=ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ=

УДК 517.984

О СПЕКТРАЛЬНЫХ СВОЙСТВАХ ОПЕРАТОРА ДИРАКА НА ПРЯМОЙ

© 2021 г. А. Г. Баскаков, И. А. Криштал, Н. Б. Ускова

Изучается асимптотика спектра оператора Дирака на прямой с потенциалом из L_2 . Показано, что спектр такого оператора лежит в симметричной относительно вещественной оси области комплексной плоскости, ограниченной графиком некоторой непрерывной вещественнозначной квадратично суммируемой функции. Для доказательства используется L_1 -функциональное исчисление для самосопряжённых операторов и подходящее преобразование подобия.

DOI: 10.31857/S0374064121020023

Введение. Классический оператор Дирака связан с важными задачами математической физики и имеет многочисленные приложения. Истоки изучения этих задач можно найти в работах Биркгофа [1, 2], Тамаркина [3] и самого Дирака [4, 5]. Среди современных исследований, связанных с оператором Дирака, отметим, например, [6–12]; в них есть ссылки и на другие работы, в которых он также рассматривается. Отметим, что обычно одномерный оператор Дирака изучается на отрезке $[0,\omega]$ с теми или иными краевыми условиями. У такого оператора спектр дискретный, и его можно исследовать различными методами – например, резольвентным или методом подобных операторов. В настоящей работе изучаются спектральные свойства оператора Дирака на прямой; у такого оператора спектр дискретным не является.

Введём используемые в статье пространства функций и определим вид изучаемого оператора. Через $L_2(\mathbb{R})$ обозначим гильбертово пространство, состоящее из классов эквивалентности, образованных равными между собой почти всюду по мере Лебега комплекснозначными функциями, определёнными на прямой \mathbb{R} , измеримыми по Лебегу и суммируемыми на \mathbb{R} с квадратом модуля, скалярное произведение в котором задаётся равенством

$$(x,y) = \int_{\mathbb{R}} x(t)\overline{y(t)} dt, \quad x,y \in L_2(\mathbb{R}),$$

а через \mathcal{H} – гильбертово пространство $L_2(\mathbb{R},\mathbb{C}^2)\simeq L_2(\mathbb{R})\times L_2(\mathbb{R})$ со скалярным произведением

$$(x,y) = \int_{\mathbb{R}} (x_1(t)\overline{y_1(t)} + (x_2(t)\overline{y_2(t)}) dt, \quad x = (x_1, x_2) \in \mathcal{H}, \quad y = (y_1, y_2) \in \mathcal{H}.$$

Через $W_2^1(\mathbb{R}, \mathbb{C}^2)$ обозначаем пространство Соболева абсолютно непрерывных вектор-функций из $L_2(\mathbb{R}, \mathbb{C}^2)$, производные которых также принадлежат пространству $L_2(\mathbb{R}, \mathbb{C}^2)$, скалярное произведение в котором задаётся равенством

$$(x,y)_W = (x,y) + (x',y'), \quad x,y \in W_2^1(\mathbb{R}, \mathbb{C}^2).$$

Рассмотрим оператор Дирака L на прямой:

$$(Ly)(t) = i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{dy}{dt} - v(t)y(t), \quad t \in \mathbb{R},$$

где

$$v(t) = \begin{pmatrix} 0 & v_1(t) \\ v_2(t) & 0 \end{pmatrix}, \quad v_i \in L_2(\mathbb{R}), \quad i = 1, 2, \quad D(L) = W_2^1(\mathbb{R}, \mathbb{C}^2).$$

Представим оператор Дирака в виде L = A - V, где

$$A: D(L) \subset \mathcal{H} \to \mathcal{H}, \quad (Ay)(t) = i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{dy}{dt}$$

И

$$(Vy)(t) = v(t)y(t) = \begin{pmatrix} 0 & v_1(t) \\ v_2(t) & 0 \end{pmatrix} y(t), \quad y \in \mathcal{H}.$$

Отметим, что спектр $\sigma(A)$ оператора A совпадает с \mathbb{R} . Поэтому подходы, наиболее часто применяемые для изучения аналогичного оператора на отрезке, в настоящей работе неприменимы.

В дальнейшем оператор A играет роль невозмущённого оператора, а подчинённый ему оператор V – роль оператора возмущения.

Для оператора L доказывается существование непрерывной неотрицательной функции $f \in L_2(\mathbb{R})$ такой, что спектр $\sigma(L)$ оператора L находится между графиками функций f и -f; иными словами, выполняется неравенство $|\mathrm{Im}\,\lambda| \leqslant f(\mathrm{Re}\,\lambda)$ для любого $\lambda \in \sigma(L)$.

