= ТЕОРИЯ УПРАВЛЕНИЯ =

УДК 517.977.58

ЗАДАЧА УПРАВЛЕНИЯ КУСОЧНО-ЛИНЕЙНОЙ СИСТЕМОЙ С НЕОПРЕДЕЛЁННОСТЯМИ ПО РЕЗУЛЬТАТАМ ИЗМЕРЕНИЙ

© 2021 г. К. С. Маянцев, П. А. Точилин

Рассматривается задача управления кусочно-линейной системой на конечном отрезке времени в условиях неопределённости на основании неполной и неточной информации. Разработана схема приближённого решения, включающая построение вспомогательных кусочно-квадратичных функций цены. Приведены формулы для расчёта такой функции, позволяющей оценить извне информационное множество кусочно-линейной системы. Предложен алгоритм построения позиционного управления, минимизирующего (в соответствующей метрике) отклонение внешней оценки информационного множества от внутренней оценки множества разрешимости и решающего задачу о переводе траектории системы в малую окрестность целевого множества за заданное время.

DOI: 10.31857/S037406412111008X

Введение. В работе рассматривается задача целевого управления для кусочно-линейной системы с переключениями (частного случая гибридной системы) [1, 2]. Необходимо перевести траекторию системы из начального множества в малую окрестность целевого множества на заданном отрезке времени. Начальное положение системы считается неизвестным, а в уравнениях динамики имеются погрешности (неопределённости). Единственная доступная информация о текущем состоянии системы поступает из уравнений наблюдения. При этом наблюдения являются неполными и неточными.

Как известно [3], при решении задач управления на основании неполной и неточной информации о текущем состоянии наиболее важным является правильный выбор позиции системы. В [3] предложены несколько вариантов конструкций позиций, включающих либо информационные множества системы, либо соответствующие функции цены. В частном случае линейной динамики могут быть реализованы эффективные приближённые методы для решения задачи управления [4]. В настоящей работе указанные выше общие идеи реализованы для специального случая кусочно-линейной динамики, а в позицию системы включена внешняя оценка информационного множества.

Из задачи позиционного управления по результатам наблюдений можно выделить несколько ключевых подзадач: 1) построение множеств разрешимости (попятных множеств достижимости) [5] или их внутренних оценок; 2) построение информационных множеств; 3) синтез управлений за счёт применения модификации метода экстремального прицеливания [6]. Особенностью данной работы является то, что для решения указанных подзадач используется специальный класс непрерывных кусочно-квадратичных функций цены, ранее применявшихся авторами при решении задач достижимости [7], разрешимости и синтеза управлений [8, 9] на основании полной информации о состоянии системы.

В работе, используя кусочно-квадратичные функции цены, а также идею принципа сравнения [5, 10], получены формулы для построения внешних оценок информационных множеств кусочно-линейной системы и разработана общая схема вычисления синтеза управлений за счёт прицеливания оценками информационных множеств на внутренние аппроксимации множеств разрешимости.

1. Математическая модель системы. Рассмотрим математическую модель системы с переключениями, которую также будем называть кусочно-линейной системой. Она состоит из совокупности N подсистем, каждая из которых задаётся системой обыкновенных дифференциальных уравнений

$$\dot{x} = A^{(i)}(t)x + B^{(i)}(t)u + C^{(i)}(t)v + d^{(i)}(t), \quad t \in [t_0, t_1], \quad i = \overline{1, N}.$$
(1)

В любой момент времени активной является ровно одна из этих систем. Вектор $x(t) \in \mathbb{R}^{n_x}$ - фазовая траектория системы; $u \in \mathbb{R}^{n_u}$ является управляющим параметром, $v \in \mathbb{R}^{n_v}$ - неопределённостью (помехой) динамики. Матричнозначные функции $A^{(i)}(t) \in \mathbb{R}^{n_x \times n_x}$, $B^{(i)}(t) \in \mathbb{R}^{n_x \times n_v}$, $B^{(i)}(t) \in \mathbb{R}^{n_x \times n_v}$ и вектор-функции $D^{(i)}(t) \in \mathbb{R}^{n_x}$ заданы и непрерывны на $[t_0, t_1]$.

Модель рассматриваемой кусочно-линейной системы включает в себя также набор правил меновенных переключений активной подсистемы. В фазовом пространстве \mathbb{R}^{n_x} задана ограниченная замкнутая область Ω . Область Ω поделена на подобласти $\Omega^{(i)}$, $i=\overline{1,N}$, с помощью гиперплоскостей переключений:

$$\mathcal{H}^{(k)} = \{ x \in \mathbb{R}^{n_x} : \langle x, c^{(k)} \rangle = \gamma^{(k)} \}, \quad \|c^{(k)}\| = 1, \quad k = \overline{1, N_{\mathcal{H}}}.$$

Траектория системы x(t) удовлетворяет i-му уравнению из (1), если $x(t) \in \Omega^{(i)}$. В момент перехода x(t) из $\Omega^{(i)}$ в $\Omega^{(j)}$ (через границу между i-й и j-й областями) происходит обязательная смена активной подсистемы ("режима функционирования") с i-й на j-ю, которую также будем называть nepernovenuem. В случае возможного движения вдоль границы между областями $\Omega^{(i)}$ и $\Omega^{(j)}$ время переключения определяется как первый момент схода траектории с границы внутрь области $\Omega^{(j)}$. Далее будем рассматривать только такие траектории системы (1), которые не покидают Ω . Предполагаем, что область Ω подобрана таким образом, что множество траекторий с указанным свойством не пусто.

Кусочно-линейная система указанного вида может быть получена, например, в результате кусочной линеаризации нелинейных дифференциальных уравнений [9].

Будем считать, что точное текущее положение системы x(t) неизвестно (в том числе в начальный момент времени t_0). Однако его можно оценить на основании поступающих в режиме реального времени результатов измерений. Рассматриваем следующее правило измерений:

$$y(t) = G(t)x(t) + w(t), \quad t \in [t_0, t_1], \tag{2}$$

в котором вектор $y(t) \in \mathbb{R}^{n_y}$ – доступное измерение траектории, а $w \in \mathbb{R}^{n_y}$ – погрешность измерений, матричнозначная функция $G(t) \in \mathbb{R}^{n_y \times n_x}$ задана и непрерывна. Кроме того, предположим, что существует априорная оценка начального состояния:

$$x(t_0) \in \mathcal{X}_0$$

где множество $\mathcal{X}_0\subset\Omega$ является выпуклым и компактным.

Управление u и помехи (неопределённости) v, w удовлетворяют следующим жёстким поточечным ограничениям: $u=u(\pi)\in\mathcal{P}(t),\ v=v(t)\in\mathcal{Q}(t),\ w=w(t)\in\mathcal{R}(t),\$ где $\mathcal{P}(t)\subset\mathbb{R}^{n_u},\ \mathcal{Q}(t)\subset\mathbb{R}^{n_v},\ \mathcal{R}(t)\subset\mathbb{R}^{n_y}$ – многозначные отображения, непрерывные в смысле метрики Хаусдорфа и принимающие выпуклые компактные значения. Позиция π системы определяется ниже.

Пусть $\zeta_t(\cdot,t_0)$ – совокупность неопределённостей, присутствующих в системе:

$$\zeta_t(\cdot, t_0) = \{x_0, v(\tau), w(\tau) : x_0 \in \mathcal{X}_0, v(\tau) \in \mathcal{Q}(\tau), w(\tau) \in \mathcal{R}(\tau), \tau \in [t_0, t]\}.$$

Произвольная допустимая реализация $\zeta_{t_1}(\cdot,t_0)$ вместе с заданным допустимым управлением $u(\cdot)$ определяют траекторию $x(t)=x(t,t_0,x_0)|_{u(\cdot),v(\cdot)}$ системы (1), а также вектор-функцию измерений y(t), определённую согласно (2). Здесь $t\in[t_0,t_1]$.

