- ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ :

УДК 517.96

МОДИФИКАЦИЯ МЕТОДА ДИСКРЕТНЫХ ОСОБЕННОСТЕЙ ДЛЯ НЕРАВНОМЕРНЫХ СЕТОК В ПРИЛОЖЕНИИ К ОДНОМЕРНЫМ ИНТЕГРАЛЬНЫМ УРАВНЕНИЯМ С СИЛЬНОЙ ОСОБЕННОСТЬЮ В ЯДРЕ

© 2022 г. А. С. Ненашев

Построены формулы приближённого вычисления одномерных сингулярных и гиперсингулярных интегралов на отрезке при произвольном разбиении. На основе построенных квадратурных формул разработана численная схема решения характеристического гиперсингулярного уравнения на отрезке, доказана оценка скорости сходимости приближённого решения к точному.

DOI: 10.31857/S0374064122080088, EDN: CGDVCE

Введение. Одномерные интегральные уравнения с сильной особенностью в ядре возникают в ряде прикладных задач математической физики, например, при моделировании излучения проволочных антенн [1], в двумерной задаче бесциркуляционного обтекания [2, с. 153–154] и др. Характеристическим уравнением, описывающим основные особенности решения таких задач, является гиперсингулярное интегральное уравнение на интервале (a,b):

$$\int_{a}^{b} \frac{g(x)}{(x-x_0)^2} dx = f(x_0), \quad x_0 \in (a,b),$$
(1)

где интеграл в левой части уравнения (1) понимается в смысле конечного значения по Адамару (см. [3]):

$$\int_{a}^{b} \frac{g(x)}{(x-x_0)^2} dx \equiv \lim_{\varepsilon \to 0} \left\{ \int_{a}^{x_0-\varepsilon} \frac{g(x)}{(x-x_0)^2} dx + \int_{x_0+\varepsilon}^{b} \frac{g(x)}{(x-x_0)^2} dx - \frac{g(x_0+\varepsilon) + g(x_0-\varepsilon)}{\varepsilon} \right\}.$$

Рассмотрению метода дискретных особенностей как метода решения уравнения (1) посвящён ряд работ [2, с. 353–355; 4, с. 84–86; 5]. В частности, И.К. Лифановым [2, с. 282–284] доказана сходимость квадратурных формул типа прямоугольников к интегралу (1), при этом принципиальное значение имеет характер разбиения отрезка [a,b] на равные части $a=x_1 < x_2 < \ldots < x_N < x_{N+1} = b$ и выбор точек коллокации, являющихся серединами частичных отрезков $x_{0i} = (x_i + x_{i+1})/2$. В статье [5] представлены квадратурные формулы, позволяющие отказаться от жёстких ограничений на характер разбиения отрезка:

$$\int_{a}^{b} \frac{g(x)}{(x - x_{0j})^2} dx \approx \sum_{i=1}^{N} \left(a_{ij} g(x_{0i}) + b_{ij} g'(x_{0i}) \right), \tag{2}$$

где

$$a_{ji} = \int_{x_i}^{x_{i+1}} \frac{dx}{(x - x_{0j})^2}, \quad b_{ji} = \int_{x_i}^{x_{i+1}} \frac{x - x_{0i}}{(x - x_{0j})^2} dx.$$

Для применения квадратурной формулы (2) к решению интегрального уравнения (1) необходимо задать способ аппроксимации значения производной $g'(x_0)$ в точках коллокации. В работе [5] используется следующая аппроксимация:

$$g'(x_{0i}) \approx \frac{g(x_{0i+1}) - g(x_{0i-1})}{x_{0i+1} - x_{0i-1}}, \quad i = \overline{2, N-1}.$$
 (3)

Там же приведена оценка скорости сходимости квадратурной формулы (3), однако отсутствует оценка сходимости приближённого решения уравнения (1), полученного на основе соответствующей численной схемы.

Метод коллокации, основанный на кусочно-линейной аппроксимации решения, предложен в статье [6]. Отличительной особенностью предложенного подхода является выбор точек коллокации не внутри участков разбиения, а на их границе.

В настоящей работе предлагается альтернативный подход к построению квадратурных формул для приближённого вычисления гиперсингулярного интеграла, использующий расположение точек коллокации в центрах отрезков разбиения. На основе квадратурных формул построена численная схема решения характеристического уравнения (3), дана оценка скорости сходимости его приближённого решения к точному.

1. Вычисление сингулярного интеграла на отрезке. Рассмотрим сначала формулы приближённого вычисления сингулярного интеграла по интервалу (a,b), понимаемого в смысле главного значения по Коши:

$$\int_{a}^{b} \frac{g(x)}{x - x_0} dx \equiv \lim_{\varepsilon \to 0} \left\{ \int_{a}^{x_0 - \varepsilon} \frac{g(x)}{x - x_0} dx + \int_{x_0 + \varepsilon}^{b} \frac{g(x)}{x - x_0} dx \right\}.$$

Предположим, что функция g(x) удовлетворяет условию Гёльдера.

