КОНТРОЛЬ ОДНООСНЫХ НАПРЯЖЕНИЙ В СТАЛЯХ С УЧЕТОМ ИХ МАГНИТОУПРУГОЙ ЧУВСТВИТЕЛЬНОСТИ

© 2021 г. В.Ф. Новиков^{1,*}, С.М. Кулак^{1,**}, А.С. Парахин^{1,***}

¹Тюменский индустриальный университет, Россия 625000 Тюмень, ул. Володарского, 38 E-mail: *vitaly.nowikov2017@yandex.ru;**ksm-rabochi@rambler.ru; ***parahinas@tyuiu.ru

Поступила в редакцию 12.12.2020; после доработки 16.02.2021 Принята к публикации 16.02.2021

Исследовано магнитоупругое размагничивание ряда сталей в состоянии поставки при продольном упругом растяжении, поперечном сжатии и ударе. Приведена оценка магнитоупругой чувствительности исследуемых марок сталей в линейном приближении. Рассмотрена возможность определения напряжения растяжения и сжатия в режиме магнитоупругой памяти с учетом магнитоупругой чувствительности выбранного участка стали и предложен способ ее определения с помощью дозированного нагружения (ударом или сжатием). Показано, что уравнение регрессии в виде полинома удовлетворительно согласуется с результатом экспериментов.

Ключевые слова: напряженно-деформированное состояние, остаточно намагниченное состояние, динамическое нагружение, магнитоупругое размагничивание стали, магнитоупругая чувствительность.

DOI: 10.31857/S0130308221040059

введение

Известно, что параметры петли гистерезиса заметно изменяются, если ферромагнетик испытывает упругую деформацию. На этой основе были разработаны методы и устройства для определения одноосных напряжений с помощью измерения анизотропии магнитной проницаемости и коэрцитивной силы [1-6], продольной и поперечной магнитострикции [7], скачков Баркгаузена [8]. Для контроля напряженно-деформированного состояния (НДС) может быть использован метод магнитоупругого размагничивания стали или магнитоупругой «памяти» (МУП), заключающийся в необратимом изменении ее остаточной локальной намагниченности (ЛН) или изменения магнитного поля рассеяния ЛН, вызванного упругой деформацией [9—16]. Он дает возможность регистрировать по изменению напряженности Н магнитного поля рассеяния остаточно намагниченного ферромагнетика величину максимального (пикового) напряжения за время от намагничивания до приложения и снятия нагрузки включительно. Явление может быть использовано для запоминания максимальных напряжений, действовавших на элементы стальной конструкции, в тех случаях, когда нагрузка на запоминающий датчик [16—17], образец, элемент конструкции [18] прикладывается и затем снимается. Такой характер нагружения реализуется при работе подъемных кранов (подъем — спуск груза), при движении транспорта на железнодорожных и автомобильных металлических мостах, при эксплуатации конструкций стадионов, цирков, театров (вход и выход посетителей). Аналогичного рода нагружения (приложение—снятие) испытывают рельсы (проезд состава), датчики и элементы конструкции при ударном нагружении [17]: корпус корабля во время шторма; металлические конструкции под действием сезонных ветровых и снеговых нагрузок [18], при землетрясениях. В исходном состоянии напряженное состояние элементов конструкции создаются ее весом. Если уровень этих напряжений сравнительно невелик, тогда с помощью магнитоупругого размагничивания можно определять нагрузку, вызванную дополнительным силовым воздействием в процессе эксплуатации.

Вариации химического состава, режима прокатки и температурного режима при изготовлении стали сказываются на магнитных и магнитоупругих свойствах стали [19, 21, 22]. Так, проведенные нами измерения H_c на 67 образцах трубной стали 09Г2С выявили разброс значений H_c от 440 до 580А/м, т.е. более, чем на 30 %. Примерно в таком же диапазоне разброс кривых зависимости $H_c(\sigma)$ различных конструкционных сталей [4].