Предположим, что для любых двух соседних областей $\Omega^{(i)}$ и $\Omega^{(j)}$, общей границей которых является гиперплоскость \mathcal{H} , выполняется

либо условие односторонней проницаемости: при любых $t \in [t_0, t_1], x \in \mathcal{H} \cap \Omega$ и для всех $u^{(i)} \in \mathcal{P}(t), v^{(i)} \in \mathcal{Q}(t), u^{(j)} \in \mathcal{P}(t), v^{(j)} \in \mathcal{Q}(t)$ имеет место равенство

$$\operatorname{sgn}(\langle c, A^{(i)}(t)x + B^{(i)}(t)u^{(i)} + C^{(i)}(t)v^{(i)} + d^{(i)}(t)\rangle) =$$

$$= \operatorname{sgn}(\langle c, A^{(j)}(t)x + B^{(j)}(t)u^{(j)} + C^{(j)}(t)v^{(j)} + d^{(j)}(t)\rangle) = \pm 1$$

(здесь $c \in \mathbb{R}^{n_x}$ – нормаль к \mathcal{H} , ||c|| = 1);

либо условие непрерывного сопряжения: при любых $t \in [t_0, t_1], x \in \mathcal{H} \cap \Omega$ и для всех $u \in \mathcal{P}(t), v \in \mathcal{Q}(t)$ выполняются равенства $B^{(i)}(t) = B^{(j)}(t)$ и

$$A^{(i)}(t)x + B^{(i)}(t)u + C^{(i)}(t)v + d^{(i)}(t) = A^{(j)}(t)x + B^{(j)}(t)u + C^{(j)}(t)v + d^{(j)}(t).$$

Рассмотрим класс \mathcal{U}_f допустимых позиционных управлений, содержащий многозначные отображения $u=u(\pi)$. Такое управление $u(\pi)$ будем называть допустимым, если при подстановке его в (1) полученные дифференциальные включения имеют решения при любом начальном векторе фазовых переменных $x_0 \in \Omega$.

Для неопределённостей v, w будем использовать классы donycmumux nomex, представляющие собой множества измеримых функций v(t) и w(t) соответственно, заданных при $t \in [t_0, t_1]$ и удовлетворяющих почти всюду ограничениям $v(t) \in \mathcal{Q}(t)$, $w(t) \in \mathcal{R}(t)$.

Заметим, что при выполнении условий односторонней проницаемости или непрерывного сопряжения для любой траектории x(t) системы, соответствующей допустимым помехам $\zeta_{t_1}(\cdot,t_0)$ и допустимому управлению $u(\cdot)$, на гиперплоскостях переключений $\mathcal{H}^{(k)}$ невозможно возникновение *скользящих режимов* [1], при которых x(t) не удовлетворяет какому-либо из уравнений (1).

Уравнения наблюдений (2) можно интерпретировать как фазовые ограничения на состояние системы, которые становятся известными в режиме реального времени:

$$x(t) \in \mathcal{Y}(t) := \{x : y(t) - G(t)x = r(t) \in \mathcal{R}(t)\}, \quad t \in [t_0, t_1].$$
 (3)

Информационным множеством [11, с. 12] системы (1) при доступных измерениях y(t) и фиксированном управлении $u(\tau), \ \tau \in [t_0, t],$ назовём множество

$$\mathcal{X}(t,t_0,\mathcal{X}_0) = \{x: \text{ существует } v(\cdot) \text{ такое, что}$$
 $x(t_0,t,x)|_{u(\cdot),v(\cdot)} \in \mathcal{X}_0, \quad x(\tau) \in \mathcal{Y}(\tau) \text{ для всех } \tau \in [t_0,t]\},$ (4)

где $x(t_0,t,x)|_{u(\cdot),v(\cdot)}$ – значение траектории, выпущенной из позиции (t,x) в обратном времени, в момент времени t_0 . Информационная трубка $\mathcal{X}[t]$ – это соответствующее многозначное отображение $\mathcal{X}(\cdot,t_0,\mathcal{X}_0)$.

Позицией системы назовём пару $\pi = \{t, \mathcal{X}(t)\}$, где $t \in [t_0, t_1]$ определяет текущее время, а информационное множество $\mathcal{X}(t) = \mathcal{X}(t, t_0, \mathcal{X}_0)$ содержит неизвестное состояние системы x(t), т.е. является его гарантированной оценкой, учитывающей полученные к моменту t результаты наблюдений $y(\tau), \ \tau \in [t_0, t]$.

2. Расширенные переменные. Будем далее считать, что множества $\mathcal{P}(t), \ \mathcal{Q}(t), \ \mathcal{R}(t)$ являются эллипсоидами:

$$\mathcal{P}(t) = \mathcal{E}(p(t), P(t)), \quad p(t) \in \mathbb{R}^{n_u}, \quad P(t) \in \mathbb{R}^{n_u \times n_u}, \quad P(t) = P^{\mathrm{T}}(t) > 0,$$

$$\mathcal{Q}(t) = \mathcal{E}(q(t), Q(t)), \quad q(t) \in \mathbb{R}^{n_v}, \quad Q(t) \in \mathbb{R}^{n_v \times n_v}, \quad Q(t) = Q^{\mathrm{T}}(t) > 0,$$

$$\mathcal{R}(t) = \mathcal{E}(0, R(t)), \quad R(t) \in \mathbb{R}^{n_y \times n_y}, \quad R(t) = R^{\mathrm{T}}(t) > 0,$$

центры эллипсоидов p(t), q(t) и матрицы конфигураций P(t), Q(t), R(t) непрерывны по $t \in [t_0, t_1]$. Матрицы P(t), Q(t), R(t) являются положительно определёнными при любом фиксированном t.

Рассмотрим также "расширенное" пространство переменных $\widetilde{x} = (x^{\mathrm{\scriptscriptstyle T}}, 1)^{\mathrm{\scriptscriptstyle T}} \in \mathbb{R}^{n_x+1}$. Эллипсоид $\mathcal{E}(q, Q)$ в пространстве \mathbb{R}^k задаётся следующим соотношением:

$$\mathcal{E}(q,Q) = \{x \in \mathbb{R}^k \colon \langle x - q, Q^{-1}(x - q) \rangle \leqslant 1\} = \{x \in \mathbb{R}^k \colon \langle \widetilde{x}, \widetilde{Q}\widetilde{x} \rangle \leqslant 1\},$$

где

$$\widetilde{x} = (x^{\scriptscriptstyle \mathrm{T}}, 1)^{\scriptscriptstyle \mathrm{T}}, \quad \widetilde{Q} = \begin{pmatrix} Q^{-1} & -Q^{-1}q \\ -q^{\scriptscriptstyle \mathrm{T}}Q^{-1} & q^{\scriptscriptstyle \mathrm{T}}Q^{-1}q \end{pmatrix}.$$

5 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 57 № 11 2021

Рассмотрим дифференциальные уравнения (1) в "расширенном" пространстве:

$$\dot{\widetilde{x}} = \widetilde{A}^{(i)}(t)\widetilde{x} + \widetilde{C}^{(i)}(t)\widetilde{v}, \quad t \in [t_0, t_1].$$

Фазовые ограничения, представленные уравнением наблюдений (2), принимают вид

$$\widetilde{G}(t)\widetilde{x} \in \mathcal{R}(t)$$
,

а "расширенные" матрицы задаются следующим образом:

$$\widetilde{A}^{(i)}(t) = \begin{pmatrix} A^{(i)}(t) & d^{(i)}(t) + B^{(i)}(t)u(t) + C^{(i)}(t)q(t) \\ \mathbb{O}_{1\times n_x} & 0 \end{pmatrix},$$

$$\widetilde{C}^{(i)}(t) = \begin{pmatrix} C^{(i)}(t) \\ \mathbb{O}_{1 \times n_v} \end{pmatrix}, \quad \widetilde{G}(t) = \begin{pmatrix} -G(t) & y(t) \end{pmatrix},$$

на неопределённость \widetilde{v} наложены поточечные ограничения: $\widetilde{v} \in \mathcal{E}(0,Q(t))$.

3. Задача синтеза управлений по результатам наблюдений. Зафиксируем целевое компактное множество $\mathcal{X}_1 \subset \Omega \subset \mathbb{R}^{n_x}$.

Задача синтеза управлений по результатам наблюдений состоит в построении допустимого управления $u^*(\pi(t))$, переводящего траектории системы (1) из произвольной начальной позиции $\pi_0 = \{t_0, \mathcal{X}_0\}$ в целевое множество \mathcal{X}_1 для произвольной допустимой реализации неопределённостей $\zeta_{t_1}(\cdot, t_0)$.

Для некоторых π_0 , \mathcal{X}_1 сформулированная задача может не иметь решения. В таком случае будем решать следующую задачу оптимизации: для заданной начальной позиции $\pi_0 = \{t_0, \mathcal{X}_0\}$ требуется найти минимальное $\mu > 0$ такое, что существует управление $u^*(\pi(t))$, переводящее позицию π_0 в μ -окрестность (в некоторой метрике) множества \mathcal{X}_1 для любой допустимой реализации $\zeta_{t_1}(\cdot,t_0)$.