Для решения поставленной задачи сначала приводится результат о локализации спектра абстрактного самосопряжённого оператора, возмущённого оператором из идеала Гильберта—Шмидта $\mathfrak{S}_2(\mathcal{H})$. Также описывается алгоритм построения искомой функции f в этом случае и приводится пример для возмущённого оператора импульса на оси.

Так как возмущение V оператора Дирака не принадлежит идеалу Гильберта–Шмидта, то затем рассматривается преобразование подобия оператора A-B в оператор $A-B_0$, где B- подчинённый A оператор с дополнительными, выполненными для оператора V условиями, и $B_0 \in \mathfrak{S}_2(\mathcal{H})$. Для доказательства соответствующих результатов используется спектральная теория банаховых модулей [13–17] и предварительное преобразование подобия метода подобных операторов [18–20]. Отметим, что приводимая схема доказательств совпадает с использованной в работе [17], в которой аналогичный результат получен для оператора с инволюцией. Однако, в отличие от [17], в настоящей работе рассмотрен абстрактный класс возмущённых операторов, для которых эта схема работает (см. п. 2), и показано, что оператор Дирака входит в этот класс (см. п. 3).

1. Теорема о локализации спектра для самосопряжённого возмущённого оператора. В этом и следующем пунктах работы \mathcal{H} – абстрактное (комплексное) гильбертово пространство и $A:D(A)\subseteq\mathcal{H}\to\mathcal{H}$ – самосопряжённый оператор. Возмутим оператор A оператором B из двустороннего идеала операторов Гильберта–Шмидта $\mathfrak{S}_2(\mathcal{H})$. Свойства этого идеала можно найти, например, в монографии [21].

Для операторов A и B можно доказать существование и указать алгоритм построения такой непрерывной действительной функции $f \in L_2(\mathbb{R})$, чтобы спектр $\sigma(A+B)$ оператора A+B находился между графиками функций f и -f. Мы полагаем, что такой результат давно известен. Наш вариант доказательства можно найти в [17].

Теорема 1 [17, теорема 4.1]. Пусть $A:D(A)\subset \mathcal{H}\to \mathcal{H}$ – самосопряжённый оператор u $B\in \mathfrak{S}_2(\mathcal{H})$. Тогда существует такая непрерывная вещественнозначная функция $f\in L_2(\mathbb{R})$, что для всех $\lambda\in \sigma(A+B)$ имеет место неравенство

$$|\operatorname{Im} \lambda| \leqslant f(\operatorname{Re} \lambda).$$

Отметим, что в теореме 1 неважно, имеет ли оператор A дискретный спектр или нет.

Приведём алгоритм построения функции f, вытекающий из доказательства теоремы 1 в [17]. Обозначим через E_n спектральные проекторы оператора A, построенные по интервалам [-n,n], и положим $B_n = B - E_n B E_n$, $n \in \mathbb{N}$. Для построения (графика) функции f найдём точки с координатами $(\pm(1+2\|B\|_2),2\|B\|_2)$, $(\pm(n+2\|B\|_2),3\|B_n\|_2)$, $n \in \mathbb{N}$, и соединим их ломаной линией.

Пример. Пусть A – оператор импульса, $(Ax)(t) = tx(t), t \in \mathbb{R}, D(A) = \{x \in L_2(\mathbb{R}) : Ax \in E_2(\mathbb{R})\}$ и Bx = (x, u)v, где $u, v \in L_2(\mathbb{R})$ – фиксированные функции. Оператор B является интегральным с ядром $K(t, s) = v(t)\overline{u(s)}, t, s \in \mathbb{R}$, суммируемым с квадратом на $\mathbb{R} \times \mathbb{R}$, и $\|B\|_2 = \|u\| \|v\|$.

Пусть $\Delta_n = [-n, n], n \in \mathbb{N}$. Введём в рассмотрение характеристическую функцию

$$\chi_n(t) = \begin{cases} 1, & t \in \Delta_n, \\ 0, & t \notin \Delta_n. \end{cases}$$

Тогда $E_n x = \chi_n x$, $x \in L_2(\mathbb{R})$. Очевидно, что

$$B_n x = (B - E_n B E_n) x = (x, u) v - (x, u_n) v_n = (x, u) (v - v_n) + (x, u - u_n) v_n =$$
$$= (x, u_n) (v - v_n) + (x, u - u_n) v,$$

где $u_n=\chi_n u,\ v_n=\chi_n v,\ n\in\mathbb{N}.$ Обозначая $\tilde{u}_n=u-u_n$ и $\tilde{v}_n=v-v_n,$ имеем

$$||B_n|| \le \min\{||\tilde{u}_n|| ||v|| + ||u_n|| ||\tilde{v}_n||, ||\tilde{u}_n|| ||v_n|| + ||u|| ||\tilde{v}_n||\} := b_n, \quad n \in \mathbb{N};$$

при этом последовательность (b_n) принадлежит пространству ℓ_2 .

