль в формировании памяти и обучении [4]. А β может взаимодействовать с α 7-nAChR, модулируя работу рецептора: в норме растворимый А β активирует α 7-nAChR, усиливая синаптическую трансмиссию, однако, олигомеры А β приводят к ингибированию работы рецептора и гибели нейронов [5, 6]. Падение экспрессии α 7-nAChR приводит к дальнейшему усилению формирования амилоидных бляшек и значительно снижает когнитивные способности в мышиной модели БА [7].

¹Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова

Московского государственного университета

имени М.В. Ломоносова, Москва, Россия

³Шеньчжэньский МГУ-ППИ Университет,

Шеньчжэнь, Китай

^{*}e-mail: ekaterina-lyukmanova@yandex.ru

Ген	Прямой праймер	Обратный праймер	Длина ампликона, п.н.
β-actin	GCA GCC ACT GTC GAG TC	ACG ATG GAG GGG AAT ACA GC	190
Gpdh	CCA TGT GGG TGT TTG AGG AAG	GCC CTG GCA GGT ATT TAA CAT TC	89
Sdha	AAC ACT GGA GGA AGC ACA CC	AGT AGG AGC GGA TAG CAG GA	135
Lynx1	CAA CAC CGC ACG AAG TGT G	GCC TGA GCT CTT GGT CTC TT	101
Lynx2	GAG GAT GTG GGT TCT CGG C	CAG GGG ACG AGC AAT CGT T	148
Lypd6	CTG TCA CCA AAC GCT GTG TC	TTG TAG CCT TCG TGC TCT GAG	97
Lypd6b	ACT TGC GAA AAT GCA GGG GAT	GCT GGT GAA GTG ATG AAC TGT CA	76
Psca	TGC TGC TTG CCC TGT TGA T	CCT GTG AGT CAT CCA CGC A	138
Slurp 1	AGG TCT CGG AAG CAG CAG AA	GGA CCA TTA CCC GCT GCA A	52
Slurp2	GAG GGA CTC CAC CCA CTG TGT	GCA GCC TAT GTG GCA CAT CTT	94
α 7-nAChR	TGGTCCTATGGAGGGTGGTC	TAGAGTGTCCTACGGCGCAT	185
Dlg4	CTA CCA AGA TGA AGA CAC GCC	TCT GTT CCA TTC ACC TGC AAC	145
Tnfa	AGG CAC TCC CCC AAA AGA TG	GCT CCT CCA CTT GGT GGT TT	219

Таблица 1. Праймеры, использованные для ПЦР в реальном времени

Еще одной важной чертой патогенеза БА является индукция воспаления в головном мозге, что сопровождается секрецией клетками микроглии про-воспалительных цитокинов, таких как фактор некроза опухоли альфа (TNFα), который стимулирует процессинг АРР [8]. При этом активация α7-nAChR ингибирует воспаление [9] и уменьшает секрецию TNFα клетками микроглии [10], поэтому дисфункция α7-nAChR приводит и к ослаблению контроля воспалительных процессов в мозге. В норме работа α7-nAChR регулируется эндогенными белками семейства Ly6/uPAR, такими как нейромодулятор Lynx1 [11, 12], секретируемый белок эпителия SLURP-1 [13], специфический антиген клеток простаты PSCA [14] и др. Показано, что экспрессия Lynx1 снижена, а PSCA, наоборот, повышена в коре мозга пациентов, страдающих от БА по сравнению со здоровыми донорами [6, 14]. Кроме того, показано, что Lynx1 конкурирует с АВ1-42 за связывание с α7-nAChR [6] и предотвращает нарушение долговременной потенциации и экспрессии этого нейромодулятора, вызванные АВ1-42 [15]. Однако вовлечение Ly6/uPAR белков в патогенез развития БА ранее не изучалось.

Целью данной работы является изучение роли белков семейства Ly6/uPAR, таких как Lynx1, Lypd6b, SLURP-1 и др. в патогенезе БА. Для достижения данной цели мы исследовали экспрессию генов, кодирующих различные белки семейства Ly6/uPAR, а также постсинаптический маркер PSD95 и провоспалительный фактор TNF α в гиппокампе мышей 2xTg-AD, моделирующих БА (линия B6C3-Tg (APP695) 85 Dbo/Tg (PSEN1) 85 Dbo с экспрессией химерного белка-предшественника амилоида мышь/человек с мутацией треонина на изолейцин в положении 714 (APP695) и мутантного пресенилина-1 человека). Показано, что экспрессия Lynx1 и Lypd6b в гиппокампе снижена, а TNF α повышена по сравнению со здоровыми животными линии B6C3. Кроме того, наблюдалось снижение со-локализации Lynx1 и α 7-nAChR в гиппокампе, а также снижение и повышение содержания Ly6/uPAR белка SLURP-1 и про-воспалительных цитокинов TNF α и TNF β , соответственно, в сыворотке крови 2xTg-AD мышей.