Согласно общей схеме решения задачи синтеза управлений по результатам наблюдений, изложенной в [3], эта задача может быть представлена в виде совокупности двух подзадач:

задачи гарантированного оценивания, состоящей в построении информационного множества $\mathcal{X}(t,\pi_0)$ по результатам наблюдений $y(\tau),\ \tau\in[t_0,t];$

задачи синтеза управлений $u^*(\pi(\tau))$, решаемой на полуинтервале $(t, t_1]$. Здесь $t \in [t_0, t_1]$ – произвольный промежуточный момент времени.

Далее последовательно рассмотрим указанные подзадачи для рассматриваемой математи-

Далее последовательно рассмотрим указанные подзадачи для рассматриваемой математической модели кусочно-линейной системы с переключениями.

4. Задача гарантированного оценивания. Пусть $\varphi_{\mathcal{A}}(x)$ – какая-либо неотрицательная гладкая функция, для которой \mathcal{A} – следующее её лебегово множество:

$$\mathcal{A} = \{ \xi \colon \varphi_{\mathcal{A}}(\xi) \leqslant 0 \}.$$

Замечание. В силу неотрицательности функции $\varphi_{\mathcal{A}}(x)$ неравенство в определении множества \mathcal{A} можно заменить на равенство. При $x \notin \mathcal{A}$ очевидно неравенство $\varphi_{\mathcal{A}}(x) > 0$.

Пусть известны начальная позиция $\pi_0 = \{t_0, \mathcal{X}_0\}$, наблюдения $y(\tau)$ и реализация управления $u(\tau)$, $\tau \in [t_0, t]$. Рассмотрим следующую функцию цены:

$$V_{\mathcal{X}}(t,x) = \max_{v \in \mathcal{Q}(t)} \left\{ \varphi_{\mathcal{X}_0}(x(t_0)) + \int_{t_0}^t \varphi_{\mathcal{R}(\tau)}(r(\tau)) d\tau : x(t) = x \right\}.$$
 (5)

Здесь $r(\tau) = y(\tau) - G(\tau)x(\tau)$ – полученное в момент времени τ наблюдение. Функции $\varphi_{\mathcal{X}_0}(\cdot)$ и $\varphi_{\mathcal{R}(\cdot)}(\cdot)$ могут быть различными по форме.

Связь между информационным множеством (4) и функцией цены (5) задаётся следующим соотношением: $\mathcal{X}(t, t_0, \mathcal{X}_0) = \{x \colon V_{\mathcal{X}}(t, x) \leqslant 0\}.$

Функция цены $V_{\mathcal{X}}(t,x)$ в любой точке $(t,x), x \in \operatorname{int} \Omega^{(i)}$, в которой она является дифференцируемой, удовлетворяет уравнению Гамильтона–Якоби–Беллмана–Айзекса (ГЯБА) [12]

$$\frac{\partial V_{\mathcal{X}}(t,x)}{\partial t} + \max_{v \in \mathcal{Q}(t)} \left\langle \frac{\partial V_{\mathcal{X}}(t,x)}{\partial x}, A^{(i)}(t)x + B^{(i)}(t)u(t) + C^{(i)}(t)v + d^{(i)}(t) \right\rangle - \varphi_{\mathcal{R}(t)}(r(t)) = 0 \quad (6)$$

и начальному условию

$$V_{\mathcal{X}}(t_0, x) = \varphi_{\mathcal{X}_0}(x).$$

Преобразуем уравнение (6):

$$V'_t + \langle V'_x, A^{(i)}(t)x + B^{(i)}(t)u(t) + d^{(i)}(t)\rangle + \rho(V'_x|C^{(i)}(t)Q(t)) - \varphi_{\mathcal{R}(t)}(r(t)) = 0, \tag{7}$$

где V'_t и V'_x – частные производные $V_{\mathcal{X}}(t,x)$ по переменным t и x соответственно, $\rho(l|\mathcal{X})$ – значение опорной функции ко множеству \mathcal{X} в направлении l.

5. Кусочно-квадратичные функции цены. Построим аппроксимацию функции цены $V_{\mathcal{X}}(t,x)$ в классе функций $W_{\mathcal{X}}^{(i)}(t,\widetilde{x}) = \langle \widetilde{x}, K_{\mathcal{X}}^{(i)}(t)\widetilde{x} \rangle$, $K_{\mathcal{X}}^{(i)}(t) = (K_{\mathcal{X}}^{(i)}(t))^{\mathrm{\tiny T}} \in \mathbb{R}^{(n_x+1)\times(n_x+1)}$. Здесь функция $W_{\mathcal{X}}^{(i)}(t,\widetilde{x})$ определена только при $x \in \Omega^{(i)}$. Матричнозначные функции $K_{\mathcal{X}}^{(i)}(t)$ считаем непрерывно дифференцируемыми всюду на $[t_0,t_1]$ за исключением, быть может, конечного числа точек.

Для совокупности функций $W^{(i)}_{\mathcal{X}}(t,\widetilde{x})$ при различных i потребуем выполнения условия "непрерывной склейки":

$$W_{\mathcal{X}}^{(i)}(t,\widetilde{x}) = W_{\mathcal{X}}^{(j)}(t,\widetilde{x})$$
 для всех $t \in [t_0, t_1]$ и $x \in \mathcal{H}^{(k)}$, (8)

здесь $\mathcal{H}^{(k)}$ – гиперплоскость переключений, разделяющая области $\Omega^{(i)}$ и $\Omega^{(j)}$. Согласно [8] условие (8) будет выполнено, если имеют место равенства

$$K_{\mathcal{X}}^{(i)}(t)\Gamma_k = K_{\mathcal{X}}^{(j)}(t)\Gamma_k$$
 для всех $t \in [t_0, t_1],$ (9)

$$\dot{K}_{\mathcal{X}}^{(i)}(t)\Gamma_k = \dot{K}_{\mathcal{X}}^{(j)}(t)\Gamma_k$$
 для всех $t \in [t_0, t_1],$ (10)

где Γ_k – матрицы параметризации гиперплоскости $\mathcal{H}^{(k)},$ т.е.

$$x \in \mathcal{H}^{(k)} \Leftrightarrow \widetilde{x} = \Gamma_k \widetilde{y}, \quad \widetilde{y} = (y^{\mathrm{T}}, 1)^{\mathrm{T}} \in \mathbb{R}^{n_x}.$$

При выполнении условий "непрерывной склейки" (9), (10) получается непрерывная кусочно-квадратичная функция $W_{\mathcal{X}}(t,\tilde{x})$:

$$W_{\mathcal{X}}(t,\widetilde{x}) = W_{\mathcal{X}}^{(i)}(t,\widetilde{x}) = \langle \widetilde{x}, K_{\mathcal{X}}^{(i)}(t)\widetilde{x} \rangle, \quad t \in [t_0, t_1], \quad x \in \Omega^{(i)}, \quad i = \overline{1, N},$$
(11)

дифференцируемая по любому ненулевому направлению $\ell = (\ell_t, \ell_x)$:

$$W_{\mathcal{X}}'(t,\widetilde{x};\ell) = \ell_t \langle \widetilde{x}, \dot{K}_{\mathcal{X}}^{(i)}(t)\widetilde{x} \rangle + 2\langle \ell_x, K_{\mathcal{X}}^{(i)}(t)\widetilde{x} \rangle, \quad \ell_t \in \mathbb{R}, \quad \ell_x \in \mathbb{R}^{n_x + 1}.$$

6. Внешняя аппроксимация информационного множества. Рассмотрим задачу гарантированного оценивания в новых, "расширенных", переменных \widetilde{x} из начального множества $\mathcal{X}_0 \times \{1\}$. Положим $\widetilde{V}_{\mathcal{X}}(t,\widetilde{x}) = V_{\mathcal{X}}(t,x)$ – функция цены в "расширенном" пространстве. В таком случае уравнение (7) принимает вид

$$\widetilde{V}_{t}' + \langle \widetilde{V}_{\tilde{x}}', \widetilde{A}^{(i)}(t)\widetilde{x} \rangle + \langle \widetilde{V}_{\tilde{x}}', \mathbf{Q}^{(i)}(t)\widetilde{V}_{\tilde{x}}' \rangle^{1/2} - \varphi_{\mathcal{R}(t)}(\widetilde{G}(t)\widetilde{x}) = 0,$$
(12)