Определение 1. Будем обозначать, что $g(x) \in H(\alpha)$, если существуют константы A > 0 и $\alpha \in (0,1]$ такие, что для любых $x,x_0 \in [a,b]$ выполняется неравенство

$$|g(x) - g(x_0)| \leqslant A|x - x_0|^{\alpha}.$$

В дальнейших рассуждениях будем использовать следующее неравенство из монографии [7, с. 21], справедливое для любых $\sigma_1>0,~\sigma_2>0$ и $\theta\in(0,1]$:

$$|\sigma_1^{\theta} - \sigma_2^{\theta}| \leqslant |\sigma_1 - \sigma_2|^{\theta}.$$

Справедлива следующая

Теорема 1. Для любого разбиения отрезка [a,b] на N произвольных частей последовательностью точек $a=x_1 < x_2 < \ldots < x_N < x_{N+1} = b$, удовлетворяющего условию

$$h_{\text{max}} \leqslant \gamma h_{\text{min}},$$
 (4)

где $\gamma\geqslant 1$ не зависит от N, $h_{\max}=\max_{1\leqslant i\leqslant N}\{h_i\}$, $h_{\min}=\min_{1\leqslant i\leqslant N}\{h_i\}$, $h_i=x_{i+1}-x_i$, $u\ g(x)\in H(\alpha)$, справедлива следующая оценка:

$$\left| \int_{a}^{b} \frac{g(x) dx}{x - x_{0j}} - \sum_{\substack{i=1\\i \neq j}}^{N} \int_{x_{i}}^{x_{i+1}} \frac{g(x_{0i}) dx}{x - x_{0j}} \right| \leqslant O\left(\frac{\ln N}{N^{\alpha}}\right), \quad j = \overline{1, N}, \tag{5}$$

где точки коллокации x_{0j} являются серединами отрезков $[x_j, x_{j+1}]$:

$$x_{0j} = \frac{x_j + x_{j+1}}{2}. (6)$$

Доказательство. В первую очередь заметим, что с учётом условия (4) справедливы неравенства

$$h_j \leqslant h_{\text{max}} \leqslant \gamma h_{\text{min}} \leqslant \frac{\gamma(b-a)}{N} = O(1/N), \quad 1 \leqslant j \leqslant N.$$

Далее, представим левую часть соотношения (5) в следующем виде:

$$\left| \int_{a}^{b} \frac{g(x) dx}{x - x_{0j}} - \sum_{\substack{i=1\\i \neq j}}^{N} \int_{x_{i}}^{x_{i+1}} \frac{g(x_{0i}) dx}{x - x_{0j}} \right| \leq \left| \int_{x_{j}}^{x_{j+1}} \frac{(g(x) - g(x_{0j})) dx}{x - x_{0j}} \right| +$$

$$+ \left| \int_{x_j}^{x_{j+1}} \frac{g(x_{0j}) dx}{x - x_{0j}} \right| + \left| \sum_{\substack{i=1\\i \neq j}}^{N} \int_{x_i}^{x_{i+1}} \frac{(g(x) - g(x_{0i})) dx}{x - x_{0j}} \right| = I_1 + I_2 + I_3.$$

Рассмотрим интегралы I_1 , I_2 и I_3 :

$$I_{1} \leqslant A \int_{x_{j}}^{x_{j+1}} \frac{dx}{|x - x_{0j}|^{1-\alpha}} = \frac{2A}{\alpha} \left(\frac{h_{j}}{2}\right)^{\alpha} \leqslant O(1/N^{\alpha}),$$

$$I_{2} = \left| \int_{x_{j}}^{x_{j+1}} \frac{g(x_{0j}) dx}{x - x_{0j}} \right| = \left| g(x_{0j}) \ln \left| \frac{x_{j+1} - x_{0j}}{x_{j} - x_{0j}} \right| \right| = 0,$$

$$I_3 \leqslant A \left(\frac{h_{\max}}{2}\right)^{\alpha} \left(\int\limits_a^{x_j} \frac{dx}{x_{0j} - x} + \int\limits_{x_{j+1}}^b \frac{dx}{x - x_{0j}}\right) =$$

$$= A \left(\frac{h_{\max}}{2}\right)^{\alpha} \left(\ln(b - x_{0j}) + \ln(x_{0j} - a) - 2\ln(h_j/2)\right) \leqslant O\left(\frac{\ln N}{N^{\alpha}}\right).$$

Объединяя результаты для I_1 , I_2 и I_3 , получаем утверждение теоремы.

Следствие (обобщение теоремы 1). Будем обозначать, что $G(x,x_0) \in H(\alpha,\rho(x_0))$, если существует функция $\rho(x_0) > 0$, заданная на интервале (a,b), и константы A > 0 и $\alpha \in (0,1]$, не зависящие от x_0 , такие, что для функции $G(\cdot,\cdot)$ выполняется неравенство

$$|G(x, x_0) - G(y, x_0)| \le A\rho(x_0)|x - y|^{\alpha}.$$

Тогда справедлива следующая оценка:

$$\left| \int_{a}^{b} \frac{G(x, x_{0j})}{x - x_{0j}} dx - \sum_{\substack{i=1 \ i \neq j}}^{N} \int_{x_{i}}^{x_{i+1}} \frac{G(x_{0i}, x_{0j})}{x - x_{0j}} dx \right| \leqslant \rho(x_{0j}) O\left(\frac{\ln N}{N^{\alpha}}\right), \quad j = \overline{1, N}.$$

Рассмотрим теперь применимость предложенного подхода приближённого вычисления сингулярного интеграла для более широкого класса функций, имеющих интегрируемую особенность на концах интервала (a,b).