Для исследования использовали взрослые мыши (8-9 мес) линии B6C3 ликого типа (Tg-), а также трансгенные мыши линии B6C3-Tg(APP695)85Dbo/Tg(PSEN1)85Dbo (2xTg-AD). Данные мутации моделируют именно раннюю стадию БА [16]. Животных содержали в стандартных условиях Питомника лабораторных животных ФИБХ РАН (Уникальная научная установка "Био-модель" ИБХ РАН; Биоресурсная коллекция "Коллекция лабораторных грызунов SPF статуса для фундаментальных, биомедицинских и фармакологических исследований", соглашение № 075-15-2021-1067), имеющего международную аккредитацию AAALACi. Животные содержались группами по 3-4 особи при 12-часовом цикле "день/ночь" и получали стандартный корм для грызунов и питьевую воду без ограничений. Все эксперименты проводились в соответствии с рекомендациями, изложенными в Директиве Совета Европейского сообщества от 24 ноября 1986 г. (86/609/ЕЕС), и одобрены этическим комитетом ИБХ РАН (протокол № 248/2018 от 10 февраля 2018 г, продолжение протокола № 318/2021 от 17 февраля 2020 г.).

Для определения уровня экспрессии генов *Lynx1, Lynx2, Lypd6, Lypd6b, Psca, Slurp1, Slurp2,*

БЫЧКОВ и др.

Рис. 1. Анализ экспрессии мРНК, кодирующих трехпетельные белки Lynx1 (a), Lynx2 (б), Lypd6 (в), Lypd6b (г), PSCA (д), SLURP-1 (е), SLURP-2 (ж), α 7-nAChR (з), постсинаптического маркера PSD95 (и) и TNF α (к) в гиппокампе здоровых и 2xTg-AD мышей с помощью ПЦР в реальном времени. Данные приведены как нормализованный уровень экспрессии гена ± среднеквадратичная ошибка (n = 5–6). * (p < 0.05), ** (p < 0.01), *** (p < 0.001) и **** (p < 0.0001) означают отличие между группами данных согласно двустороннему *t*-тесту.

 α *7-nAChR, Dlg4* и *Tnfa* использовали ПЦР в реальном времени, как описано ранее [12], праймеры указаны в табл. 1. Уровень экспрессии мРНК нормализовали по генам домашнего хозяйства β -актина, *Gpdh* и *Sdha* с использованием программного обеспечения LightCycler SW (Roche).

Для иммуногистохимии зафиксированный в формалине мозг здоровых и 2xTg-AD мышей инкубировали в растворе сахарозы, нарезали криотомом (М-32, Харьковпром) на срезы толщиной 25 мкм, проводили тепловую ренатурацию эпитопов в буфере Declere (Esbe Scientific) и инкубировали в течение 72 ч с первичными мышиными анти-α7-nAChR (Thermo Fisher, MA5-31691, 1 : 150) и кроличьими анти-Lynx1 (Abcam, AB125035, 1:200) антителами. После трехкратной промывки срезы инкубировали с ослиными анти-мышиными антителами, конъюгированными с Alexa488 (Jackson Immunoresearch, 715-545-150, 1: 500), и куриными антикроличьими антителами, коньюгированными с Alexa647 (Life Technologies, A21443, 1:500). Затем срезы заключали в среду Prolong Gold (Life Technologies) и снимали с использованием масляно-иммерсионного объектива $63 \times (1.4)$ на микроскопе Carl Zeiss LSM710 в режиме z-стэкинга.

Для количественной оценки экспрессии и локализации α7-nAChR и Lynx1 в гиппокампе, которые выглядели как "точки" в срезе, использовали программу Imaris 8.0 (Oxford Instruments). Минимальный диаметр точки составлял 0.3 мкм (что соответствует объему точки ~0.01 мкм³), определяли количество точек и интенсивность окрашивания. Интенсивность окрашивания кластеров была нормализована на флуоресценцию фона в каждой картинке. Для анализа со-локализации при помощи регрессионного анализа с использованием коэффициента Пирсона использовали программу ImageJ (NIH). Каждое изображение из z-стэка обрабатывали фильтрами (unsharp mask ($\sigma = 25$), median (радиус 2 пискеля), threshold (percentile, 90%), со-локализацию кластеров α 7nAChR и Lynx1 анализировали с использованием плагина Coloc-2. Для каждой из мышей анализировали 4 поля зрения из 2 срезов гиппокампа, после чего данные усредняли.