Для уменьшения погрешности, обусловленной неоднородностью физических свойств стали, измеряют в том же месте второй параметр (например, магнитострикцию) и вводят ее значение в уравнение регрессии $H_c(\sigma)$ (двухфакторный подход) [4, 19]. Повышение точности контроля видят в определении магнитоупругой чувствительности (МУЧ) контролируемых участков тензометрическим методом [18, 20], дополнительном подмагничивании [23], или используют дополнительное зондирующее напряжение, например, с помощью излучателя ультразвуковых колебаний [25, 26]. Недостатком последнего является высокая частота возбуждения, влияние вихревых токов и сложность обеспечения надежного контакта излучателя с конструкцией. В работе [11] использовали дополнительное дозированное нагружение контролируемого элемента конструкции. Недостаток метода заключается в сложности создания в металлоконструкции калиброванных напряжений. В работах [5, 11, 13] дозированная нагрузка в трубе достигалась дозированным изменением давления или сравнивалась с расчетной нагрузкой, определяемой по величине давления. Однако этот подход применим только для трубопроводов и сосудов с давлением. Сравнение различных известных методов и средств определения напряжений в работах [27, 28] показало, что они применимы скорее в частных случаях, и сходимость их показаний невелика. Поэтому в плане повышения точности магнитоупругих тензометров актуальным является разработка простых и надежных методов определения магнитоупругой чувствительности стали в контролируемом элементе конструкции и ее введение в регистрируемый сигнал.

Целью работы является разработка способа и устройств для определения магнитоупругой чувствительности конструкционных сталей к напряжениям, создаваемым растяжением, сжатием, ударом, и поиск способа использования МУЧ при определении напряжений.

В работах [10, 18, 26] дополнительная нагрузка для определения МУЧ проводилась в том же направлении, что и основная. В работах [11—14] это была как осевая, так и радиальная составляющие напряжений. В предлагаемом исследовании локальное намагничивание и зондирующее нагружение предлагается осуществлять сбоку образца или элемента исследуемой конструкции. Если, например, продольная измеряемая нагрузка ориентирована вдоль оси Z цилиндра, шестигранника, квадрата, уголка, то локальное намагничивание и зондирующее нагружение проводится вдоль оси X или оси Y (поперечная нагрузка).

Магнитоупругая чувствительность стали Λ к напряжениям в линейном случае может быть представлена в виде:

$$\Lambda = \frac{H_0 - H_\sigma}{H_0 \cdot \sigma} = \frac{\delta H}{\sigma}, \text{ MIIa}^{-1}, \tag{1}$$

где H_0 и H_{σ} — напряженность магнитного поля рассеяния участка локальной остаточной намагниченности (ЛОН) до и после создания и снятия в ней напряжений σ ; $\delta H = (H_0 - H_{\sigma})/H_0$ — магнитоу-пругое относительное изменение напряженности магнитного поля рассеяния локальной остаточной намагниченности. Влияние внешнего поля на результаты измерения H_0 и H_{σ} исключается при применении пары феррозондов, включаемых встречно. Для уменьшения его влияния на величину и изменения ЛОН магнитно-мягких сталей целесообразно на контролируемом участке конструкции сформировать две точки ЛОН с противоположными направлениями намагничивания. Усреднение величины H_0 и ΔH для двух ЛОН позволит существенно уменьшить влияние внешнего поля.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для исследования МУП использовали образцы стали Ст3, 15ХСНД, размерами (300×70×8) мм³, вырезанные плазмой из листового проката в состоянии поставки, стали 17Г1С (6,5×29×255) мм³ и стали 09Г2С, размером (7,5×29×264) мм³. Из сталей 17Г1С, 09Г2С и дюралевой прослойки (пластины аналогичного размера) заклепками создавался трехслойный образец общей толщиной 21,3 мм. Его нагружение проводили простым трехточечным изгибом. В результате чего одна пластина испытывает деформацию растяжения, а другая — сжатия. Механические напряжения о на поверхности образцов определяли с помощью тензодатчиков. Исследование влияния напряжений при осевом растяжении на локальную остаточную намагниченность образцов из стали Ст3 и 15ХСНД проводили на стенде разрывной машины ИР 5047-50. Поперечное (зондирующее) нагружение этих образцов осуществляли статическим надавливанием цилиндрическим индентором в машине ИР 5047-50 и воздействием с помощью пружинного ударника (рис. 1). Механические свойства исследуемых сталей отражены в табл. 1, магнитные — в табл. 2.

В работе использовали два вида устройств для локального намагничивания образцов (рис. 1). Первое устройство (рис. 1*a*) состоит из магазина конденсаторов (C) со схемой управления их зарядом и разрядом, соединенного с катушкой для намагничивания (2). Локальное намагничивание образцов сталей 17Г1С, 09Г2С (см. рис.1*a*) проводили полем разрядного тока батареи конденсаторов (С), протекающего через намагничивающую 100 витковую катушку диаметром 50 мм (2), позволяющую создавать максимальную напряженность поля в 10^5 А/м. Феррозонд-полемер помещался в центр ЛОН, перпендикулярно поверхности образца, и феррозондовым магнитометром измеряли нормальную составляющую напряженности магнитного поля H_n рассеяния ЛОН.