Для построения функции f достаточно соединить точки с координатами

$$(\pm(1+2||u||||v||), 2||u||||v||), \quad (\pm(n+2||u||||v||), 3b_n), \quad n \in \mathbb{N},$$

ломаной линией.

2. Теорема о локализации спектра для возмущений, подчинённых оператору *А*. Результат предыдущего пункта можно применить не только к самосопряжённым операторам, возмущённым операторами из идеала Гильберта—Шмидта. Например, это возможно, если существует преобразование подобия рассматриваемого оператора в оператор с возмущением из идеала Гильберта—Шмидта. В этом пункте будут получены условия, при которых такое преобразование имеет место.

Пусть End \mathcal{H} — банахова алгебра линейных ограниченных операторов, действующих в \mathcal{H} . Через $\mathfrak{L}_A(\mathcal{H})$ обозначим векторное нормированное пространство линейных операторов, подчинённых оператору A. Оператор B принадлежит пространству $\mathfrak{L}_A(\mathcal{H})$, если $D(A) \subseteq D(B)$ и при некоторой постоянной C справедливо неравенство

$$||Bx|| \le C(||x|| + ||Ax||), \quad x \in D(A).$$

Норма в $\mathfrak{L}_A(\mathcal{H})$ задаётся равенством

$$||B||_A = \{\inf C : ||Bx|| \le C(||x|| + ||Ax||)\}.$$

Так как резольвентное множество $\rho(A)$ рассматриваемого оператора A не пусто, то в $\mathfrak{L}_A(\mathcal{H})$ можно ввести эквивалентные нормы, положив

$$||B||_{\lambda} = ||B(A - \lambda I)^{-1}||, \quad \lambda \in \rho(A).$$

Определение. Два линейных оператора $A_1:D(A_1)\subset \mathcal{H}\to \mathcal{H}$ и $A_2:D(A_2)\subset \mathcal{H}\to \mathcal{H}$ называются *подобными*, если существует непрерывно обратимый оператор $U\in \operatorname{End}\mathcal{H}$ такой, что $UD(A_2)=D(A_1)$ и $A_1Ux=UA_2x,\ x\in D(A_2)$. Оператор U называется *оператором преобразования* оператора A_1 в оператор A_2 или *сплетающим* оператором.

Далее через $L_1(\mathbb{R})$ обозначаем банахову алгебру, состоящую из классов эквивалентности, образованных равными между собой почти всюду по мере Лебега комплекснозначными функциями, определёнными на \mathbb{R} , измеримыми по Лебегу и суммируемыми на \mathbb{R} , со свёрткой в качестве умножения

$$(f * g)(t) = \int_{\mathbb{R}} f(t-s)g(s) ds, \quad f, g \in L_1(\mathbb{R}),$$

и нормой $||f||_1 = \int_{\mathbb{R}} |f(t)| dt$. Через $\widehat{L}_1(\mathbb{R})$ будем обозначать банахову алгебру преобразований Фурье \widehat{f} функций $f \in L_1(\mathbb{R})$ с поточечным умножением функций в качестве операции и нормой

$$\|\widehat{f}\|_{\infty} = \max_{\lambda \in \mathbb{R}} |\widehat{f}(\lambda)|.$$

Преобразование Фурье \widehat{f} функции f определяется формулой

$$\widehat{f}(\lambda) = \int_{\mathbb{R}} f(t)e^{-i\lambda t} dt, \quad \lambda \in \mathbb{R};$$

в частности, $\widehat{f}: \mathbb{R} \to \mathbb{C}$.

Преобразование Фурье стандартным образом определяется и для функций из $L_2(\mathbb{R})$, при этом имеет место равенство $\|\hat{f}\|_2 = \sqrt{2\pi} \|f\|_2$, где $\|\cdot\|_2$ – норма в $L_2(\mathbb{R})$.

Для построения преобразования подобия будут необходимы следующие функции из пространства $L_1(\mathbb{R}) \bigcap L_2(\mathbb{R})$. Для a>0 рассмотрим трапецевидную функцию τ_a , заданную условиями

$$\tau_a(\varepsilon) = \begin{cases} 1, & |\varepsilon| \leqslant a, \\ a^{-1}(2a - |\varepsilon|), & a < |\varepsilon| \leqslant 2a, \\ 0, & |\varepsilon| > 2a. \end{cases}$$

Непосредственный подсчёт показывает, что $\tau_a \in L_2(\mathbb{R})$ и $\|\tau_a\|_2 \leqslant 2\sqrt{2a/3}$. При этом $\tau_a = \widehat{\varphi}_a$, где

$$\varphi_a(t) = \frac{2\sin(3at/2)\sin(at/2)}{\pi at^2}.$$

О других применениях функции τ_a см., например, [22]. Также рассмотрим функцию ω_a , заданную условиями

$$\omega_a(\varepsilon) = (1 - \tau_a(\varepsilon))/\varepsilon = \begin{cases} 0, & |\varepsilon| \leqslant a, \\ -a^{-1} - \varepsilon^{-1}, & -2a \leqslant \varepsilon < -a, \\ a^{-1} - \varepsilon^{-1}, & a < \varepsilon \leqslant 2a, \\ \varepsilon^{-1}, & |\varepsilon| > 2a. \end{cases}$$