Определение 2. Будем обозначать, что $g(x) \in H^*_{\lambda,\mu}(\alpha)$, если существуют константы $\lambda, \mu \in (0,1)$ такие, что имеет место представление

$$g(x) = \frac{\psi(x)}{(x-a)^{\lambda}(b-x)^{\mu}},$$

где $\psi(x) \in H(\alpha)$ на отрезке [a,b].

Справедливо следующее утверждение.

Теорема 2. Для любого разбиения отрезка [a,b] на N произвольных частей последовательностью точек $a = x_1 < x_2 < \ldots < x_N < x_{N+1} = b$, удовлетворяющего условию (4), и для функции $g(x) \in H^*_{\lambda,\mu}(\alpha)$, справедлива следующая оценка:

$$\left| \int_{a}^{b} \frac{g(x) dx}{x - x_{0j}} - \sum_{\substack{i=1\\i \neq j}}^{N} \int_{x_{i}}^{x_{i+1}} \frac{g(x_{0i}) dx}{x - x_{0j}} \right| \leqslant \frac{1}{(x_{0j} - a)(b - x_{0j})} O\left(\frac{\ln N}{N^{\beta}}\right), \quad j = \overline{1, N}, \tag{7}$$

где $\beta = \min\{\alpha, 1 - \mu, 1 - \lambda\}$, а точки коллокации x_{0j} выбираются в соответствии с условием (6).

Доказательство. Представим функцию g(x) следующим образом:

$$g(x) = \frac{\psi(x)}{b-a} \left(\frac{(b-x)^{1-\mu}}{(x-a)^{\lambda}} + \frac{(x-a)^{1-\lambda}}{(b-x)^{\mu}} \right) = \frac{\psi_1(x)}{(x-a)^{\lambda}} + \frac{\psi_2(x)}{(b-x)^{\mu}} = g_1(x) + g_2(x),$$

где $\psi_1(x) \in H(\beta_1), \ \psi_2(x) \in H(\beta_2), \ \beta_1 = \min\{\alpha, 1 - \mu\}, \ \beta_2 = \min\{\alpha, 1 - \lambda\}.$ Левая часть неравенства (7) представима в виде

$$\left| \int_{a}^{b} \frac{g(x) dx}{x - x_{0j}} - \sum_{\substack{i=1\\i \neq j}}^{N} \int_{x_{i}}^{x_{i+1}} \frac{g(x_{0i}) dx}{x - x_{0j}} \right| \leq \left| \int_{a}^{b} \frac{g_{1}(x) dx}{x - x_{0j}} - \sum_{\substack{i=1\\i \neq j}}^{N} \int_{x_{i}}^{x_{i+1}} \frac{g_{1}(x_{0i}) dx}{x - x_{0j}} \right| + \left| \int_{a}^{b} \frac{g_{2}(x) dx}{x - x_{0j}} - \sum_{\substack{i=1\\i \neq j}}^{N} \int_{x_{i}}^{x_{i+1}} \frac{g_{2}(x_{0i}) dx}{x - x_{0j}} \right| = I_{1} + I_{2}.$$

Оценим интеграл

$$I_{1} \leqslant \left| \int_{x_{j}}^{x_{j+1}} \frac{g_{1}(x) dx}{x - x_{0j}} \right| + \left| \sum_{\substack{i=1\\i \neq j}}^{N} \int_{x_{i}}^{x_{i+1}} \frac{g_{1}(x) - g_{1}(x_{0i})}{x - x_{0j}} dx \right| = I_{1,1} + I_{1,2}$$
 (8)

и слагаемое

$$I_{1,1} = \left| \int_{x_{j}}^{x_{j+1}} \frac{\psi_{1}(x) dx}{(x-a)^{\lambda}(x-x_{0j})} \right| = \left| \int_{x_{j}}^{x_{j+1}} \frac{\psi_{1}(x)(x-a)^{1-\lambda} dx}{(x-a)(x-x_{0j})} \right| \le$$

$$\le \frac{1}{x_{0j}-a} \left(\left| \int_{x_{j}}^{x_{j+1}} \frac{\psi_{1}(x)(x-a)^{1-\lambda} - \psi_{1}(x_{0j})(x_{0j}-a)^{1-\lambda}}{x-x_{0j}} dx \right| +$$

$$+ \left| \int_{x_{j}}^{x_{j+1}} \frac{\psi_{1}(x_{0j})(x_{0j}-a)^{1-\lambda} dx}{x-x_{0j}} \right| + \left| \int_{x_{j}}^{x_{j+1}} \frac{\psi_{1}(x)(x-a)^{1-\lambda} dx}{x-a} \right| \right) =$$

$$= \frac{1}{x_{0j}-a} (I_{1,1,1} + I_{1,1,2} + I_{1,1,3}).$$

С учётом выбора точек x_{0j} справедливо, что $I_{1,1,2}=0$. Далее, так как $\psi_1(x)\in H(\beta_1)$ и $(x-a)^{1-\lambda}\in H(1-\lambda)$, то $\psi_1(x)(x-a)^{1-\lambda}\in H(\beta)$, где $\beta=\min\{\alpha,1-\lambda,1-\mu\}$. Поэтому существует константа $B_1>0$ такая, что выполняется условие

$$|\psi_1(x)(x-a)^{1-\lambda} - \psi_1(x_{0j})(x_{0j}-a)^{1-\lambda}| \leq B_1|x-x_{0j}|^{\beta}.$$