Уровень SLURP-1, ТNFα и TNFβ в сыворотке мышей определяли при помощи сэндвич имму-

356

Puc. 2. Анализ локализации Lynx1 и α7-nAChR в гиппокампе здоровых и 2xTg-AD мышей. а – Репрезентативное изображение реконструкции кластеров α7-nAChR и Lynx1 из 3D изображения среза гиппокампа с помощью Imaris, шкала 10 мкм. Размер кластера пропорционален его объему, а оттенок серого – интенсивности окрашивания. Стрелками показаны места со-локализации кластеров α7-nAChR. б, в, г – Анализ количества, интенсивности и объема кластеров α7-nAChR и Lynx1 в гиппокампе здоровых и 2xTg-AD мышей, реконструированных при помощи Imaris соответственно. д – Анализ со-локализации кластеров α7-nAChR и Lynx1 в гиппокампе здоровых и 2xTg-AD мышей, реконструированных при помощи Imaris соответственно. d – Анализ со-локализации кластеров α7-nAChR и Lynx1 в гиппокампе здоровых и 2xTg-AD мышей, реконструированных при помощи Imaris. е – Ортогональная проекция кластеров α7-nAChR и Lynx1 в гиппокампе мышей, шкала 10 мкм. Стрелками показаны места со-локализации кластеров α7-nAChR и Lynx1. ж – Анализ со-локализации кластеров α7-nAChR и Lynx1 при помощи регрессионного анализа с использованием коэффициентов корреляции Пирсона. Данные приведены как среднее ± среднеквадратичная ошибка (n = 5–6), * (p < 0.05), ** (p < 0.001), **** (p < 0.001) и ****

ноферментного анализа с использованием коммерческих наборов MBS1606981 (Mybiosource) для SLURP-1, ab 241791 для TNF α и ab244052 для TNF β (Abcam). Для детекции TNF α и TNF β захватывающее антитело иммобилизовали на планшет MaxiSorb (Thermo Fisher), после чего планшеты с антителами инкубировали с разведенными в соотношении 1 : 10 сыворотками крови мышей в течение 2 ч, затем планшеты трижды промывали коммерческим буфером (Mybiosource), инкубировали с детектирующим антителом, конъюгированным с пероксидазой хрена, и сигнал определяли с помощью тетраметилбензидина (Mybiosource) на микропланшетном спектрофотометре Multiskan (Thermo Fisher).

ПЦР в реальном времени показал, что в гиппокампе 2xTg-AD мышей, экспрессия генов Lynx1, Lypd6b и маркера постсинаптической плотности PSD95 (Dlg4) снижена в 1.8, 1.2 и 1.6 раза по сравнению со здоровыми мышами, экспрессия генов Lynx2, Lypd6, Psca, Slurp1, Slurp2 и α 7-*nAChR* не меняется, а экспрессия гена, кодирующего TNFa, значительно повышена (рис. 1). Так как TNFα является про-воспалительным цитокином, можно предположить, что уже на ранних стадиях БА в гиппокампе активируется воспаление. Снижение экспрессии Lynx1 на уровне белка было подтверждено при помощи гистохимии (рис. 2а). При этом не наблюдалось снижения экспрессии α7-nAChR ни на генном, ни на белковом уровне (рис. 1и, 2б, 2г).

Рис. 3. Анализ содержания SLURP-1 (а), TNF α (б) и TNF β (в) в сыворотке здоровых и 2xTg-AD мышей. Данные приведены как концентрации сывороточного белка ± среднеквадратичная ошибка (n = 7–9). * (p < 0.05) и ** (p < 0.01) означают отличие между группами данных согласно двустороннему *t*-тесту.