где $\widetilde{V}_t', \ \widetilde{V}_{\widetilde{x}}'$ – частные производные функции $\widetilde{V}_{\mathcal{X}}(t,\widetilde{x}), \ \mathrm{a} \ \mathbf{Q}^{(i)}(t) = \widetilde{C}^{(i)}(t)Q(t)(\widetilde{C}^{(i)}(t))^{\mathrm{\scriptscriptstyle T}}.$

Выберем функцию $\varphi_{\mathcal{R}(t)}(r)$ следующим образом:

$$\varphi_{\mathcal{R}(t)}(r) = (\langle r, R^{-1}(t)r \rangle - 1)_{+} \geqslant 0.$$

Тогда

$$\varphi_{\mathcal{R}(t)}(\widetilde{G}(t)\widetilde{x}) = \langle \widetilde{x}, \mathbf{R}(t)\widetilde{x} \rangle_{+}, \quad \mathbf{R}(t) = \widetilde{G}^{\mathrm{T}}(t)R^{-1}(t)\widetilde{G}(t) - \mathrm{diag}(0, \dots, 0, 1).$$

Заметим, что $\langle \widetilde{x}, \mathbf{R}(t)\widetilde{x} \rangle \geqslant -1$ для любого x, причём равенство достигается при $G(t)\widetilde{x}=0$. Используем далее принцип сравнения [5, 10] для построения внешней аппроксимации информационного множества $\mathcal{X}(t,t_0,\mathcal{X}_0)$. Этой аппроксимации соответствует нижняя оценка функции $\widetilde{V}_{\mathcal{X}}(t,\widetilde{x})$. Приведём способ построения такой оценки $W_{\mathcal{X}}(t,\widetilde{x})$, заданной в виде непрерывной кусочно-квадратичной функции (11), удовлетворяющей условиям "непрерывной склей-ки" (9), (10).

Пусть в начальный момент времени t_0 верно неравенство

$$W_{\mathcal{X}}(t_0, \widetilde{x}) \leqslant \varphi_{\mathcal{X}_0}(x) = \widetilde{V}_{\mathcal{X}}(t_0, \widetilde{x})$$
 для всех $x \in \Omega$. (13)

В частном случае, когда множество \mathcal{X}_0 является эллипсоидом $\mathcal{E}(x_0, X_0)$, можно взять

$$K_{\mathcal{X}}^{(i)}(t_0) = \begin{pmatrix} X_0^{-1} & -X_0^{-1}x_0 \\ -x_0^{\mathrm{T}}X_0^{-1} & x_0^{\mathrm{T}}X_0^{-1}x_0 - 1 \end{pmatrix}, \quad i = \overline{1, N}.$$

Запишем левую часть уравнения ГЯБА (12) в области $\Omega^{(i)}$ для функции $W_{\mathcal{X}}(t,\tilde{x})$ – искомой оценки снизу функции $\widetilde{V}_{\mathcal{X}}(t,\tilde{x})$:

$$\langle \widetilde{x}, \dot{K}_{\mathcal{X}}^{(i)}(t)\widetilde{x} \rangle + \langle \widetilde{x}, (K_{\mathcal{X}}^{(i)}(t)\widetilde{A}^{(i)}(t) + (\widetilde{A}^{(i)}(t))^{\mathsf{T}}K_{\mathcal{X}}^{(i)}(t))\widetilde{x} \rangle +$$

$$+ 2\langle \widetilde{x}, K_{\mathcal{X}}^{(i)}(t)\mathbf{Q}^{(i)}(t)K_{\mathcal{X}}^{(i)}(t)\widetilde{x} \rangle^{1/2} - \langle \widetilde{x}, \mathbf{R}(t)\widetilde{x} \rangle_{+},$$

$$(14)$$

здесь $\partial W_{\mathcal{X}}(t,\widetilde{x})/\partial t = \langle \widetilde{x}, \dot{K}_{\mathcal{X}}^{(i)}(t)\widetilde{x} \rangle, \ \partial W_{\mathcal{X}}(t,\widetilde{x})/\partial \widetilde{x} = 2K_{\mathcal{X}}^{(i)}(t)\widetilde{x}.$

Воспользуемся следующими неравенствами:

$$\langle \widetilde{x}, K_{\mathcal{X}}^{(i)}(t) \mathbf{Q}^{(i)}(t) K_{\mathcal{X}}^{(i)}(t) \widetilde{x} \rangle^{1/2} \leqslant \gamma^{(i)}(t) + \frac{1}{4\gamma^{(i)}(t)} \langle \widetilde{x}, K_{\mathcal{X}}^{(i)}(t) \mathbf{Q}^{(i)}(t) K_{\mathcal{X}}^{(i)}(t) \widetilde{x} \rangle, \tag{15}$$

$$\langle \widetilde{x}, \mathbf{R}(t)\widetilde{x} \rangle_{+} \geqslant \beta(t) \langle \widetilde{x}, \mathbf{R}(t)\widetilde{x} \rangle = \langle \widetilde{x}, \beta(t)\mathbf{R}(t)\widetilde{x} \rangle,$$
 (16)

справедливыми для любых скалярных функций $\gamma^{(i)}(t)>0$ и $\beta(t)\in[0,1].$

В неравенстве (15) равенство достигается при

$$\gamma^{(i)}(t) = \frac{1}{2} \langle \widetilde{x}, K_{\mathcal{X}}^{(i)}(t) \mathbf{Q}^{(i)}(t) K_{\mathcal{X}}^{(i)}(t) \widetilde{x} \rangle^{1/2}.$$

Неравенство (16) обращается в равенство на границе и вне "эллипсоида наблюдений" $\mathcal{R}(t)$ при $\beta(t)=1$, во внутренних точках $\mathcal{R}(t)$ при $\beta(t)=0$.

Используя (15), (16), получаем оценку сверху для (14):

$$\langle \widetilde{x}, (\dot{K}_{\mathcal{X}}^{(i)}(t) + F_{\mathcal{X}}^{(i)}(t) - \beta(t)\mathbf{R}(t))\widetilde{x} \rangle + 2\gamma^{(i)}(t), \quad x \in \Omega^{(i)},$$

$$F_{\mathcal{X}}^{(i)}(t) = K_{\mathcal{X}}^{(i)}(t)\widetilde{A}^{(i)}(t) + (\widetilde{A}^{(i)}(t))^{\mathrm{T}}K_{\mathcal{X}}^{(i)}(t) + \frac{1}{2\gamma^{(i)}(t)}K_{\mathcal{X}}^{(i)}(t)\mathbf{Q}^{(i)}(t)K_{\mathcal{X}}^{(i)}(t). \tag{17}$$

Введём следующие обозначения:

$$R_{\mathcal{X}}^{(i)}(t) = \dot{K}_{\mathcal{X}}^{(i)}(t) + F_{\mathcal{X}}^{(i)}(t) - \beta(t)\mathbf{R}(t), \tag{18}$$

$$\dot{\alpha}_{\mathcal{X}}^{(i)}(t) = \max\{\langle \widetilde{x}, R_{\mathcal{X}}^{(j)}(t)\widetilde{x} \rangle + 2\gamma^{(j)}(t) \colon j \in \mathcal{I}_{i}(t), \quad x \in \Omega^{(j)}\}, \quad t \in [t_{0}, t_{1}], \quad \alpha_{\mathcal{X}}^{(i)}(t_{0}) = 0.$$
 (19)

Здесь множество $\mathcal{I}_i(t) \subset \{1,\dots,N\}$ зависит от взаимного расположения гиперплоскостей переключений $\mathcal{H}^{(k)}$ и содержит все значения индекса j такие, что

существуют
$$\tau_0 \in [t_0, t), \quad x_0 \in \Omega^{(j)}$$
 и $v(\cdot),$ для которых $x(t, \tau_0, x_0)|_{u(\cdot), v(\cdot)} \in \Omega^{(i)}$.