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 58 № 8 2022

Тогда

$$I_{1,1,1} \leqslant B_1 \int_{x_j}^{x_{j+1}} |x - x_{0j}|^{\beta - 1} dx = \frac{2B_1}{\beta} \left(\frac{h_j}{2}\right)^{\beta} = O(1/N^{\beta}).$$

Так как функция $\psi_1(x) \in H(\beta_1)$, то она ограничена на отрезке [a,b], поэтому существует константа $B_2 > 0$ такая, что $|\psi_1(x)| \leq B_2$. Отсюда следует, что

$$I_{1,1,3} \leqslant B_2 \int_{x_j}^{x_{j+1}} \frac{dx}{|x-a|^{\lambda}} = \frac{B_2}{1-\lambda} ((x_{j+1}-a)^{1-\lambda} - (x_j-a)^{1-\lambda}) \leqslant \frac{B_2}{1-\lambda} h_j^{1-\lambda} = O(1/N^{1-\lambda}).$$

Объединив результаты для интегралов $I_{1,1,1}$, $I_{1,1,2}$ и $I_{1,1,3}$, получим оценку

$$I_{1,1} \leqslant \frac{1}{x_{0i} - a} O(1/N^{\beta}).$$
 (9)

Далее,

$$I_{1,2} = \left| \sum_{\substack{i=1\\i\neq j}}^{N} \int_{x_{i}}^{x_{i+1}} \left(\frac{\psi(x)}{(x-a)^{\lambda}} - \frac{\psi(x_{0i})}{(x_{0i}-a)^{\lambda}} \right) \frac{dx}{x-x_{0j}} \right| \leqslant$$

$$\leqslant \left| \sum_{\substack{i=1\\i\neq j}}^{N} \psi(x_{0i}) \int_{x_{i}}^{x_{i+1}} \left(\frac{1}{(x-a)^{\lambda}} - \frac{1}{(x_{0i}-a)^{\lambda}} \right) \frac{dx}{x-x_{0j}} \right| +$$

$$+ \left| \sum_{\substack{i=1\\i\neq j}}^{N} \int_{x_{i}}^{x_{i+1}} \frac{\psi(x) - \psi(x_{0i})}{(x-a)^{\lambda}} \frac{dx}{x-x_{0j}} \right| = I_{1,2,1} + I_{1,2,2},$$

$$I_{1,2,1} \leqslant B_{2} \sum_{\substack{i=1\\i\neq j}}^{N} \left| \int_{x_{i}}^{x_{i+1}} \left((x-a)^{1-\lambda} - \frac{x-a}{(x_{0i}-a)^{\lambda}} \right) \frac{dx}{(x-a)(x-x_{0j})} \right| \leqslant$$

$$\leqslant \frac{B_{2}}{x_{0j}-a} \sum_{\substack{i=1\\i\neq j}}^{N} \int_{x_{i}}^{x_{i+1}} \left| (x-a)^{1-\lambda} - \frac{x-a}{(x_{0i}-a)^{\lambda}} \right| \frac{dx}{|x-x_{0j}|} +$$

$$+ \frac{B_{2}}{x_{0j}-a} \sum_{\substack{i=2\\i\neq j}}^{N} \int_{x_{i}}^{x_{i+1}} \left| (x-a)^{1-\lambda} - \frac{x-a}{(x_{0i}-a)^{\lambda}} \right| \frac{dx}{x-a} +$$

$$+ \frac{B_{2}}{x_{0j}-a} \int_{a}^{x_{2}} \left| \frac{1}{(x-a)^{\lambda}} - \frac{1}{(x_{01}-a)^{\lambda}} \right| dx = I_{1,2,1,1} + I_{1,2,1,2} + I_{1,2,1,3}.$$

Заметим, что

$$\left| (x-a)^{1-\lambda} - \frac{x-a}{(x_{0i}-a)^{\lambda}} \right| = \left| (x-a)^{1-\lambda} - \frac{x_{0i}-a}{(x_{0i}-a)^{\lambda}} + \frac{x-x_{0i}}{(x_{0i}-a)^{\lambda}} \right| \le$$

$$\le \left| (x-a)^{1-\lambda} - (x_{0i}-a)^{1-\lambda} \right| + \left| \frac{x-x_{0i}}{(x_{0i}-a)^{\lambda}} \right| \le 2(h_i/2)^{1-\lambda},$$