Таблица 1

Механические свойства сталей

	T Contraction of the second seco			
Марка стали	Механические свойства (по сертификату производителя)			
	Предел текучести σ _{0,2} , МПа	Временное сопротивление $\sigma_{_B}$, МПа		
15ХСНД	380	550		
Ст3	290	440		
09Г2С	345	405		
17Г1С	340	510		

в

1 — фикирующее установку (крепежное) кольцо; 2 — катушка для намагничивания стали; 3 — пара феррозондовых датчиков магнитного поля, включенных диаметрально встречно друг другу; 4 — ударное устройство; 5 — боек ударного устройства; 6 — пружина; 7 — съемное устройство для намагничивания постоянным магнитом с ручками (8).

Глубина импульсного промагничивания, контролируемая экспериментально с помощью стандартного образца, составила для сталей 09Г2С и 17Г1С не менее 3 мм. Параметры *H* и σ регистрировали на компьютере с помощью аналогового преобразователя и пакета программ LabVIEW.

Для намагничивания сталей 15ХСНД и Ст3 (рис. 16) использовали дисковый постоянный магнит диаметром 30 мм, толщиной 7 мм, с защитной насадкой из магнитно-мягкой стали того же диаметра

и толщиной 5 мм. Все это помещалось в цилиндрический немагнитный держатель (7). Нормальная составляющая магнитной индукции на торце магнита со стороны насадки составила ~350-400 мТл.

Намагничивание стали 15ХСНД и СтЗ (см. рис. 16) производили путем многократных (до 10 раз) контактов устройства для намагничивания (7) (постоянного магнита) с поверхностью стали. Затем устройство (7) (магнит) убирали и с помощью феррозондовых датчиков магнитного поля (3) магнитометра ИКНМ-2ФП, определяли тангенциальную составляющую магнитного поля рассеяния *H*₁₀ остаточно намагниченного участка (см. рис. 16). Напряжения осевого растяжения и нормального сжатия образцов создавались с помощью машины ИР 5047-50, а ударные сжимающие напряжения с помощью ударного устройства (4), снабженного бойком (5) (см. рис. 1a, b). Ударная часть бойка имела форму полусферы с диаметром основания *d* = 15мм и кривизной выпуклой части 2 м из прочного немагнитного материала. Оценка силы удара F и напряжения $\sigma_{ya} = F/S$ в стали создаваемого ударом проводилась по приближенной формуле, полученной с помощью закона сохранения энергии и импульса:

$$\sigma_{yq} = \frac{\Delta l \cdot V_{_{3B}}}{2L\pi r^2} \sqrt{km} \cong \alpha \cdot \Delta l, \qquad (2)$$

где Δl — абсолютная деформация пружины жесткостью k = 662 Н/м; m = 0.5 кг — масса бойка ударного устройства; L = 0,27 м — его длина; V₃₈ = 5000 м/с — продольная скорость звука в титане; r = 5,75 мм — половина диаметра круглого отпечатка копировальной бумаги на поверхности стали после удара бойком при максимальной деформации пружины 0,1 м. Сила удара по образцу регулировалась величиной деформации пружины Δl до необходимого уровня, не вызывающего пластических изменений образца. Калибровку ударного устройства осуществляли вдавливанием в ценр (ЛОН) плоского титанового цилиндра (индентера) с помощью машины ИР 5047-50. Диаметры индентора и бойка ударного устройства одинаковы и равнялись 11,5 мм. Для калибровки деформации пружины ударного устройства образец располагался на массивной наковальне из Х18Н9Т. После локального намагничивания образца и измерения H_{r0} производилось его локальное сжатие (б, вдоль нормали к поверхности с помощью индентера, закрепленного в стенде разрывной машины ИР 5047-50. За напряжение σ_{va} , создаваемого ударным устройством, принимали нагрузку σ_{сж} цилиндрического индентера, обеспечивающего такое же изменение величины δΗ ЛОН образца, как и при ударе. Величина калибровочного коэффициента α для ударного устройства, определенного таким образом, составила $\alpha = 10,95$ МПа/см (здесь деформация пружины ударного устройства указана в сантиметрах).