Несложно видеть, что

$$\|\omega_a\|_2 = \sqrt{(4 - 4\ln 2)/a} \leqslant (1, 11)/\sqrt{a}.$$

Пусть $\widehat{\psi}_a = \omega_a$. Нам далее также нужна будет оценка $\|\psi_a\|_{\infty} \leqslant 1 + 1/\pi$, полученная в [17]. Так как оператор A является самосопряжённым, то оператор iA является генератором

Так как оператор A является самосопряжённым, то оператор iA является генератором некоторой сильно непрерывной группы операторов $T(t) = e^{itA}, \ t \in \mathbb{R}, \ T : \mathbb{R} \to \operatorname{End} \mathcal{H},$ согласно теореме Стоуна [23, с. 89]. Наряду с представлением T, введём в рассмотрение также представление $\widetilde{T} : \mathbb{R} \to \operatorname{End} (\mathfrak{L}_A(\mathcal{H}))$, заданное формулой

$$\widetilde{T}(t)X = T(t)XT(-t), \quad X \in \mathfrak{L}_A(\mathcal{H}), \quad t \in \mathbb{R}.$$

Кроме того, для каждой функции $f \in L_1(\mathbb{R})$ и оператора $X \in \mathfrak{L}_A(\mathcal{H})$ определим оператор $\widetilde{T}(f)X \in \mathfrak{L}_A(\mathcal{H})$ равенством

$$(\widetilde{T}(f)X)x = \int_{\mathbb{R}} f(t)(\widetilde{T}(-t)X)x \, dt, \quad x \in D(A). \tag{1}$$

В работе [17, § 4] показано, что имеет место

Лемма 1. Для операторов $\widetilde{T}(\varphi_a)X$ и $\widetilde{T}(\psi_a)X$, $X \in \mathfrak{L}_A(\mathcal{H})$, a > 0, верно равенство

$$A(\widetilde{T}(\psi_a)X)x - (\widetilde{T}(\psi_a)X)Ax = Xx - (\widetilde{T}(\varphi_a)X)x, \quad x \in D(A).$$
 (2)

Замечание 1. В лемме 1 вместо функций φ_a и ψ_a можно использовать любые другие функции $\varphi, \psi \in L_1(\mathbb{R}) \bigcap L_2(\mathbb{R})$ такие, что $\widehat{\varphi} \equiv 1$ в окрестности нуля и

$$\widehat{\psi}(\varepsilon) = (1 - \widehat{\varphi}(\varepsilon))/\varepsilon, \quad \varepsilon \in \mathbb{R} \setminus \{0\}.$$

Теорема 2. Пусть $A:D(A)\subset \mathcal{H}\to \mathcal{H}$ – самосопряжённый оператор $u\ B\in \mathfrak{L}_A(\mathcal{H}).$ Пусть также выполнены условия:

- 1) $\widetilde{T}(\psi_a)B \in \operatorname{End} \mathcal{H}$ u существует такое a > 0, что $\|\widetilde{T}(\psi_a)B\| < 1$;
- 2) $(\widetilde{T}(\psi_a)B)D(A) \subset D(A)$;
- 3) $B\widetilde{T}(\psi_a)B + \widetilde{T}(\varphi_a)B \in \mathfrak{S}_2(\mathcal{H});$
- 4) для любого $\varepsilon > 0$ существует $\lambda_{\varepsilon} \in \mathbb{C} \setminus \mathbb{R} = \rho(A)$ такое, что $\|B(A \lambda_{\varepsilon}I)^{-1}\| < \varepsilon$.

Тогда оператор A-B подобен оператору $A-B_0$, где

$$B_0 = \widetilde{T}(\varphi_a)B + (I + \widetilde{T}(\psi_a)B)^{-1}(B\widetilde{T}(\psi_a)B - (\widetilde{T}(\varphi_a)B)\widetilde{T}(\varphi_a)B) =$$

$$= (I + \widetilde{T}(\psi_a)B)^{-1}(B\widetilde{T}(\psi_a)B + \widetilde{T}(\varphi_a)B). \tag{3}$$

При этом справедливо включение $B_0 \in \mathfrak{S}_2(\mathcal{H})$ и преобразование подобия оператора A-B в $A-B_0$ осуществляет обратимый оператор $I+\widetilde{T}(\psi_a)B$.