Теорема 1. Пусть при $t \in [t_0, t_1]$ заданы некоторые управление $u(\pi) \in \mathcal{U}_f$, непрерывные положительные функции $\gamma^{(i)}(t)$, $i = \overline{1, N}$, и функция $\beta(t) \in [0, 1]$. Пусть матричнозначные функции $K_{\mathcal{X}}^{(i)}(t)$, $i = \overline{1, N}$, дифференцируемы всюду на $[t_0, t_1]$ за исключением, быть может, конечного числа точек и почти всюду удовлетворяют условиям "непрерывной склейки" (9), (10), а матрицы $K_{\mathcal{X}}^{(i)}(t_0)$ таковы, что выполняется неравенство (13). Функции $\alpha_{\mathcal{X}}^{(i)}(t)$ являются решениями задач Коши (19). Тогда при любом $t \in [t_0, t_1]$ множество

$$\mathcal{X}^{\text{ext}}_{\beta,\gamma^{(i)}}(t) := \bigcup_{i} \{ x \in \Omega^{(j)} : W_{\mathcal{X}}(t,\widetilde{x}) \leqslant \alpha_{\mathcal{X}}^{(j)}(t) \}$$

является надмножеством информационного множества $\mathcal{X}(t,t_0,\mathcal{X}_0),\ m.e.$

$$\mathcal{X}(t, t_0, \mathcal{X}_0) \subseteq \mathcal{X}_{\beta, \gamma^{(i)}}^{\text{ext}}(t)$$
 при любом $t \in [t_0, t_1].$ (20)

Доказательство включения (20) проведём для $t=t_1$. Для всех остальных значений t доказательство аналогично.

Для произвольных вектора $x_1 \in \mathcal{X}(t_1, t_0, \mathcal{X}_0) \cap \Omega^{(i_1)}$ и допустимой помехи $\widetilde{v}(\cdot)$ рассмотрим решение $\widetilde{x}(t) = \widetilde{x}(t, t_1, x_1)|_{u(\cdot), \widetilde{v}(\cdot)}$ замкнутой системы. Очевидно, что $\widetilde{x}(t_0) \in \mathcal{X}_0$, а значит, из неравенства (13) вытекает оценка $W_{\mathcal{X}}(t_0, \widetilde{x}(t_0)) \leq 0$.

Используя свойство дифференцируемости кусочно-квадратичной функции $W_{\mathcal{X}}(t,\widetilde{x})$ по направлениям, оценим её изменение вдоль траектории $\{t,\widetilde{x}(t)\}$. Пусть $\ell(t)=(\ell_t(t),\ell_x(t))$, $\ell_t(t)=1$, $\ell_x(t)=\widetilde{A}^{(i(t))}(t)\widetilde{x}(t)+\widetilde{C}^{(i(t))}(t)\widetilde{v}(t)$. Тогда

$$W_{\mathcal{X}}(t_{1},\widetilde{x}(t_{1})) - W_{\mathcal{X}}(t_{0},\widetilde{x}(t_{0})) = \int_{t_{0}}^{t_{1}} W_{\mathcal{X}}'(t,\widetilde{x}(t);\ell(t)) dt = \int_{t_{0}}^{t_{1}} \left(\ell_{t}(t)\langle\widetilde{x}(t),\dot{K}_{\mathcal{X}}^{(i(t))}(t)\widetilde{x}(t)\rangle + 2\langle\ell_{x}(t),K_{\mathcal{X}}^{(i(t))}(t)\widetilde{x}(t)\rangle\right) dt \leqslant \int_{t_{0}}^{t_{1}} (\langle\widetilde{x},R_{\mathcal{X}}^{(i(t))}(t)\widetilde{x}\rangle + 2\gamma^{(i(t))}(t)) dt \leqslant$$

$$\leqslant \int_{t_{0}}^{t_{1}} \max\{\langle\widetilde{x},R_{\mathcal{X}}^{(j)}(t)\widetilde{x}\rangle + 2\gamma^{(j)}(t): j \in \mathcal{I}_{i_{1}}(t), \quad x \in \Omega^{(j)}\} dt = \alpha_{\mathcal{X}}^{(i_{1})}(t_{1}).$$

Отсюда следует, что

$$W_{\mathcal{X}}(t_1, \widetilde{x}(t_1)) \leqslant \alpha_{\mathcal{X}}^{(i_1)}(t_1) + W_{\mathcal{X}}(t_0, \widetilde{x}(t_0)) \leqslant \alpha_{\mathcal{X}}^{(i_1)}(t_1).$$

Таким образом, $x_1 \in \mathcal{X}^{\mathrm{ext}}_{\beta,\gamma^{(i)}}(t_1)$. Теорема доказана.

7. Задача синтеза управлений. Сформулируем задачу синтеза управлений по результатам наблюдений в пространстве информационных множеств: для заданной начальной позиции $\pi(t) = \{t, \mathcal{X}\}$, целевого множества \mathcal{X}_1 и величины $\mu \geqslant 0$ требуется построить позиционное управление $u^*(\pi(\tau)), \ \tau \in [t, t_1]$, переводящее позицию $\pi(t)$ в μ -окрестность (в некоторой метрике) множества \mathcal{X}_1 для любой допустимой реализации неопределённостей $\zeta_{t_1}(\cdot, t)$.

Среди всех значений $\mu\geqslant 0$, для которых задача синтеза разрешима, требуется указать наименьшее.

Слабо инвариантным множеством $\mathbf{W}_{\mu}(t) = \mathbf{W}_{\mu}(t, t_1, \mathcal{X}_1)$ системы (1) относительно множества \mathcal{X}_1 назовём совокупность множеств $\mathcal{X} \subset \Omega$, для которых при заданном $\mu \geqslant 0$ разрешима задача синтеза управлений из начальной позиции $\{t, \mathcal{X}\}$.

Для решения задачи синтеза управлений по результатам наблюдений будет использован метод экстремального прицеливания [6, 3] информационного множества $\mathcal{X}(t)$ (его внешней оценки) на множество $\mathbf{W}_{\mu}(t)$ (его внутреннюю оценку): необходимо построить многозначное управление $\mathcal{U}(\pi(t))$, которое в каждый момент времени t не увеличивает расстояние между множествами $\mathcal{X}(t)$ и $\mathbf{W}_{\mu}(t)$.

Отметим, что определение управления $\mathcal{U}(\pi(t))$ – задача в бесконечномерном пространстве (в силу бесконечномерности $\mathbf{W}_{\mu}(t)$), что существенно усложняет вычисления. В случае линейных систем, согласно [3], можно перейти к конечномерной задаче, рассматривая вместо $\mathbf{W}_{\mu}(t)$ множество разрешимости $\mathcal{W}_{\mu}(t) = \mathcal{W}_{\mu}(t,t_1,\mathcal{X}_1)$ системы (1) без учёта наблюдений, т.е. множество, выпущенное (в обратном времени) из позиции $\{t_1,\mathcal{X}_1\}$. Для этого множества верно соотношение

 $\mathcal{W}_{\mu}(t) = \bigcup \left\{ \bigcup \{x \colon x \in \mathcal{X}\} \colon \mathcal{X} \in \mathbf{W}_{\mu}(t) \right\}.$

Построению внутренних аппроксимаций $\mathcal{W}^{\mathrm{int}}_{\mu,\gamma_{\mathcal{W}}^{(i)},S^{(i)}}(t)$ множества $\mathcal{W}_{\mu}(t)$ кусочно-линейной системы (1) посвящена работа [8]. В ней, в частности, показано, что оценка $\mathcal{W}^{\mathrm{int}}_{\mu,\gamma_{\mathcal{W}}^{(i)},S^{(i)}}(t)$ может быть найдена в виде множества уровня кусочно-квадратичной функции цены:

$$\begin{split} \mathcal{W}_{\mu,\gamma_{\mathcal{W}}^{(i)},S^{(i)}}^{\mathrm{int}}(t) &= \bigcup_{j} \{x \in \Omega^{(j)}: W_{\mathcal{W}}(t,\widetilde{x}) \leqslant \alpha^{(j)}(t) + \mu \}, \\ W_{\mathcal{W}}(t,\widetilde{x}) &= \langle \widetilde{x}, K_{\mathcal{W}}^{(i)}(t)\widetilde{x} \rangle, \quad \forall t \in [t_{0},t_{1}], \quad x \in \Omega^{(i)}, \quad i = \overline{1,N}, \\ \varphi_{\mathcal{X}_{1}}(x) \leqslant W_{\mathcal{W}}(t_{1},\widetilde{x}) \quad \text{для всех} \quad x \in \Omega, \\ F_{\mathcal{W}}^{(i)}(t) &= K_{\mathcal{W}}^{(i)}(t)D^{(i)}(t) + (D^{(i)}(t))^{\mathrm{T}}K_{\mathcal{W}}^{(i)}(t) + \frac{1}{2\gamma_{\mathcal{W}}^{(i)}(t)}K_{\mathcal{W}}^{(i)}(t)\mathbf{Q}^{(i)}(t)K_{\mathcal{W}}^{(i)}(t), \\ D^{(i)}(t) &= \widetilde{A}_{0}^{(i)}(t) - \frac{1}{\sqrt{C_{x}^{2}+1}}(\mathbf{P}^{(i)}(t))^{1/2}(S^{(i)}(t))^{\mathrm{T}}, \quad \mathbf{P}^{(i)}(t) = \widetilde{B}^{(i)}(t)P(t)(\widetilde{B}^{(i)}(t))^{\mathrm{T}}, \\ R_{\mathcal{W}}^{(i)}(t) &= \dot{K}_{\mathcal{W}}^{(i)}(t) + F_{\mathcal{W}}^{(i)}(t), \\ \dot{\alpha}_{\mathcal{W}}^{(i)}(t) &= \max\{\langle \widetilde{x}, R_{\mathcal{W}}^{(j)}(t)\widetilde{x} \rangle + 2\gamma_{\mathcal{W}}^{(j)}(t) \colon j \in \mathcal{I}(i), \quad x \in \Omega^{(j)} \}, \quad t \in [t_{0},t_{1}], \quad \alpha_{\mathcal{W}}^{(i)}(t_{1}) = 0. \end{split}$$