Методика исследования магнитоупругой чувствительности стальных образцов состояла в следующем. Выбранный участок исследуемой стали (образца) размагничивали убывающим переменным магнитным полем электромагнита. На это место для обеспечения повторяемости результатов наклеивалось фиксирующее пластмассовое кольцо (1), позволяющее в одно и то же место помещать намагничивающее (катушка или магнит) и ударное устройство (см. рис. 1*а*, б).

Порядок исследований МУЧ и обозначение операций (М, И, Н, Р) образцов стали 15ХСНД к напряжениям растяжения, сжатия, удара приведены ниже:

1) в фиксирующее кольцо (1) (см. рис. 16) помещается катушка (2) с встроенными датчиками магнитного поля (3), ориентированными поперек оси пластины, в нее вставляется устройство (7)(магнит) и проводится намагничивание (М);

2) устройство (7) удаляется, магнитометром ИКНМ-2ФП измеряется (И) начальное значение тангенциальной составляющей H₁₀ напряженности магнитного поля рассеяния ЛОН образца;

3) проводится зондирующее нагружение образца (H) ударом (σ_{vu}) с помощью устройства (см. рис. 1*a*, *в*) или сжатием с помощью индентера (σ_{cw}) в стенде ИР 5047-50 либо осевым растяжением ($\sigma_{\text{раст}}$);

4) после снятия нагрузки σ (разгрузка P) измеряется $H_{\pi\sigma}$;

5) в следующем цикле исследований к образцу после его аналогичного намагничивания, измерения H_{τ_0} прикладываются более высокие нагрузки ($\sigma_{va}, \sigma_{cw}, \sigma_{pact}$) и новое измерение $H_{\tau\sigma}$. Методика исследований МУЧ образцов стали 17Г1С и 09Г2С к осевому растяжению или сжа-

тию отличается только способом нагружения и оценки напряжений.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

По результатам исследований рассчитывали относительное изменение $\delta H_{\tau} = \frac{H_{\tau 0} - H_{\tau \sigma}}{H_{\tau 0}}$ и устанавливали его зависимость от соответствующих напряжений σ (рис. 2).

Рис. 2. Зависимость относительного изменения напряженности магнитного поля рассеяния $\delta H_{\tau pact}, H_{\tau yd}, H_{\tau cm}$ остаточно намагниченной стали 15ХСНД от напряжений, создаваемых растяжением (♦) вдоль оси, поперечного ударного нагружения (■) и поперечного сжатия (▲) пластинчатого образца.

Из рис. 2 следует, что с точностью до ±5 % $\delta H_{\tau pacr}$, $\delta H_{\tau yg}$, $\delta H_{\tau cm}$ линейно возрастают по мере увеличения уровня соответствующих напряжений в диапазоне от 0—100 МПа, заметно меньших предела текучести стали (см. табл. 1). Для каждого вида нагружения исследуемых образцов определялась МУЧ к поперечному Λ_{yg}^{n} , Λ_{cm}^{n} и осевому нагружению Λ_{cm} или Λ_{pacr} . Оценивались их соотношения:

$$K_{yg}^{\text{раст}} = \Lambda_{\text{раст}} / \Lambda_{yg}^{\pi} = 1,12$$
 (см. рис. 2) или $K_{yg}^{\text{сж}} = \Lambda_{\text{сж}} / \Lambda_{yg}^{\pi} = 1,04.$

Это позволило, используя поперечное к оси образца нагружение (удар, сжатие) и расчет $\Lambda^{\pi}_{_{yd}}$ или $\Lambda^{\pi}_{_{cж}}$, определять осевую МУЧ $\Lambda_{_{cw}}$ или $\Lambda^{}_{_{pact}}$:

$$\Lambda_{\text{pact}} = K_{\text{yd}}^{\text{pact}} \cdot \Lambda_{\text{yd}}^{\pi}; \quad \Lambda_{\text{cw}} = K_{\text{yd}}^{\text{cw}} \cdot \Lambda_{\text{yd}}^{\pi}.$$
(3)

Здесь *К* — коэффициент перевода магнитоупругой чувствительности от поперечной нагрузки к продольной.

Достоверность результатов исследований, показанных на рис. 2, подтверждалась их повторяемостью при трехкратном измерении и удовлетворительной степенью их линейной аппроксимации для указанного диапазона нагрузок.