В здоровых мышах оба белка экспрессировались в виде кластеров объемом около 1.5 мкм³, причем значительное количество кластеров Lynx1 и α7-nAChR было со-локализовано (рис. 2г–2ж), однако в 2xTg-AD мышах более чем на 50% снижалось количество кластеров Lynx1 (рис. 2г), в 4.4 раза падала интенсивность окрашивания (рис. 2в), а также значительно (с 1.5 до 0.1 мкм³) уменьшался объем кластеров Lynx1 (рис. 2e), что не было характерно для α7-nAChR (рис. 2г–2е). Также у 2хТg-AD мышей сильно сокращалось количество со-локализованных кластеров Lynx1 и α7-nAChR (рис. 2д, 2ж). Ранее мы показали, что в мозге здоровых мышей Lynx1 физически связан с α 7-nAChR, регулирует активацию рецептора [12] и конкурирует с А β 1-42 за взаимодействие с ним [6]. Таким образом, уменьшение экспрессии Lynx1 и его со-локализации с α 7-nAChR создает предпосылки для нарушения регуляции работы этого рецептора в результате неконтролируемого взаимодействия с Аβ1-42. Снижение Lynx1 на уровне белка было показано для коры мозга пациентов и мышей с БА [6], однако снижение экспрессии Lynx1 и Lypd6b, а также нарушение солокализации Lynx1 и α7-nAChR в гиппокампе показано впервые.

Активация α 7-nAChR тормозит воспалительные процессы [9], а взаимодействие с олигомерным А β ингибирует работу рецептора [5, 6]. Результаты ИФА показали, что содержание паракринного регулятора клеточного гомеостаза SLURP-1, обладающего анти-воспалительными свойствами [17], в сыворотке крови 2xTg-AD мышей снижается на 20% по сравнению со здоровыми мышами, а уровни про-воспалительных цитокинов TNF α и TNF β [18, 19] повышаются в 1.6 и 1.9 раза, соответственно, по сравнению со здоровыми мышами (рис. 3). Снижение уровня SLURP-1 при одновременном увеличении уровней TNF α и TNF β свидетельствует об активации воспалительных процессов у 2xTg-AD мышей. В пользу этого указывает и увеличение экспрессии гена, кодирующего TNF α (рис. 1к). Интересно, что ингибирование TNF α рассматривается как перспективная стратегия для терапии БА [20], в то время как возможное совместное таргетирование TNF β и компенсация уровня SLURP-1 ранее не обсуждались.

Таким образом, дисфункция α 7-nAChR, приводящая к нейродегенерации и поддержанию воспалительного микроокружения в мозге при БА, может быть связана с уменьшением экспрессии эндогенных белков-регуляторов семейства Ly6/uPAR, таких как Lynx1, Lypd6b и SLURP-1. Терапия, направленная на компенсацию нарушений работы α 7-nAChR аналогами белков Ly6/uPAR, может представлять собой перспективную стратегию лечения когнитивных расстройств, наблюдаемых при БА.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках Федеральной научно-технической программы развития генетических технологий на 2019—2027 годы (Соглашение № 075-15-2021-1067) и Российского научного фонда (проект № 19-74-20176, исследование экспрессии Lynx1 и Lynx2).

СПИСОК ЛИТЕРАТУРЫ

- Ballard C. et al. Alzheimer's disease // Lancet. 2011. V. 377. № 9770. P. 1019–1031.
- Hampel H. et al. The Amyloid-β Pathway in Alzheimer's Disease // Mol Psychiatry. 2021. V. 26. № 10. P. 5481–5503.
- 3. *Muralidar S. et al.* Role of tau protein in Alzheimer's disease: The prime pathological player // Int J Biol Macromol. 2020. V. 163. P. 1599–1617.
- Buckingham S.D. et al. Nicotinic acetylcholine receptor signalling: roles in Alzheimer's disease and amyloid neuroprotection // Pharmacol. Rev. 2009. V. 61. № 1. P. 39–61.
- Lasala M. et al. Molecular Modulation of Human α7 Nicotinic Receptor by Amyloid-β Peptides // Front Cell Neurosci. 2019. V. 13. P. 37.
- Thomsen M.S. et al. Lynx1 and Aβ1–42 bind competitively to multiple nicotinic acetylcholine receptor subtypes // Neurobiology of Aging. 2016. V. 46. P. 13–21.
- 7. *Hernandez C.M. et al.* Loss of alpha7 nicotinic receptors enhances beta-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer's disease // J Neurosci. 2010. V. 30. № 7. P. 2442–2453.
- Decourt B., Lahiri D.K., Sabbagh M.N. Targeting Tumor Necrosis Factor Alpha for Alzheimer's Disease // Curr Alzheimer Res. 2017. V. 14. № 4. P. 412–425.