поэтому

$$I_{1,2,1,1} \leqslant \frac{2B_2(h_{\max}/2)^{1-\lambda}}{x_{0j} - a} \sum_{i=1}^{N} \int_{x_i}^{x_{i+1}} \frac{dx}{|x - x_{0j}|} =$$

$$= \frac{2B_2(h_{\max}/2)^{1-\lambda}}{x_{0j} - a} \left(\int_a^{x_j} \frac{dx}{x_{0j} - x} + \int_{x_{j+1}}^b \frac{dx}{x - x_{0j}} \right) =$$

$$= \frac{2B_2(h_{\max}/2)^{1-\lambda}}{x_{0j} - a} (\ln((b - x_{0j})(x_{0j} - a)) - 2\ln(h_j/2)) = \frac{1}{x_{0j} - a} O\left(\frac{\ln N}{N^{1-\lambda}}\right),$$

$$I_{1,2,1,2} \leqslant \frac{2B_2(h_{\max}/2)^{1-\lambda}}{x_{0j} - a} \sum_{i=2}^{N} \int_{x_i}^{x_{i+1}} \frac{dx}{x - a} \leqslant$$

$$\leqslant \frac{2B_2(h_{\max}/2)^{1-\lambda}}{x_{0j} - a} \sum_{i=2}^{N} \int_{x_i}^{x_{i+1}} \frac{dx}{x - a} = \frac{2B_2(h_{\max}/2)^{1-\lambda}}{x_{0j} - a} \int_{x_2}^b \frac{dx}{x - a} =$$

$$= \frac{2B_2(h_{\max}/2)^{1-\lambda}}{x_{0j} - a} (\ln(b - a) - \ln h_1) = \frac{1}{x_{0j} - a} O\left(\frac{\ln N}{N^{1-\lambda}}\right),$$

$$I_{1,2,1,3} \leqslant \frac{B_2}{x_{0j} - a} \left(\int_a^{x_2} \frac{dx}{(x - a)^{\lambda}} + \int_a^x \frac{dx}{(x_{01} - a)^{\lambda}} \right) =$$

$$= \frac{B_2}{x_{0j} - a} \left(\frac{h_1^{1-\lambda}}{1 - \lambda} + \frac{h_1}{(h_1/2)^{\lambda}} \right) = \frac{1}{x_{0j} - a} O\left(\frac{1}{N^{1-\lambda}}\right).$$

Объединив оценки для интегралов $I_{1,2,1,1}$, $I_{1,2,1,2}$ и $I_{1,2,1,3}$, имеем

$$I_{1,2,1} \leqslant \frac{1}{x_{0j} - a} O\left(\frac{\ln N}{N^{1-\lambda}}\right).$$

Далее, так как $\psi_1(x) \in H(\beta_1)$, то существует константа $B_3 > 0$ такая, что

$$|\psi_1(x) - \psi_1(y)| \le B_3 |x - y|^{\beta_1},$$

поэтому

$$I_{1,2,2} = \left| \sum_{\substack{i=1\\i\neq j}}^{N} \int_{x_i}^{x_{i+1}} \frac{(\psi(x) - \psi(x_{0i}))(x-a)^{1-\lambda}}{(x-a)(x-x_{0j})} dx \right| \leq \frac{1}{x_{0j}-a} \left(\left| \sum_{\substack{i=1\\i\neq j}}^{N} \int_{x_i}^{x_{i+1}} \frac{(\psi(x) - \psi(x_{0i}))(x-a)^{1-\lambda}}{x-x_{0j}} dx \right| + \left| \sum_{\substack{i=1\\i\neq j}}^{N} \int_{x_i}^{x_{i+1}} \frac{(\psi(x) - \psi(x_{0i}))(x-a)^{1-\lambda}}{x-a} dx \right| \right) \leq \frac{1}{x_{0j}-a} \left(B_3(h_i/2)^{\alpha} (b-a)^{1-\lambda} \left(\int_a^{x_j} \frac{dx}{x_{0j}-x} + \int_{x_{j+1}}^b \frac{dx}{x-x_{0j}} \right) + B_3(h_i/2)^{\beta_1} \int_a^b \frac{dx}{(x-a)^{\lambda}} \right) = \frac{1}{x_{0j}-a} \left((b-a)^{1-\lambda} (\ln((x_{0j}-a)(b-x_{0j})) - 2\ln(h_j/2)) + \frac{(b-a)^{1-\lambda}}{1-\lambda} \right) = \frac{1}{x_{0j}-a} O\left(\frac{\ln N}{N^{\beta_1}}\right).$$

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 58 № 8 2022

Объединив результаты для интегралов $I_{1,2,1}$ и $I_{1,2,2}$, запишем

$$I_{1,2} \leqslant \frac{1}{x_{0j} - a} \left(O\left(\frac{\ln N}{N^{1-\lambda}}\right) + O\left(\frac{\ln N}{N^{\beta_1}}\right) \right) \leqslant \frac{1}{x_{0j} - a} O\left(\frac{\ln N}{N^{\beta}}\right).$$

Отсюда и из оценок (8), (9) следует, что

$$I_1 \leqslant \frac{1}{x_{0j} - a} O\left(\frac{\ln N}{N^{\beta}}\right).$$

 ${\bf C}$ помощью аналогичных выкладок для оценки интеграла I_2 получим

$$I_2 \leqslant \frac{1}{b - x_{0j}} O\left(\frac{\ln N}{N^{\beta}}\right),$$

поэтому

$$I_1 + I_2 \leqslant \frac{1}{x_{0j} - a} O\left(\frac{\ln N}{N^{\beta}}\right) + \frac{1}{b - x_{0j}} O\left(\frac{\ln N}{N^{\beta}}\right) \leqslant \frac{1}{(x_{0j} - a)(b - x_{0j})} O\left(\frac{\ln N}{N^{\beta}}\right),$$

что завершает доказательство теоремы.