Для математического описания закономерности магнитоупругого размагничивания использовался полином:

$$\delta H = \sum_{n=1}^{n=\infty} \frac{\Lambda_{\text{pact}}^n}{n!} \sigma^n (-1)^{n+1}, \tag{4}$$

где $\delta H = (H_{\tau 0} - H_{\tau 0})/H_{\tau 0}$ — относительное магнитоупругое изменение напряженности магнитного поля рассеяния ЛОН стального образца; $H_{\tau 0}$ — напряженность поля ЛОН образца до его нагружения; $H_{\tau \sigma}$ — напряженность поля рассеяния ЛОН после нагружения и разгружения образцов; $\Lambda_{\rm pacr}$ — магнитупругая чувствительность стали к определенному виду намагничивания и нагружения (растяжения, удара, сжатия), определяемая при контроле с помощью дозированного бокового нагружения; σ — напряжение; n = 1, ..., 3, 4 ... — число слагаемых полинома.

Развернутая форма полинома (4) из четырех слагаемых, описывающего магнитоупругое размагничивание стали 15ХСНД, СТЗ, 17Г1С, 09Г2С имеет следующий вид:

$$\delta H = \Lambda_{\text{pact}} \cdot \sigma - \left(\frac{\Lambda_{\text{pact}}^2}{2}\right) \cdot \sigma^2 + \left(\frac{\Lambda_{\text{pact}}^3}{6}\right) \cdot \sigma^3 - \left(\frac{\Lambda_{\text{pact}}^4}{24}\right) \cdot \sigma^4, \tag{5}$$

где $\Lambda_{\text{раст}}$ — магнитоупругая чувствительность стали к напряжениям осевого растяжения. Аппроксимация результатов экспериментов осуществлялась при n = 4.

Рис. 3. Экспериментальная (◆) и полиномиальная (−) зависимости относительного магнитоупругого изменения $\delta H_{\tau cm}$ напряженности магнитного поля ЛОН образца 15ХСНД от напряжений бокового сжатия σ_{rm} .

На рис. 3—6 показаны результаты магнитоупругого размагничивания исследуемых стальных образцов после первого MI_0 , H_1PI_1 , второго H_2PI_2 и т.д. цикла операций с нагрузками выше 100 МПА и результаты расчета величины δH по функции из четырех слагаемых (5). Из рис. 3—6 видно удовлетворительное согласие результатов эксперимента и расчета полинома (5) при их среднем квадратичном отклонении от 5—9 %.

Рис. 4. Экспериментальная (•) и расчетная (-) зависимости δ*H*_{*n* раст} напряженности магнитного поля рассеяния ЛОН образца 17Г1С от напряжений осевого растяжения σ_{паст}.

На рис. 4 и 5 показаны экспериментальные (•) и полиномиальные (–) зависимости относительного изменения $\delta H_{n \text{ раст}}$ и $\delta H_{n \text{ сж}}$ стали 17Г1С соответственно от напряжений растяжения и сжатия после намагничивания, измерения исходного значения напряженности магнитного поля рассеяния ЛОН H_{n0} с последующим пошаговым увеличением напряжений растяжения $\sigma_{\text{раст}}$ ($\sigma_{\text{сж}}$) и измерении напряженности поля H_{n0} с последующим пошаговым увеличением напряжений растяжения $\sigma_{\text{раст}}$ ($\sigma_{\text{сж}}$) и измерении напряженности поля H_{n0} с последующим пошаговым увеличением напряжений растяжения $\sigma_{\text{раст}}$ ($\sigma_{\text{сж}}$) и измерении напряженности поля H_{n0} (МИ₀, H₁И, H₂И и т.д.). Магнитоупругая чувствительность стали 17Г1С к напряжениям равны $\Lambda_{\text{раст}} = 0,0037 \text{ Па}^{-1}$ и $\Lambda_{\text{сж}} = 0,0027 \text{ МПа}^{-1}$. На рис. 6 приведена зависимость $\delta H_{\text{тсж}}$ для стали Ст3. Видно, что расчетная кривая лучше согласуется с результатами эксперимента в диапазоне 0—80 МПа и хуже при более высоких напряжениях.

Удовлетворительное согласие результатов расчета по полиномиальной зависимости из 4-х слагаемых и эксперимента наблюдалось для магнитоупругой чувствительности Λ в диапазоне 0—80 МПа для сталей 09Г2Си 15ХСНД (см. табл. 2.). Видно,что значения Λ разных сталей существенно отличаются по величине, и это нельзя не учитывать при определении напряжений стальных конструкций магнитоупругими методами.