Здесь $C_x > 0$ – такая константа, для которой $\|\widetilde{x}\|^2 \leqslant C_x^2 + 1$ при всех $x \in \Omega$. Конкретная внутренняя оценка множества разрешимости определяется параметрами: функциями $\gamma_{\mathcal{W}}^{(i)}(t) > 0$ и $S^{(i)}(t), i = \overline{1, N}, t \in [t_0, t_1],$ причём $(S^{(i)}(t))^{\mathrm{T}} = (S^{(i)}(t))^{-1}$.

8. Метод экстремального прицеливания. Зафиксируем параметры – функции $\beta(t)$, $\gamma_{\mathcal{W}}^{(i)}(t)$, $\gamma_{\mathcal{W}}^{(i)}(t)$, $S^{(i)}(t)$, $t \in [t_0, t_1]$, $i = \overline{1, N}$, задающие внешнюю оценку информационного множества и внутреннюю оценку множества разрешимости. Для краткости через $\mathcal{X}(t)$ и $\mathcal{W}_{\mu}(t)$ будем обозначать множества $\mathcal{X}_{\beta,\gamma^{(i)}}^{\mathrm{ext}}(t)$ и $\mathcal{W}_{\mu,\gamma_{\mathcal{W}}^{(i)},S^{(i)}}^{\mathrm{int}}(t)$ соответственно. Введём также следующие обозначения:

$$\overline{W}_{\mathcal{X}}^{(i)}(t,\widetilde{x}) = W_{\mathcal{X}}^{(i)}(t,\widetilde{x}) - \alpha_{\mathcal{X}}^{(i)}(t) = \langle \widetilde{x}, K_{\mathcal{X}}^{(i)}(t)\widetilde{x} \rangle - \alpha_{\mathcal{X}}^{(i)}(t), \tag{21}$$

$$\overline{W}_{\mathcal{W}}^{(i)}(t,\widetilde{x}) = W_{\mathcal{W}}^{(i)}(t,\widetilde{x}) - \alpha_{\mathcal{W}}^{(i)}(t) = \langle \widetilde{x}, K_{\mathcal{W}}^{(i)}(t) \widetilde{x} \rangle - \alpha_{\mathcal{W}}^{(i)}(t). \tag{22}$$

В таком случае множества $\mathcal{X}(t)$ и $\mathcal{W}_{u}(t)$ задаются следующими соотношениями:

$$\mathcal{X}(t) = \bigcup_{i} \mathcal{X}^{(i)}(t) = \bigcup_{i} \{ x \in \Omega^{(i)} : \overline{W}_{\mathcal{X}}^{(i)}(t, \widetilde{x}) \leq 0 \},$$

$$\mathcal{W}_{\mu}(t) = \bigcup_{i} \mathcal{W}_{\mu}^{(i)}(t) = \bigcup_{i} \{ x \in \Omega^{(i)} : \overline{W}_{\mathcal{W}}^{(i)}(t, \widetilde{x}) \leqslant \mu \}.$$

Отметим, что каждое из множеств $\mathcal{X}^{(i)}(t)$, $\mathcal{W}^{(i)}_{\mu}(t)$ является выпуклым и компактным.

Рассмотрим полурасстояние между рассматриваемыми множествами, порождаемое кусочно-квадратичными функциями (21), (22):

$$h(t) = \min_{\mu \geqslant 0} \{ \mu \colon \mathcal{X}(t) \subseteq \mathcal{W}_{\mu}(t) \}.$$

Из определения множеств $\mathcal{X}(t)$ и $\mathcal{W}_{\mu}(t)$ следует, что

$$h(t) = \max\{0, \hat{h}(t)\}, \quad \hat{h}(t) = \max_{i} h^{(i)}(t) = \max_{i} \max_{x \in \Omega^{(i)}} \{\overline{W}_{\mathcal{W}}^{(i)}(t, \widetilde{x}) : \overline{W}_{\mathcal{X}}^{(i)}(t, \widetilde{x}) \leqslant 0\}. \tag{23}$$

Случай $\hat{h}(t) \leq 0$ соответствует ситуации, когда $\mathcal{X}(t) \subset \mathcal{W}_0(t)$.

Нас интересуют такие допустимые управления $u^*(\pi(t))$, при которых значение производной $\dot{h}(t)$ минимально при любой возможной неопределённости системы, т.е.

$$u^*(\pi(t)) = \{ u \in \mathcal{P}(t) \colon u \in \operatorname{Arg\ min\ max}_{u} \, \dot{\hat{h}}(t) \}. \tag{24}$$

В силу сложной структуры функций $h^{(i)}(t)$ перейдём к рассмотрению функции H(t), являющейся верхней оценкой функции $\hat{h}(t)$:

$$H(t) = \max_{i} H^{(i)}(t) = \max_{i} \max_{x \in \Omega^{(i)}} H^{(i)}(t, \widetilde{x}) = \max_{i} \max_{x \in \Omega^{(i)}} \{ \overline{W}_{\mathcal{W}}^{(i)}(t, \widetilde{x}) - \overline{W}_{\mathcal{X}}^{(i)}(t, \widetilde{x}) \}. \tag{25}$$

Заметим, что для любых i и x, для которых $\overline{W}_{\mathcal{X}}^{(i)}(t,\widetilde{x})\leqslant 0$, выполнено неравенство

$$\overline{W}_{\mathcal{W}}^{(i)}(t,\widetilde{x}) - \overline{W}_{\mathcal{X}}^{(i)}(t,\widetilde{x}) \geqslant \overline{W}_{\mathcal{W}}^{(i)}(t,\widetilde{x}),$$

а значит, $\hat{h}(t) \leqslant H(t)$.

Исследуем поведение производной функции H(t). Согласно [13, с. 86] при вычислении производной операции дифференцирования и максимизации по конечному числу функций можно поменять местами:

$$\dot{H}(t) = \max_{i} \{ \dot{H}^{(i)}(t), i : H^{(i)}(t) = H(t) \}.$$

Согласно теореме о дифференцировании максимума функции [14, с. 61] производная H(t) представляется в виде

$$\dot{H}(t) = \max_{(i,x)} \{ \dot{\overline{W}}_{\mathcal{W}}^{(i)}(t, \widetilde{x}) - \dot{\overline{W}}_{\mathcal{X}}^{(i)}(t, \widetilde{x}), \quad x \in \Omega^{(i)}, \quad (i,x) \in \operatorname{Argmax} H(t) \}.$$
 (26)

Вследствие определения функций $\overline{W}^{(i)}_{\mathcal{W}}(t,\widetilde{x})$ и $\overline{W}^{(i)}_{\mathcal{X}}(t,\widetilde{x})$ для производных в (26) имеем

$$\dot{\overline{W}}_{\mathcal{X}}^{(i)}(t,\widetilde{x}) = \langle \widetilde{x}, \dot{K}_{\mathcal{X}}^{(i)}(t)\widetilde{x} \rangle - \dot{\alpha}_{\mathcal{X}}^{(i)}(t), \quad \dot{\overline{W}}_{\mathcal{W}}^{(i)}(t,\widetilde{x}) = \langle \widetilde{x}, \dot{K}_{\mathcal{W}}^{(i)}(t)\widetilde{x} \rangle - \dot{\alpha}_{\mathcal{W}}^{(i)}(t).$$

Переходя от h(t) к H(t) в (24), будем искать управление $u^*(\pi(t))$ в виде

$$u^*(\pi(t)) = \operatorname{Arg} \min_{u \in \mathcal{P}(t)} \max_{\zeta_t(\cdot, t_0)} \dot{H}(t).$$

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 57 № 11 2021

При этом значения $\dot{K}^{(i)}_{\mathcal{W}}(t)$, $\dot{\alpha}^{(i)}_{\mathcal{W}}(t)$ могут быть вычислены заранее согласно приведённым выше формулам (подробнее см. в [8]) и доступны при любых $i,\ t.$ Значения производных $\dot{\alpha}^{(i)}_{\mathcal{X}}(t)$ в момент времени t при реализовавшихся ранее неопределённостях не зависят от управляющего параметра.