2. Вычисление гиперсингулярного интеграла на отрезке. Рассмотрим теперь задачу приближённого вычисления гиперсингулярного интеграла (1). Будем исследовать квадратурную формулу

$$\int_{a}^{b} \frac{g(x) dx}{(x - x_{0j})^{2}} \approx g(x_{0j}) \int_{a}^{b} \frac{dx}{(x - x_{0j})^{2}} + \sum_{\substack{i=1\\i \neq j}}^{N} \frac{g(x_{0i}) - g(x_{0j})}{x_{0i} - x_{0j}} \int_{x_{i}}^{x_{i+1}} \frac{dx}{x - x_{0j}}.$$

Нам потребуется следующий вспомогательный результат.

Лемма 1. Пусть функция g(x) имеет производную $g'(x) \in H(\alpha)$ на интервале (a,b), т.е.

$$|g'(x) - g'(y)| \leqslant A|x - y|^{\alpha}$$
 direct $x, y \in (a, b)$.

Тогда для любых $x, y \in (a, b)$ справедлива оценка

$$|G(x,x_0) - G(y,x_0)| \le \frac{A}{1+\alpha} |x-y|^{\alpha},$$
 (10)

m.e. $G(x,x_0) \in H(\alpha,1)$, где

$$G(x,x_0) = \frac{g(x) - g(x_0)}{x - x_0}. (11)$$

Доказательство. Воспользуемся соотношением, основанным на формуле производной сложной функции

$$\frac{g(x) - g(x_0)}{x - x_0} = \int_0^1 g'(x_0 + (x - x_0)\theta) d\theta,$$

тогда

$$|G(x,x_0) - G(y,x_0)| \le \int_0^1 |g'(x_0 + (x - x_0)\theta) - g'(x_0 + (y - x_0)\theta)| d\theta \le$$

$$\le A \int_0^1 |((x - y)\theta)|^{\alpha} d\theta = \frac{A}{1 + \alpha} |x - y|^{\alpha},$$

что доказывает утверждение леммы.

Справедлива следующая

Теорема 3. Для любого разбиения отрезка [a,b] на N произвольных частей последовательностью точек $a=x_1 < x_2 < \ldots < x_N < x_{N+1} = b$, удовлетворяющего условию (4), и для функции $g'(x) \in H(\alpha)$ справедлива следующая оценка:

$$\left| \int_{a}^{b} \frac{g(x) dx}{(x - x_{0j})^{2}} - \sum_{\substack{i=1\\i \neq j}}^{N} \frac{g(x_{0i}) - g(x_{0j})}{x_{0i} - x_{0j}} \int_{x_{i}}^{x_{i+1}} \frac{dx}{x - x_{0j}} - g(x_{0j}) \int_{x_{i}}^{b} \frac{dx}{(x - x_{0j})^{2}} \right| \leq O\left(\frac{\ln N}{N^{\alpha}}\right), \quad j = \overline{1, N},$$

$$(12)$$

где точки коллокации x_{0j} выбираются в соответствии с условием (6).

Доказательство. Представим левую часть соотношения (12) следующим образом:

$$\left| \int_{a}^{b} \frac{g(x) dx}{(x - x_{0j})^{2}} - \sum_{\substack{i=1\\i \neq j}}^{N} \frac{g(x_{0i}) - g(x_{0j})}{x_{0i} - x_{0j}} \int_{x_{i}}^{x_{i+1}} \frac{dx}{x - x_{0j}} - g(x_{0j}) \int_{a}^{b} \frac{dx}{(x - x_{0j})^{2}} \right| =$$

$$= \left| \int_{a}^{b} \frac{g(x) - g(x_{0j})}{(x - x_{0j})^{2}} dx - \sum_{\substack{i=1\\i \neq j}}^{N} \frac{g(x_{0i}) - g(x_{0j})}{x_{0i} - x_{0j}} \int_{x_{i}}^{x_{i+1}} \frac{dx}{x - x_{0j}} \right| =$$

$$= \left| \int_{a}^{b} \frac{G(x, x_{0j}) dx}{x - x_{0j}} - \sum_{\substack{i=1\\i \neq j}}^{N} G(x_{0i}, x_{0j}) \int_{x_{i}}^{x_{i+1}} \frac{dx}{x - x_{0j}} \right|, \tag{13}$$

где функция $G(x,x_0)$ определяется по формуле (11).

Согласно лемме 1 функция $G(x,x_0)$ удовлетворяет условию Гёльдера по первому аргументу (10), откуда с учётом сформулированного выше следствия получаем утверждение теоремы.

Рассмотрим теперь применимость предложенного подхода приближённого вычисления гиперсингулярного интеграла для более широкого класса функций, имеющих интегрируемую особенность производных на концах интервала (a, b).