Доказательство. Из условия 1) вытекает обратимость оператора $I + \widetilde{T}(\psi_a)B$, т.е. ограниченность оператора $(I + \widetilde{T}(\psi_a)B)^{-1}$.

Отметим, что

$$D(A - B) = D(A - B_0) = D(A).$$

Для доказательства подобия нам надо сначала установить равенство

$$(I + \widetilde{T}(\psi_a)B)^{-1}D(A) = D(A).$$

Действительно, для $\lambda \in \rho(A)$ имеем

$$\widetilde{T}(\psi_{a})B(A - \lambda I)^{-1} = (A - \lambda I)^{-1}((A - \lambda I)\widetilde{T}(\psi_{a})B(A - \lambda I)^{-1}) =$$

$$= (A - \lambda I)^{-1}(B - \widetilde{T}(\varphi_{a})B + \widetilde{T}(\psi_{a})BA - \lambda \widetilde{T}(\psi_{a})B)(A - \lambda I)^{-1} =$$

$$= (A - \lambda I)^{-1}((B - \widetilde{T}(\varphi_{a})B)(A - \lambda I)^{-1} + \widetilde{T}(\psi_{a})B)(\widetilde{T}(\psi_{a})B)^{n}(A - \lambda I)^{-1} =$$

$$= (A - \lambda I)^{-1}((B - \widetilde{T}(\varphi_{a})B)(A - \lambda I)^{-1} + \widetilde{T}(\psi_{a})B)^{n}.$$

В силу условия 4) можно выбрать такое число $\lambda \in \rho(A)$, что

$$\|(B - \widetilde{T}(\varphi_a)B)(A - \lambda I)^{-1} + \widetilde{T}(\psi_a)B\| < 1.$$

Поскольку

$$(I + \widetilde{T}(\psi_a)B)^{-1}(A - \lambda I)^{-1} = (A - \lambda I)^{-1}(I + (B - \widetilde{T}(\varphi_a)B)(A - \lambda I)^{-1} + \widetilde{T}(\psi_a)B)^{-1},$$

то

$$(I + \widetilde{T}(\psi_a)B)^{-1}D(A) \subseteq D(A).$$

Обратное включение следует из условия 2). Таким образом, операторы определены корректно, а их области определения согласованы.

Теперь нам надо установить равенство

$$(A-B)(I+\widetilde{T}(\psi_a)B) = (I+\widetilde{T}(\psi_a)B)(A-B_0). \tag{4}$$

Рассмотрим каждую из частей равенства (4) отдельно. При этом учтём равенства (2), (3) и согласованность областей определения. Тогда

$$(A - B)(I + \widetilde{T}(\psi_a)B) = A - B + A\widetilde{T}(\psi_a)B - B\widetilde{T}(\psi_a)B =$$

$$= A - B\widetilde{T}(\psi_a)B + (\widetilde{T}(\psi_a)B)A - \widetilde{T}(\varphi_a)B;$$

$$(I + \widetilde{T}(\psi_a)B)(A - \widetilde{T}(\varphi_a)B - (I + \widetilde{T}(\psi_a)B)^{-1}(B\widetilde{T}(\psi_a)B - (\widetilde{T}(\psi_a)B)(\widetilde{T}(\varphi_a)B))) =$$

$$= A + (\widetilde{T}(\psi_a)B)A - \widetilde{T}(\varphi_a)B - (\widetilde{T}(\psi_a)B)(\widetilde{T}(\varphi_a)B) - B\widetilde{T}(\psi_a)B +$$

$$+ (\widetilde{T}(\psi_a)B)(\widetilde{T}(\varphi_a)B) = A + (\widetilde{T}(\psi_a)B)A - \widetilde{T}(\varphi_a)B - B\widetilde{T}(\psi_a)B.$$

Таким образом, равенство (4) имеет место. Теорема доказана.

Итак, в теореме 2 записаны условия, при выполнении которых оператор A-B с $B\in\mathfrak{L}_A(\mathcal{H})$ подобен оператору $A-B_0$ с $B_0\in\mathfrak{S}_2(\mathcal{H})$.

Важно отметить, что помимо использованного выше преобразования подобия подойдёт и любое другое преобразование подобия, переводящее оператор A-B, $B \in \mathfrak{L}_A(\mathcal{H})$, в оператор $A-B_0$, $B_0 \in \mathfrak{S}_2(\mathcal{H})$. Мы использовали приведённое выше преобразование, так как оно представляет собой хорошо известное и опробованное предварительное преобразование подобия метода подобных операторов (см. [7; 18–20; 24]).