Особенностью рассматриваемого подхода является удовлетворительная корреляция расчетной и экспериментальной зависимостей δ*H*(σ). Как экспериментальная, так и расчетная зависимость

Рис. 5. Экспериментальная (•) и расчетная (–) зависимости δ*H*_{*n* сж} напряженности магнитного поля рассеяния ЛОН образца 17Г1С от напряжений осевого сжатия σ_{сж}.

Рис. 6. Экспериментальная (•) и расчетная (-) зависимости δH_{τ сж} напряженности магнитного поля рассеяния ЛОН образца Cт3 от напряжений поперечного сжатия σ_{сж}.

Таблица 2

Магнитные свойства (*H*_{τ0} — начальное значение напряженности поля рассеяния ЛОН, *H*_c||*H*_{c⊥} — продольное и поперечное значения коэрцитивной силы относительно оси образца) и Λ — магнитоупругая чувствительность сталей для различного вида нагружений

Марка стали	<i>Н</i> _{т0} , А/м	<i>H</i> _{с∥} / <i>H</i> _{с⊥} , А/м	$Λ_{ m pact}$, ΜΠ a^{-1}	$Λ_{c \varkappa}$, ΜΠ a^{-1}
15ХСНД	560	600/540	0,0053	0,0054
CT3	290	310/290	0,0064	0,0051
09Г2С	232	570/-	-	0,0025
17Г1С	210	460/-	0,0037	0,0027

начинается от нуля. В обоих случаях используется МУЧ, определяемая экспериментально. По результатам определения Λ^{n}_{yd} или Λ^{n}_{cx} и экспериментально установленных коэффициентов перехода K_{yd}^{cx} или K_{yd}^{pacr} определяется магнитоупругая чувствительность Λ_{cx} или Λ_{pacr} к осевым рабочим напряжениям и строится градуировочная зависимость с учетом МУЧ для заданного участка на основе выражения (5). Для расчета напряжений используется величина δH_{pa6} , определяемая после воздействия на ЛОН рабочего одноосного (контролируемого) напряжения σ_{pa6} . Установленные закономерности позволяют предложить следующий подход к определению

Установленные закономерности позволяют предложить следующий подход к определению одноосных напряжений о_{раст} участка конструкции, например от растяжения, с учетом магнитоу-пругой чувствительности. Для этого выбранный участок стальной конструкции размагничивается.

Осуществляется его локальное намагничивание, измеряется начальное значение $H_{\tau 0}$ напряженности поля рассеяния ЛОН и его значение $H_{\tau \, y_{\Lambda}}$ после ударного нагружения для 2-3-х значений напряжения $\sigma_{y_{\Lambda}}$, например, 50, 70 и 90 МПа. Определяется непосредственно в месте контроля напряжений $\Lambda_{yg}^{\gamma,n} = \Delta H_{\tau yg} / (H_{\tau 0} \cdot \sigma_{yg})$ и с учетом коэфициента перехода K_{yg}^{pact} находится Λ_{pact} . Выбранный участок снова намагничивается, измеряется напряженность поля рассеяния Н₀, и сформированный магнитоупругий «датчик» готов воспринимать измеряемую (рабочую) нагрузку о_{раст}, например, при работе моста, мостового крана и т.п. После контролируемого силового воздействия снова измеряется значение Н_а напряженности поля рассеяния ЛОН, определяется его абсолютное изменение ΔH_{σ} и относительное $\delta H_{\text{pact}} = \Delta H_{\sigma}/(\dot{H_0})$. Величина действовавшей рабочей нагрузки σ_{pact} определяется по индивидуальной градуировочной кривой или с помощью компьютера по соответствующей программе, в которой ПК перебирает величины σ с шагом 0,1 или 0,01 МПа и запоминает ее значение, при котором расчетное значение δH совпадает с измеренным δ*H*_{раст}. Предлагаемый способ контроля напряжений в режиме магнитоупругого размагничивания (маг-

нитоупругой памяти) никоим образом не конкурирует с тензометрическим методом. Метод может быть оперативно применен в качестве дополнительного средства для контроля большого количества точек конструкции или для автономного бесприборного запоминания нарузок (например, ветровой или снеговой нагрузки, проезжавшего поезда и т.п.).

Отдаем дань памяти мастеру кафедры физики, методов контроля и диагностики А.Ф. Новикову, изготовившему устройства и приспособления, без которых не состоялась бы предлагаемая работа.