Максимизация производной $\dot{H}(t)$ по всем допустимым помехам равносильна минимизации выражения $\langle \widetilde{x}, \dot{K}_{\mathcal{X}}^{(i)}(t) \widetilde{x} \rangle$. Используя обозначение (18), заключаем, что минимум достигается при минимальном значении выражения $\langle \widetilde{x}, \beta(t) \mathbf{R}(t) \widetilde{x} \rangle$, которое, согласно определению $\mathbf{R}(t)$, не менее -1.

Замечание. Указанный минимум соответствует случаю, когда наблюдение y(t) не даёт никакой новой информации. Более того, значение r(t) в (3) является центром эллипсоида $\mathcal{R}(t)$.

Таким образом,

$$u^*(\pi(t)) =$$

$$= \operatorname{Arg} \min_{u \in \mathcal{P}(t)} \max \left\{ \frac{\dot{\overline{W}}_{\mathcal{W}}^{(i)}(t, \widetilde{x}) - \langle \widetilde{x}, (R_{\mathcal{X}}^{(i)}(t) - F_{\mathcal{X}}^{(i)}(t))\widetilde{x} \rangle + 1 + \dot{\alpha}_{\mathcal{X}}^{(i)}(t) : (i, x) \in \operatorname{Argmax} H(t) \right\}. \tag{27}$$

Формула (27) позволяет в общем случае определить управление в позиционной форме, минимизирующее отклонение информационного множества от множества разрешимости в смысле полурасстояния (25). Выражение в (27) допускает дальнейшие преобразования. Для упрощения промежуточных выкладок сделаем следующее

Предположение. Для текущей позиции $\pi(t)$ множество Argmax H(t) состоит из конечного числа пар $(i_1, x^{(i_1)}), \ldots, (i_M, x^{(i_M)})$.

Тогда

$$\max \left\{ \frac{\dot{\overline{W}}_{\mathcal{W}}^{(i)}(t, \widetilde{x}) - \langle \widetilde{x}, (R_{\mathcal{X}}^{(i)}(t) - F_{\mathcal{X}}^{(i)}(t))\widetilde{x} \rangle + 1 + \dot{\alpha}_{\mathcal{X}}^{(i)}(t)|(i, x) \in \operatorname{Argmax} H(t) \right\} =$$

$$= \max \left\{ \sum_{k=1}^{M} \lambda_{k} (\overline{W}_{\mathcal{W}}^{(i_{k})}(t, \widetilde{x}^{(i_{k})}) - \langle \widetilde{x}^{(i_{k})}, (R_{\mathcal{X}}^{(i_{k})}(t) - F_{\mathcal{X}}^{(i_{k})}(t))\widetilde{x}^{(i_{k})} \rangle + \dot{\alpha}_{\mathcal{X}}^{(i_{k})}(t)) + 1 :$$

$$(\lambda_{1}, \dots, \lambda_{M}) \in \Lambda_{M} \right\}, \tag{28}$$

где

$$\Lambda_M = \left\{ \xi = (\xi_1, \dots, \xi_M)^{\mathrm{\scriptscriptstyle T}} \in \mathbb{R}^M : \xi_i \geqslant 0, \quad i = \overline{1, M}, \quad \sum_{i=1}^M \xi_i = 1 \right\}$$
 — симплекс.

Заменим в (27) выражение в фигурных скобках согласно (28). В полученном представлении, в силу теоремы о минимаксе [14, с. 81–82], можно поменять местами \min_u и \max_λ . После этого

подсчитаем внутренний минимум по u. Зависимость от управления имеется лишь в $F_{\mathcal{X}}^{(i_k)}(t)$, а именно, в значении матриц $\widetilde{A}^{(i_k)}(t)$. Представим $\widetilde{A}^{(i_k)}(t)$ в виде суммы:

$$\begin{split} \widetilde{A}^{(i_k)}(t) &= \widetilde{A}_0^{(i_k)}(t) + \widetilde{A}_u^{(i_k)}(t), \quad \widetilde{A}_0^{(i_k)}(t) = \begin{pmatrix} A^{(i_k)}(t) & d^{(i_k)}(t) + C^{(i_k)}(t)q(t) \\ \mathbb{O}_{1\times n_x} & 0 \end{pmatrix}, \\ \widetilde{A}_u^{(i_k)}(t) &= \begin{pmatrix} \mathbb{O}_{n_x\times n_x} & B^{(i_k)}(t)u \\ \mathbb{O}_{1\times n_x} & 0 \end{pmatrix} = \begin{pmatrix} \mathbb{O}_{(n_x+1)\times n_x} & \widetilde{B}^{(i_k)}(t)u \end{pmatrix}. \end{split}$$

Учитывая определение (17) матриц $F_{\mathcal{X}}^{(i_k)}(t)$, получаем, что требуется минимизировать по u выражение

$$\sum_{k=1}^{M} \lambda_k \langle \widetilde{x}^{(i_k)}, K_{\mathcal{X}}^{(i_k)}(t) \widetilde{A}_u^{(i_k)}(t) \widetilde{x}^{(i_k)} \rangle = \sum_{k=1}^{M} \lambda_k \langle \widetilde{x}^{(i_k)}, K_{\mathcal{X}}^{(i_k)}(t) \widetilde{B}^{(i_k)}(t) u \rangle.$$

В результате приходим к следующему управлению:

$$u^{*}(\pi(t)) = \begin{cases} p(t) - \frac{P(t)\ell^{*}}{\langle \ell^{*}, P(t)\ell^{*} \rangle^{1/2}}, & \ell^{*} \neq 0, \\ \mathcal{E}(p(t), P(t)), & \ell^{*} = 0, \end{cases}$$
(29)

где $\ell^* = \sum_{k=1}^M \lambda_k (\widetilde{B}^{(i_k)}(t))^{ \mathrm{\scriptscriptstyle T} } K_{\mathcal{X}}^{(i_k)}(t) \widetilde{x}^{(i_k)}.$ При найденном управлении верно равенство

$$\sum_{k=1}^{M} \lambda_k \langle \widetilde{x}^{(i_k)}, K_{\mathcal{X}}^{(i_k)}(t) \widetilde{A}_u^{(i_k)}(t) \widetilde{x}^{(i_k)} \rangle = \langle \ell^*, p(t) \rangle - \langle \ell^*, P(t) \ell^* \rangle^{1/2}.$$

Итоговое выражение для производной полурасстояния имеет вид

$$\min_{u} \dot{H} = \max \left\{ \sum_{k=1}^{M} \lambda_{k} (\langle \tilde{x}^{(i_{k})}, \dot{K}_{\mathcal{W}}^{(i_{k})}(t) \tilde{x}^{(i_{k})} \rangle - \dot{\alpha}_{\mathcal{W}}^{(i_{k})}(t) - \langle \tilde{x}^{(i_{k})}, (R_{\mathcal{X}}^{(i_{k})}(t) - F_{\mathcal{X},0}^{(i_{k})}(t)) \tilde{x}^{(i_{k})} \rangle + \right. \\
\left. + \dot{\alpha}_{\mathcal{X}}^{(i_{k})}(t) + 1 + 2 \langle \ell^{*}, p(t) \rangle - 2 \langle \ell^{*}, P(t) \ell^{*} \rangle^{1/2} : (\lambda_{1}, \dots, \lambda_{M}) \in \Lambda_{M} \right\}. \tag{30}$$

Далее необходимо решить задачу максимизации вогнутой функции на ограниченном компактном множестве Λ_M и найти соответствующий максимизатор $(\lambda_1^*,\ldots,\lambda_M^*)$. После его подстановки в выражение для ℓ^* из (29) получим итоговое позиционное управление.

Заметим, что максимизатор $(\lambda_1^*, \ldots, \lambda_M^*)$ в (30) может быть выбран таким образом, чтобы он непрерывно зависел от текущей позиции $\pi(t)$, а значит, и от неизвестной величины x(t) – решения системы (1). После подстановки такого максимизатора в управление (29) получаем многозначное отображение с выпуклыми компактными значениями, полунепрерывное сверху по x. Следовательно, после подстановки такого управления в систему (1) для полученных дифференциальных включений будет выполнена теорема о существовании решений [15, с. 60–61], т.е. найденное управление является допустимым.