Из теорем 1 и 2 очевидно следует

Теорема 3. Пусть $A:D(A)\subset \mathcal{H}\to \mathcal{H}$ – самосопряжённый оператор, $B\in \mathfrak{L}_A(\mathcal{H})$ и для оператора B выполнены условия 1)–4) теоремы 2. Тогда существует такая непрерывная функция $f\in L_2(\mathbb{R}),\ f:\mathbb{R}\to\mathbb{R},\$ для которой при всех $\lambda\in\sigma(A-B)$ имеет место неравенство

$$|\operatorname{Im} \lambda| \leqslant f(\operatorname{Re} \lambda).$$

3. Спектральный анализ оператора Дирака. В этом пункте будет показано, что теорема 3 применима для операторов Дирака, рассматриваемых в этой работе. Для этого достаточно проверить выполнение условий теоремы 2, которые позволяют осуществить преобразование подобия оператора A-V в оператор $A-V_0$, где $V_0 \in \mathfrak{S}_2(\mathcal{H})$.

Оператор iA является генератором группы изометрий $T: \mathbb{R} \to \operatorname{End} \mathcal{H}$ вида

$$T(t)x = \begin{pmatrix} S(-t)x_1 \\ S(t)x_2 \end{pmatrix},$$

где S(t) – оператор сдвига аргумента функций из $L_2(\mathbb{R})$ на число $t \in \mathbb{R}$, т.е. $S(t)x = x(\cdot + t)$, $x \in L_2(\mathbb{R})$, $t \in \mathbb{R}$.

Лемма 2. Для всякой функции $f \in L_1(\mathbb{R}) \cap L_2(\mathbb{R})$ имеет место равенство

$$\|\widetilde{T}(f)V\|_2 = \|f\|_2 \|V\|_2.$$

Доказательство. Для $f \in L_1(\mathbb{R}) \cap L_2(\mathbb{R})$ верны равенства

$$(\widetilde{T}(f)V)x = \int_{\mathbb{R}} f(t)T(-t)VT(t)x(s) dt = \int_{\mathbb{R}} \left(f(t)v_1(s+t)x_2(s+2t) \atop f(t)v_2(s-t)x_1(s-2t) \right) dt =$$

$$= \frac{1}{2} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \left(f(t)v_1(s+t)x_2(s+2t) \atop f(t)v_2(s-t)x_1(s-2t) \right) \left(\int_{\mathbb{R}} f(t)v_1(s+t)x_2(s+2t) \atop f(t)v_2(s-t)x_1(s-2t) \right) d\tau.$$

Здесь использовались замены переменных $s+2t=\tau$ и $s-2t=\tau$. Таким образом, $\widetilde{T}(f)V$ является интегральным оператором с ядром

$$K(\tau,s) = \frac{1}{2} \begin{pmatrix} 0 & f((\tau-s)/2)v_1((\tau+s)/2) \\ f((s-\tau)/2)v_2((\tau+s)/2) & 0 \end{pmatrix}, \quad \tau,s \in \mathbb{R}.$$

Ядро K суммируемо с квадратом, так как после обратной замены переменных имеем

$$||K||_{2}^{2} = \int_{\mathbb{R}} \int_{\mathbb{R}} ||K(t,s)||_{2}^{2} dt ds = \int_{\mathbb{R}} \int_{\mathbb{R}} |f(t)|^{2} (|v_{1}(s+t)|^{2} + |v_{2}(s-t)|^{2}) dt ds =$$

$$= ||f||_{2}^{2} (||v_{1}||_{2}^{2} + ||v_{2}||_{2}^{2}) = ||f||_{2}^{2} ||V||_{2}^{2}.$$

Лемма доказана.

Лемма 3. Оператор V обладает следующими свойствами:

- 1) $\widetilde{T}(\varphi_a)V \in \mathfrak{S}_2(\mathcal{H}), \quad \|\widetilde{T}(\varphi_a)V\|_2^2 \leqslant 4a(3\pi)^{-1}(\|v_1\|_2^2 + \|v_2\|_2^2);$ 2) $\widetilde{T}(\psi_a)V \in \mathfrak{S}_2(\mathcal{H}), \quad \|\widetilde{T}(\psi_a)V\|_2^2 \leqslant 2(1-\ln 2)(a\pi)^{-1}(\|v_1\|_2^2 + \|v_2\|_2^2);$
- 3) $\widetilde{T}(\psi_a)V(W_2^1(\mathbb{R})) \subset W_2^1(\mathbb{R});$
- 4) $P(\widetilde{T}(\psi_a))V \in \mathfrak{S}_2(\mathcal{H})$ $u \|V(\widetilde{T}(\psi_a))V\|_2^2 \leq 2(\pi+1)^2\pi^{-2}\|v_1\|_2^2\|v_2\|_2^2;$ 5) для всякого $\varepsilon > 0$ cywecmsyem число $\lambda_{\varepsilon} \in \mathbb{C} \setminus \mathbb{R}$ makoe, что $\|P(\lambda_{\varepsilon}I A)^{-1}\| < \varepsilon.$

Доказательство. Утверждения 1) и 2) вытекают из леммы 2 и оценок норм функций ψ_a