выволы

1. Разработаны способ и устройство для определения магнитоупругой чувствительности конструкционных сталей к напряжениям сжатия от локального поперечного удара, испытанные на сталях 15ХСНД и Ст3.

 Для исследованных сталей 15ХСНД и Ст3 получены коэффициенты пересчета магнитоупругой чувствительности к поперечным нагрузкам (напряжениям нормального статического и ударного сжатия) в магнитоупругую чувствительность к напряжениям ее осевого растяжения (сжатия).

3. Предложено уравнение полинома четвертой степени для количественного описания магнитоупругого размагничивания конструкционных сталей в упругой области с учетом величины их магнитоупругой чувствительности; достигнута необходимая степень аппроксимации предложенного уравнения и результатов экспериментального исследования магнитоупругого размагничивания сталей 15ХСНД и СТЗ осевым растяжением, поперечным локальным сжатием и ударом, а также сталей 17Г1С и 09Г2С при их деформации изгибом.

4. Найден алгоритм определения действовавшего осевого напряжения в стальных конструкциях в режиме магнитоупругой памяти.

СПИСОК ЛИТЕРАТУРЫ

1. Жуков С.В., Жуков В.С., Копица Н.Н. Способ определения механических напряжений и устройство для его осуществления / Патент РФ на изобретение № 2195636. Бюл. № 36. Опубл. 27.12.02.

2. Жуков С.В., Копица Н.Н. Исследование полей механических напряжений в металлических конструкциях приборами «Комплекс-2» / Сб. научн. трудов отделения «Специальные проблемы транспорта» Рос. Академии транспорта. 1998. № 3. С. 214—222.

3. Harid H., Middelldorf. Termometrische Methoden bei der mehaniscen Werkstoffpiifung // «Werkstoffprufung, 1984, Vortr. Tag. Bad Nauhein.6-7 Dez., 1984» Berlin. 1985. P. 441-451.

4. Новиков В.Ф., Яценко Т.А., Бахарев М.С. Зависимость коэрцитивной силы малоуглеродистых сталей от одноосных напряжений (часть 2) // Дефектоскопия. 2002. № 4. С. 10-17.

5. Деордиев Г.И., Бикташев Т.Х., Макаров В.Н. Магнитострикционный способ измерения напряжений в элементах металлоконструкций // Дефектоскопия. 1977. № 3. С. 82—91.

6. Агиней Р.В., Теплинский Ю.А., Кузьбожев А.С. Оценка напряженного состояния стальных трубопроводов по анизотропии магнитных свойств металла // Контроль. Диагностика. 2004. № 8. С. 22—24.

7. Филинов В.В. Приборы и методы контроля технологических напряжений на основе использования магнитных и акустических шумов перемагничивания / Уч. пособие. М.: МГАПИ, 2000. 80 с.

8. Филинов В.В., Кузнецов А.Н., Аракелов П.Г. Контроль напряженного состояния трубопроводов по

магнитным параметрам металла // Дефектоскопия. 2017. № 1. С. 41—45. 9. Новиков В.Ф., Бахарев М.С., Орел А.А. О магнитоупругой памяти высокохромистой стали // Дефектоскопия. 2001. № 10. С. 20-26.

10. Бахарев М.С., Новиков В.Ф., Дягтлев В.Ф., Кулак С.М. Способ определения механических напряжений в конструкциях из ферромагнитных материалов / Патент РФ на изобретение № 2274840. Бюл. № 11. Опубл. 20.04.2006.

11. Новиков В.Ф., Важенин Ю.И., Бахарев М.С., Муратов К.Р., Кулак С.М. Диагностика мест повышенной разрушаемости трубопровода. М.: Недра, 2009. С. 200.

12. Kulak S.M., Novikov V.F., Baranov A.V. Control of Mechanical Stresses of High Pressure Container Walls by Magnetoelastic Method / Transport and Storage of Hydrocarbons IOP Publishing IOP Conf. Series: Materials Science and Engineering. 2016. V. 154. P. 012004. doi: 10.1088/1757-899X/154/1/012004

13. Кулак С.М., Новиков В.Ф. Определение механических напряжений в стали методом магнитоупругого размагничивания. Заводская лаборатория // Диагностика материалов. 2015. № 7. Т. 81. С. 56—59.