Общий случай, когда сделанное предположение не выполняется, может быть разобран аналогичным образом, при помощи замены суммы по различным максимизаторам $(i_k, x^{(i_k)})$ на сумму интегралов по множеству максимизаторов.

9. Априорная оценка качества управления. Полученное выше позиционное управление (29) минимизирует производную $\dot{H}(t)$. Однако нельзя утверждать, что эта производная будет неотрицательна. Таким образом, при $t \in [t_0, t_1]$ может накапливаться погрешность, увеличивающая размеры окрестности целевого множества, попадание в которую можно гарантировать. Для априорной оценки размеров такой окрестности поступим следующим образом. Пусть $\pi(t_0)$ — известная начальная позиция. Воспользуемся формулам из п. 6 для построения оценок информационных множеств $\hat{\mathcal{X}}(t)$, $t \in [t_0, t_1]$. При построении этих множеств используем управление (29), а также наиболее неблагоприятные наблюдения: $\tilde{G}(t)\tilde{x}(t)\equiv 0$. Для информационной трубки $\hat{\mathcal{X}}(t)$ подсчитаем соответствующую величину

$$\hat{H}(t_1) = \hat{H}(t_0) + \int_{t_0}^{t_1} \dot{\hat{H}}(\tau) d\tau.$$

Теорема 2. Для любых допустимых погрешностей $\zeta_{t_1}(\cdot,t_0)$ управление (29) переведёт любую соответствующую траекторию кусочно-линейной системы (1) в μ -окрестность целевого множества, где $\mu \leqslant \hat{H}(t_1)$.

Доказательство этого утверждения следует из того, что информационные множества $\mathcal{X}(t)$, $t \in [t_0, t_1]$, использующие реально поступающую информацию об измерениях (2), удовлетворяют при всех $t \in [t_0, t_1]$ включению $\mathcal{X}(t) \subseteq \hat{\mathcal{X}}(t)$. Тогда в силу равенств (25) заключаем, что $H(t) \leqslant \hat{H}(t_1)$ для всех $t \in [t_0, t_1]$. Наконец, из (23) вытекает двойное неравенство $\mu \leqslant h(t_1) \leqslant \hat{H}(t_1) \leqslant \hat{H}(t_1)$.

10. Пример. Рассмотрим кусочно-линейную систему (1), состоящую из трёх подсистем:

$$\dot{x} = A^{(i)}x + Bu + Cv, \quad t \in [0, 3], \quad i = 1, 2, 3.$$

Уравнение измерений (2) имеет вид

$$y(t) = Gx(t) + w = x_1(t) + x_2(t) + w.$$

Матрицы $A^{(i)}$, B, C, G следующие:

$$A^{(1)} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad A^{(2)} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad A^{(3)} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0.1 \\ 0.2 \end{pmatrix}, \quad G = \begin{pmatrix} 1 & 1 \end{pmatrix}.$$

Начальное $\mathcal{X}_0 = \mathcal{E}(x_0, X_0)$ и целевое $\mathcal{X}_1 = \mathcal{E}(x_1, X_1)$ множества заданы равенствами

$$x_0 = \begin{pmatrix} -2.0 \\ 0 \end{pmatrix}, \quad X_0 = 0.3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad x_1 = \begin{pmatrix} 1.5 \\ 0 \end{pmatrix}, \quad X_1 = 0.5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

На управление u, неопределённость v и погрешность w наложены ограничения:

$$|u| \leqslant 1$$
, $|v| \leqslant 1$, $|w| \leqslant 0.2$.

Области $\Omega^{(i)}$ заданы следующим образом:

$$\Omega^{(1)} = \{ x \in \mathbb{R}^2 \colon -6 \leqslant x_1 \leqslant -1, \quad |x_2| \leqslant 6 \},$$

$$\Omega^{(2)} = \{ x \in \mathbb{R}^2 \colon |x_1| \leqslant 1, \quad |x_2| \leqslant 6 \},$$

$$\Omega^{(3)} = \{ x \in \mathbb{R}^2 \colon 6 \geqslant x_1 \geqslant 1, \quad |x_2| \leqslant 6 \}.$$

В качестве начальной (но неизвестной системе) точки выберем значение $x(0) = x_0$. Случайные реализации неопределённости v и помехи w получены с использованием равномерного распределения.

На рис. 1 изображены: траектория системы x(t) с выделенной точкой x(1.5), внешняя оценка информационного множества $\mathcal{X}(1.5, t_0, \mathcal{X}_0)$, внутренняя оценка множества разрешимости $\mathcal{W}(1.5, t_1, \mathcal{X}_1)$ (лежит в области $\Omega^{(3)}$).

На рис. 2 приведён график функции H(t) – реальное изменение полурасстояния между множествами по мере обработки поступающих результатов измерений с использованием предложенного позиционного управления.

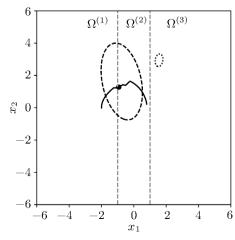


Рис. 1. Траектория x(t) системы.

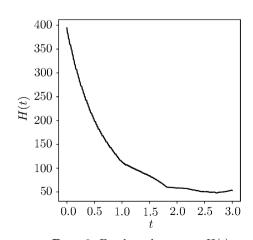


Рис. 2. График функции H(t).

Заключение. В работе получены формулы для построения внешних оценок информационного множества кусочно-линейной системы с неопределённостями (помехами) в уравнениях динамики и измерений. Предложен метод для вычисления позиционного управления, решающего задачу о переводе системы из заданного начального множества в заданное целевое множество. Рассмотренные в статье вопросы, безусловно, должны быть впоследствии дополнены эффективными вычислительными схемами и алгоритмами. Их разработка является одной из ближайших целей авторов.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках реализации программы Математического центра фундаментальной и прикладной математики по соглашению № 075-15-2019-1621, а также Российского фонда фундаментальных исследований (проект 19-01-00613а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Liberzon D. Switching in Systems and Control. Boston, 2003.
- 2. *Курэканский А.Б.*, *Точилин П.А.* Слабо инвариантные множества гибридных систем // Дифференц. уравнения. 2008. Т. 44. № 11. С. 1523–1533.
- 3. Kurzhanski A.B., Varaiya P. Optimization of output feedback control under set-membership uncertainty // J. Optim. Theory Appl. 2011. V. 151. № 1. P. 11–32.
- 4. *Курэканский А.Б.*, *Точилин П.А.* К задаче синтеза управлений при неопределённости по данным финитных наблюдателей // Дифференц. уравнения. 2011. Т. 47. № 11. С. 1599–1607.
- 5. Kurzhanski A.B., Varaiya P. Dynamics and Control of Trajectory Tubes. Theory and Computation. Basel, 2014.
- 6. Красовский Н.Н. Управление динамической системой. М., 1985.
- 7. Точилин П.А. О построении невыпуклых аппроксимаций множеств достижимости кусочно-линейных систем // Дифференц. уравнения. 2015. Т. 51. № 11. С. 1503–1515.
- 8. *Маянцев К.С.*, *Точилин П.А.* Об одном методе построения кусочно-квадратичных функций цены для задачи управления системой с переключениями // Дифференц. уравнения. 2018. Т. 54. № 11. С. 1497—1507.
- 9. *Чистяков И.А.*, *Точилин П.А.* Приближённое решение задачи целевого управления в случае нелинейности по одной переменной // Дифференц, уравнения. 2019. Т. 55. № 11. С. 1560–1571.
- 10. $\mathit{Курэксанский}\ A.Б.$ Принцип сравнения для уравнения типа Гамильтона–Якоби в теории управления // Тр. Ин-та математики и механики УрО РАН. 2006. Т. 12. № 1. С. 173–183.
- 11. Куржанский А.Б. Управление и наблюдение в условиях неопределенности. М., 1977.
- 12. Fleming W.H., Soner H.M. Controlled Markov Processes and Viscosity Solutions. New York, 1993.
- 13. Демьянов В.Ф. Условия экстремума и вариационное исчисление. М., 2005.
- 14. Пшеничный Б.Н. Необходимые условия экстремума. М., 1982.
- 15. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью. М., 1985.

Московский государственный университет им. М.В. Ломоносова

Поступила в редакцию 10.05.2021 г. После доработки 13.06.2021 г. Принята к публикации 05.10.2021 г.