Пусть $R = R(z,A) = (zI - A)^{-1}$ для некоторого $z \in \mathbb{C} \setminus \mathbb{R}$. Из [17, формула (4.5)] следует равенство

$$Rx = \int_{\mathbb{R}} f_z(t)T(-t)x \, dt, \quad x \in \mathcal{H}, \tag{5}$$

где $\widehat{f}_z(\lambda) = (\lambda - z)^{-1}$. Используя это равенство и определение (1), для всякой функции $h \in L_1$

$$(\widetilde{T}(h)V)Rx = \int_{\mathbb{R}} \int_{\mathbb{R}} h(t)f_z(s)T(-t)VT(t-s)x \, ds \, dt =$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f_z(s)h(t+s)T(-t-s)VT(t)x \, dt \, ds = R(\widetilde{T}(h_t)V)x,$$

где $h_t(s) = h(t+s)$. Таким образом, утверждение 3) справедливо.

Непосредственным подсчётом нетрудно убедиться, что оператор $V\widetilde{T}(\psi_a)V$ имеет вид

$$((V\widetilde{T}(\psi_a)V)x)(s) = \int\limits_{\mathbb{D}} \begin{pmatrix} v_1(s)\psi_a(\tau)v_2(s-\tau) & 0 \\ 0 & v_2(s)\psi_a(\tau)v_1(s+\tau) \end{pmatrix} x(\tau)\,d\tau.$$

Поэтому $V\widetilde{T}(\psi_a)V \in \mathfrak{S}_2(\mathcal{H})$ и выполняется неравенство

$$||V\widetilde{T}(\psi_a)V||_2^2 = \int_{\mathbb{R}} \int_{\mathbb{R}} |v_1(s)\psi_a(\tau)v_2(s-\tau)|^2 + |v_2(s)\psi_a(\tau)v_1(s-\tau)|^2 d\tau ds \le$$

$$\leq 2\|\psi_a\|_{\infty}^2\|v_1\|_2^2\|v_2\|_2^2 \leq 2\left(\frac{\pi+1}{\pi}\right)^2\|v_1\|_2^2\|v_2\|_2^2$$

Переходим к доказательству утверждения 5). Из равенства (5) (см. также [23, гл. II, формула (1.14)]) следует, что

$$R = R(z, A) = i \int_{0}^{\infty} e^{izt} T(t) x \, dt, \quad x \in \mathcal{H}, \quad z \in \rho(A).$$

Тогда

$$VRx = i \int_{0}^{\infty} e^{izt} \begin{pmatrix} v_1(s)x(s+t) \\ v_2(s)x(s-t) \end{pmatrix} dt.$$

Интегральный оператор VR принадлежит идеалу $\mathfrak{S}_2(\mathcal{H})$, и его ядро K_{VR} допускает оценку

$$||K_{VR}||_2^2 \leqslant \frac{1}{2|z|} (||v_1||_2^2 + ||v_2||_2^2), \quad z \in \mathbb{C} \setminus \mathbb{R}.$$

Таким образом, справедливость утверждения 5) обеспечивается за счёт подходящего выбора числа z. Лемма доказана.

Из леммы 3 немедленно вытекает

Лемма 4. Оператор A-V удовлетворяет всем условиям теоремы 2 для некоторого a>0.

И, наконец, для оператора L = A - V имеет место

Теорема 4. Существует такая непрерывная функция $f: \mathbb{R} \to \mathbb{R}, f \in L_2(\mathbb{R}),$ что для всех $\lambda \in \sigma(L)$ имеет место неравенство $|\operatorname{Im} \lambda| \leq f(\operatorname{Re} \lambda)$.

Замечание 2. Из теоремы 2 следует, что существует такое a>0, что оператор L подобен оператору $A-V_0$, где оператор $V_0\in\mathfrak{S}_2(\mathcal{H})$ определяется формулой, аналогичной (3). К оператору $A-V_0$ можно применить метод подобных операторов и получить подобие операторов $A-V_0$ и $A-\widetilde{T}(\varphi_a)X$, где $\widetilde{T}(\varphi_a)X\in\mathfrak{S}_2(\mathcal{H})$, а X – решение нелинейного операторного уравнения метода подобных операторов. Оператором преобразования оператора $A-V_0$ в оператор $A-\widetilde{T}(\varphi_a)X$ является оператор

$$U = I + \widetilde{T}(\psi_a)X.$$

Преимущество оператора $A - \widetilde{T}(\varphi_a)X$ перед оператором $A - V_0$ заключается в том, что отображение $t \mapsto \widetilde{T}(t)(\widetilde{T}(\varphi_a)X)$ является сужением целой функции экспоненциального типа.

Замечание 3. Аналогичный результат имеет место [17] и для оператора с инволюцией -id/dt - V, где $(Vx)(t) = v(t)x(-t), \ t \in \mathbb{R}, \ v \in L_2(\mathbb{R}).$

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 19-01-00732).