14. Кулак С.М., Новиков В.Ф. Магнитный способ определения осевых механических напряжений сложно нагруженного магнетика / Патент РФ на изобретение № 2326356. Бюл. №16. Опубл. 10.06.2008.

15. Кулак С.М., Новиков В.Ф., Проботюк В.В., Ваценков С.М., Фурсов Е.С. Магнитный контроль напряженного состояния стенки газового сепаратора при его гидроиспытаниях // Дефектоскопия. 2019. № 3. С. 38—45.

16. Новиков В.Ф., Муратов К.Р., Кулак С.М. Возможности магнитных преобразователей для измерения деформации и оценки эксплуатационного ресурса элементов конструкции // Diagnostics, Resource and Mechanics of materials and structures. 2019. Is. 6. P. 15—25. doi: 10.17804/2410-9908.2019.6.015-025

17. Новиков В.Ф., Нассонов В.В., Иванюк А.В. Измерение давлений с помощью магнитного крешера // Физика горения и взрыва. 1989. № 6. С. 87—89.

18. Новиков В.Ф., Бахарев М.С., Сорокина С.В. Неразрушающий контроль снеговой и ветровой нагрузки в режиме магнитоупругой памяти // Строительная механика инженерных конструкций и сооружений. 2008. № 3. С. 51—54.

19. Сандомирский С.Г. Условия повышения достоверности двухпараметрового косвенного измерения свойств сталей по сравнению с однопараметровым / В сб. Современные методы и приборы контроля качества и диагностики состояния объектов. Сб. ст. 7-й Международной научно-технической конференции. Могилев, 2020. С. 170—176.

20. Костин В.Н., Царькова Т.П., Ничипурук А.П., Лоскутов В.Е., Лопатин В.В., Костин К.В. Необратимые изменения намагниченности как индикаторы напряженно-деформированного состояния ферромагнитных объектов // Дефектоскопия. 2009. № 11. С. 54—67.

21. Матюк В.Ф., Мельгуй М.А., Осипов А.А. Об отличии стандартных магнитных характеристик от их аналогов при неразрушающем контроле / В кн.: Материалы, оборудование и ресурсосберегающие технологии. Материалы международной научно-технической конференции. ГУ ВПО «Белорусско-Российский университет», 2017. С. 337—338.

22. Матюк В.Ф., Мельгуй М.А., Осипов А.А. О целесообразности определения остаточной магнитной индукции (намагниченности) вещества конкретной марки стали статистическим методом / В кн.: Материалы, оборудование и ресурсосберегающие технологии. Материалы международной научно-технической конференции. ГУ ВПО «Белорусско-Российский университет», 2017. С. 339—340.

23. Сташков А.Н., Ничипурук А.П., Кулеев В.Г., Царькова Т.П. Определение величины механических сжимающих напряжений в образцах из низкоуглеродистых сталей по магнитным параметрам без проведения предварительной калибровки / В сб.: Современные методы и приборы контроля качества и диагностики состояния объектов. Сб. ст. 6-й Международной научно-технической конференции. 2017. С. 311—316.

24. Кострюкова Н.К., Новиков В.Ф., Кострюков О.М., Ершов С.П. Определение напряженного состояния металла труб под воздействием зон локальных разломов // Изв. ВУЗ. Нефть и Газ. 2001. № 1. С. 80—85.

25. Правдин Л.С., Родигин Н.М., Акулов Ю.М. Способ неразрушающего контроля механических свойств ферромагнитных материалов. А.с. 549732 СССР 2185397/28; МКИ G0 1N 27/86. Заявл. 31.10.75. Опубл. 30.03.77.

26. Правдин Л.С., Бурцева В.А. Особенности изменения намагниченности и магнитострикции от малых приращений упругих напряжений и магнитного поля на примере малоуглеродистой стали // Дефектоскопия. 1992. № 4. С. 29—38.

27. Дубов А.А., Демин Е.А., Миляев А.И., Стеклов О.А. Опыт контроля напряженно-деформированного состояния газопроводов с использованием метода магнитной памяти металла в сравнении с традиционными методами и средствами контроля напряжений // Контроль. Диагностика. 2002. № 4. С. 53—56.

28. Исламов Р.Р., Агиней Р.В., Исупова Е.В. Анализ средств и методов мониторинга напряженного состояния подземных магистральных нефтегазопроводов, работающих в сложных инженерно-геологических условиях // Транспорт и хранение нефтепродуктов и углеводородного сырья. 2017. № 6. С. 31—40.