Теорема 4. Для любого разбиения отрезка [a,b] на N произвольных частей последовательностью точек $a=x_1 < x_2 < \ldots < x_N < x_{N+1} = b$, удовлетворяющего условию (4), и функции g(x) такой, что её производная представима в виде

$$g'(x) = \frac{\psi(x)}{(x-a)^{1-\lambda}(b-x)^{1-\mu}}, \quad \psi(x) \in H(\alpha), \quad 0 < \lambda, \quad \mu \leqslant 1,$$

справедлива следующая оценка:

$$\left| \int_{a}^{b} \frac{g(x) dx}{(x - x_{0j})^{2}} - \sum_{\substack{i=1\\i \neq j}}^{N} \frac{g(x_{0i}) - g(x_{0j})}{x_{0i} - x_{0j}} \int_{x_{i}}^{x_{i+1}} \frac{dx}{x - x_{0j}} - \right|$$

$$- g(x_{0j}) \int_{a}^{b} \frac{dx}{(x - x_{0j})^{2}} \left| \leqslant \frac{1}{(x_{0j} - a)(b - x_{0j})} O\left(\frac{\ln N}{N^{\beta}}\right), \quad j = \overline{1, N},$$

rde $\beta = \min\{\alpha, \mu, \lambda\}$, а точки коллокации x_{0j} выбираются в соответствии с условием (6).

1086 НЕНАШЕВ

Доказательство. Для доказательства исследуем свойства функции $G(x,x_0)$, определяемой формулой (11). Представим производную функции q(x) следующим образом:

$$g'(x) = \frac{1}{b-a} \left(\frac{\psi(x)(b-x)^{\mu}}{(x-a)^{1-\lambda}} + \frac{\psi(x)(x-a)^{\lambda}}{(b-x)^{1-\mu}} \right) = \frac{\psi_1(x)}{(x-a)^{1-\lambda}} + \frac{\psi_2(x)}{(b-x)^{1-\mu}} = g'_1(x) + g'_2(x),$$

где $\psi_1(x) \in H(\beta_1), \;\; \beta_1 = \min\{\alpha,\mu\}, \;\; \text{и} \;\; \psi_2(x) \in H(\beta_2), \;\; \beta_2 = \min\{\alpha,\lambda\}.$ Исследуем отдельно свойства функций $g_1(x)$ и $g_2(x)$. Для функции $g_1(x)$ справедлива оценка

$$|g_1(x) - g_1(y)| = \left| \int_{u}^{x} \frac{\psi_1(t)dt}{(t-a)^{1-\lambda}} \right| \leqslant \frac{B_1}{\lambda} |(x-a)^{\lambda} - (y-a)^{\lambda}| \leqslant \frac{B_1}{\lambda} |x-y|^{\lambda},$$

где $B_1 = \max_{x \in [a,b]} \{ |\psi_1(x)| \}$, поэтому $g_1(x) \in H(\lambda)$.

Далее рассмотрим функцию

$$G_{1}(x,x_{0}) = \frac{g_{1}(x) - g_{1}(x_{0})}{x - x_{0}} = \int_{0}^{1} g'_{1}(x_{0} + (x - x_{0})\theta) d\theta = \int_{0}^{1} \frac{\psi_{1}(x_{0} + (x - x_{0})\theta)}{(x_{0} + (x - x_{0})\theta - a)^{1 - \lambda}} d\theta =$$

$$= \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta - a)^{\lambda} d\theta - \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta - a)^{\lambda} d\theta - \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta - a)^{\lambda} d\theta - \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta - a)^{\lambda} d\theta - \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta - a)^{\lambda} d\theta - \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta - a)^{\lambda} d\theta - \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta - a)^{\lambda} d\theta - \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta - a)^{\lambda} d\theta - \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta - a)^{\lambda} d\theta - \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta - a)^{\lambda} d\theta - \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta - a)^{\lambda} d\theta - \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x_{0})\theta - a)^{\lambda} d\theta - \frac{1}{x_{0} - a} \left(\int_{0}^{1} \psi_{1}(x_{0} + (x - x_{0})\theta)(x_{0} + (x - x$$

Согласно свойству гёльдеровский функций (см. [7, с. 22]) справедливо, что $\psi_1(x)(x-a)^{\lambda} \in$ $\in H(\beta)$, r.e.

$$|\psi_1(x)(x-a)^{\lambda} - \psi_1(y)(y-a)^{\lambda}| \le C_1|x-y|^{\beta},$$

поэтому

$$|F_{1,1}(x,x_0) - F_{1,1}(y,x_0)| \le C_1 \int_0^1 |(x-y)\theta|^{\beta} d\theta = \frac{C_1}{1+\beta} |x-y|^{\beta}.$$

Далее преобразуем функцию $F_{1,2}$:

$$F_{1,2}(x,x_0) = \int_0^1 g_1'(x_0 + (x - x_0)\theta)(x - x_0)\theta d\theta =$$

$$= \int_0^1 \frac{dg_1(x_0 + (x - x_0)\theta)}{d\theta} d\theta = g_1(x) - \int_0^1 g_1(x_0 + (x - x_0)\theta) d\theta.$$