СПИСОК ЛИТЕРАТУРЫ

- 1. Birkhoff G.D. Boundary value and expansion problems of ordinary linear differential equations // Trans. Amer. Math. Soc. 1908. V. 9. No. 4. P. 373–395.
- 2. Birkhoff G.D. On the asymptotic character of the solutions of certain linear differential equations containing a parameter // Trans. Amer. Math. Soc. 1908. V. 9. № 2. P. 219–231.
- 3. Tamarkin J. Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions // Math. Zeitschr. 1928. Bd 27. H. 1. S. 1–54.
- 4. Dirac P.A.M. The quantum theory of the electron. I // Proc. R. Soc. Lond. Ser. A. 1928. V. 117. P. 610–624.
- 5. Dirac P.A.M. The quantum theory of the electron. II // Proc. R. Soc. Lond. Ser. A. 1928. V. 118. P. 351–361.
- 6. Djakov P., Mityagin B.S. Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions // Indiana Univ. Math. J. 2012. V. 61. N 1. P. 359–398.
- 7. *Баскаков А.Г.*, Дербушев А.В., Щербаков А.О. Метод подобных операторов в спектральном анализе несамосопряжённого оператора Дирака с негладким потенциалом // Изв. РАН. Сер. мат. 2011. Т. 75. № 3. С. 3–28.
- 8. Джаков П., Митягин Б.С. Зоны неустойчивости одномерных периодических операторов Шрёдингера и Дирака // Успехи мат. наук. 2006. Т. 61. № 4 (370). С. 77–182.
- 9. Savchuk A.M., Shkalikov A.A. The Dirac operator with complex-valued summable potential // Math. Notes. 2014. V. 96. \mathbb{N}_2 5. P. 777–810.
- 10. *Савчук А.М.* О базисности системы собственных и присоединённых функций одномерного оператора Дирака // Изв. РАН. Сер. мат. 2018. Т. 82. № 2. С. 113–139.
- 11. *Бурлуцкая М.Ш.* Классическое и обобщённое решения смешанной задачи для системы уравнений первого порядка с непрерывным потенциалом // Журн. вычислит. математики и мат. физ. 2019. Т. 59. № 3. С. 380–390.
- 12. Baskakov A.G., Krishtal I.A., Uskova N.B. General Dirac operators as generators of operator groups // arXiv: 1806.10831.

- 13. Loomis L.H. An Introduction of Abstract Harmonic Analysis. Toronto; New York; London, 1963.
- 14. Reiter H., Stegeman J.D. Classical harmonic analysis and locally compact groups // London Math. Soc. Monographs. V. 22. Oxford, 2000.
- 15. Баскаков А.Г., Криштал И.А. Гармонический анализ каузальных операторов и их спектральные свойства // Изв. РАН. Сер. мат. 2005. Т. 69. № 3. С. 3–54.
- 16. Baskakov A.G., Krishtal I.A. Memory estimation of inverse operators // J. Funct. Anal. 2014. V. 267. P. 2551–2605.
- 17. Baskakov A.G., Krishtal I.A., Uskova N.B. Closed operator functional calculus in Banach modules and applications // J. Math. Anal. Appl. 2020. V. 492. № 2. P. 124473.
- 18. Baskakov A.G., Krishtal I.A., Uskova N.B. Similarity techniques in the spectral analysis of perturbed operator matrices // J. Math. Anal. Appl. 2019. V. 477. P. 930–960.
- 19. Baskakov A.G., Krishtal I.A., Uskova N.B. Linear differential operator with an involution as a generator of an operator group // Oper. Matr. 2018. V. 12. № 3. P. 723–756.
- 20. $Баскаков A.\Gamma.$, Поляков Д.М. Метод подобных операторов в спектральном анализе оператора Хилла с негладким потенциалом // Mat. cб. 2017. T. 208. № 1. C. 3–47.
- 21. Гохберг И.Ц., Крейн М.Г. Введение в теорию линейных несамосопряжённых операторов в гильбертовом пространстве. М., 1965.
- 22. Левитан Б.М. Почти-периодические функции. М., 1953.
- 23. Engel K.-J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. New York, 2000.
- 24. Баскаков А.Г., Криштал И.А., Ускова Н.Б. Метод подобных операторов в спектральном анализе операторных бесконечных матриц // Прикл. математика и физика. 2020. Т. 52. № 2. С. 71–85.

Воронежский государственный университет, Северо-Осетинский государственный университет им. К.Л. Хетагурова, г. Владикавказ, Университет Северного Иллинойса, г. Де-Калб, Иллинойс, США, Воронежский государственный технический университет Поступила в редакцию 18.08.2020 г. После доработки 18.08.2020 г. Принята к публикации 11.12.2020 г.