- 9. *de Jonge W.J., Ulloa L.* The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation // Br J Pharmacol. 2007. V. 151. № 7. P. 915–929.
- King J.R., Gillevet T.C., Kabbani N. A G protein-coupled α7 nicotinic receptor regulates signaling and TNFα release in microglia // FEBS Open Bio. 2017. V. 7. № 9. P. 1350–1361.
- 11. *Miwa J.M. et al.* lynx1, an Endogenous Toxin-like Modulator of Nicotinic Acetylcholine Receptors in the Mammalian CNS // Neuron. 1999. V. 23. № 1. P. 105– 114.
- 12. *Shenkarev Z.O. et al.* Water-soluble variant of human Lynx1 positively modulates synaptic plasticity and ameliorates cognitive impairment associated with α7-nAChR dysfunction // J Neurochem. 2020. V. 155. № 1. P. 45–61.
- Lyukmanova E. et al. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor // PLOS ONE / ed. Ulrich H. 2016. V. 11. № 2. P. e0149733.
- 14. Jensen M.M. et al. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in

Alzheimer's disease // Neurobiology of Aging. 2015. V. 36. № 4. P. 1629–1638.

- 15. *Bychkov M.L. et al.* Lynx1 Prevents Long-Term Potentiation Blockade and Reduction of Neuromodulator Expression Caused by Aβ1-42 and JNK Activation // Acta Naturae. 2018. V. 10. № 3. P. 57–61.
- Elder G.A. et al. Presenilin transgenic mice as models of Alzheimer's disease // Brain Struct Funct. 2010. V. 214. № 0. P. 127–143.
- Chernyavsky A.I. et al. Anti-Inflammatory Effects of the Nicotinergic Peptides SLURP-1 and SLURP-2 on Human Intestinal Epithelial Cells and Immunocytes // Biomed Res Int. 2014. V. 2014.
- 18. *Buhrmann C. et al.* Evidence that TNF-β (lymphotoxin α) can activate the inflammatory environment in human chondrocytes // Arthritis Research & Therapy. 2013. V. 15. № 6. P. R202.
- 19. Jang D.-I. et al. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics // Int J Mol Sci. 2021. V. 22. № 5. P. 2719.
- 20. *Torres-Acosta N. et al.* Therapeutic Potential of TNF-α Inhibition for Alzheimer's Disease Prevention // J Alzheimers Dis. 2020. V. 78. № 2. P. 619–626.

ACCUMULATION OF β-AMYLOID LEADS TO A DECREASE IN LYNX1 AND LYPD6B EXPRESSION IN THE HIPPOCAMPUS AND INCREASED EXPRESSION OF PRO-INFLAMMATORY CYTOKINES IN THE HIPPOCAMPUS AND BLOOD SERUM

M. L. Bychkov^{*a*}, A. V. Kirichenko^{*a*}, A. S. Paramonov^{*a*}, Academician of the RAS M. P. Kirpichnikov^{*a*,*b*}, and E. N. Lukmanova^{*a*,*b*,c,[#]}

 ^aShemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
^bInterdisciplinary Scientific and Educational School "Molecular Technologies of Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University M.V. Lomonosov, Moscow, Russian Federation

^cShenzhen MSU-BIT University, Shenzhen, China

[#]e-mail: ekaterina-lyukmanova@yandex.ru

Alzheimer's disease is a rapidly progressive neurodegenerative disease, the development of which is associated with the accumulation of β -amyloid oligomers, dysfunction of the α 7-nAChR nicotinic acetylcholine receptor, and activation of inflammation. Previously, we have shown that the neuromodulator Lynx1, which belongs to the Ly6/uPAR family, competes with β -amyloid(1–42) for binding to α 7-nAChR. In the present work, we studied the expression and localization of Ly6/uPAR family proteins in the hippocampus of 2xTg-AD transgenic mice that model AD and demonstrate increased amyloidosis in the brain. Using real-time PCR, we showed a decrease in the expression of the genes encoding Lynx1, Lypd6b, and the postsynaptic marker PSD95, as well as an increase in the expression of the TNF α gene in the hippocampus of 2xTg-AD mice. Histochemical analysis revealed that, in the hippocampus of 2xTg-AD mice Lynx1 does not co-localize with α 7-nAChR that can lead to the development of pathology when the receptor interacts with oligomeric β -amyloid. Also, in 2xTg-AD mice, activation of systemic inflammation was shown, which manifests itself in a decrease in the serum level of SLURP-1, a Ly6/uPAR family protein capable of regulating inflammatory processes, as well as an increase in the content of pro-inflammatory cytokines TNF α and TNF β . Thus, α 7-nAChR dysfunction and maintenance of the inflammatory microenvironment in the brain in Alzheimer's disease may be associated with a decrease in the expression of Ly6/uPAR family proteins that regulate α 7-nAChR activity and inflammation.

Keywords: Alzheimer's disease, nicotinic acetylcholine receptor, Ly6/uPAR, Lynx1, SLURP-1, Lypd6b