Используя тот факт, что $g_1(x) \in H(\lambda)$, имеем

$$|F_{1,2}(x,x_0) - F_{1,2}(y,x_0)| \leq |g_1(x) - g_1(y)| + \int_0^1 |g_1(x_0 + (x - x_0)\theta) - g_1(x_0 + (y - x_0)\theta)| d\theta \leq$$

$$\leq \frac{B_1}{\lambda} |x - y|^{\lambda} + \frac{B_1}{\lambda} \int_0^1 |(x - y)\theta|^{\lambda} d\theta = \frac{B_1}{\lambda} |x - y|^{\lambda} \left(1 + \frac{1}{1 + \lambda}\right).$$

Объединяя полученные оценки гёльдеровости функций $F_{1,1}$ и $F_{1,2}$, запишем неравенство

$$|G_1(x,x_0) - G_1(y,x_0)| \le \frac{A_1|x-y|^{\beta}}{x_0 - a}.$$
 (14)

Рассуждая аналогичным образом относительно функции $g_2(x)$, получаем, что для

$$G_2(x,x_0) = \frac{g_2(x) - g_2(x_0)}{x - x_0}$$

справедлива оценка

$$|G_2(x,x_0) - G_2(y,x_0)| \leqslant \frac{A_2|x-y|^{\beta}}{b-x_0}.$$
(15)

Так как

$$G(x, x_0) = G_1(x, x_0) + G_2(x, x_0),$$

то из оценок (14) и (15) следует

$$|G(x,x_0) - G(y,x_0)| \le \frac{A|x-y|^{\beta}}{(x_0-a)(b-x_0)}.$$

Из разложения аналогичного (13) и следствия получим утверждение теоремы.

3. Численное решение гиперсингулярного интегрального уравнения на отрезке. Рассмотрим вопрос численного решения интегрального уравнения (1). Запишем уравнение в операторной форме

$$Ag = f. (16)$$

Пусть задано разбиение отрезка [a,b] на N произвольных частей последовательностью точек

$$a = x_1 < x_2 < \ldots < x_N < x_{N+1} = b$$

которое будем обозначать как E^N . С ним связана последовательность точек коллокации $E_0^N=(x_{01},\ldots,x_{0N}),$ где $x_{0i}=(x_i+x_{i+1})/2,\ i=\overline{1,N}.$

Введём оператор дискретизации T_N , формирующий вектор-столбец значений функции g:

$$T_N g = (g(x_{01}), \dots, g(x_{0N}))^{\mathrm{T}}.$$

Будем искать приближённое решение уравнения (16) в виде системы линейных алгебраических уравнений

$$\bar{A}_N \bar{q}_N = T_N f, \tag{17}$$

где

$$\bar{g}_N = (g_1, \dots, g_N)^{\mathrm{T}}, \quad \bar{A}_N = \{a_{ji}\}, \quad i, j = \overline{1, N},$$

$$a_{jj} = \int_a^b \frac{dx}{(x - x_{0j})^2} - \sum_{i=1}^N a_{ji}, \quad a_{ji} = \frac{1}{x_{0i} - x_{0j}} \int_{x_i}^{x_{i+1}} \frac{dx}{x - x_{0j}}, \quad j \neq i.$$

Обозначим через X_N и Y_N конечномерные пространства, в которых действует оператор \bar{A}_N , т.е. $X_N \xrightarrow{\bar{A}_N} Y_N$. Введём следующие нормы в пространствах X_N и Y_N :

$$\|\bar{g}_N\|_{X_N} = \max_{1 \le i \le N} \{|g_i|\}, \quad \|\bar{f}_N\|_{Y_N} = \max_{1 \le i \le N} \{(x_{0i} - a)(b - x_{0i})|f_i|\}.$$

Лемма 2. Для нормы оператора \bar{A}_N справедлива оценка

$$\|\bar{A}_N \bar{g}_N\|_{Y_N} \geqslant (b-a) \|\bar{g}_N\|_{X_N}.$$

Доказательство. Заметим, что справедливы следующие неравенства:

$$\int_{a}^{b} \frac{dx}{(x - x_{0j})^2} < 0, \quad j = \overline{1, N},$$

$$\frac{1}{x_{0i} - x_{0j}} \int_{x_i}^{x_{i+1}} \frac{dx}{x - x_{0j}} > 0, \quad j \neq i,$$

поэтому

$$a_{jj} < 0, \quad a_{ji} > 0, \quad j \neq i, \quad a_{jj} + \sum_{\substack{i=1\\i \neq j}}^{N} a_{ji} = \int_{a}^{b} \frac{dx}{(x - x_{0j})^2} < 0.$$

Выберем такой индекс j, что $|g_j|$ принимает максимальное значение. Тогда

$$\|\bar{A}_N \bar{g}_N\|_{Y_N} \geqslant (x_{0j} - a)(b - x_{0j}) \left| \sum_{i=1}^N g_i a_{ji} \right| \geqslant \|\bar{g}_N\|_{X_N} (x_{0j} - a)(b - x_{0j}) \left(|a_{jj}| - \sum_{\substack{i=1 \ i \neq j}}^N |a_{ji}| \right) = 0$$

$$= \|\bar{g}_N\|_{X_N}(x_{0j} - a)(b - x_{0j}) \left| \int_a^b \frac{dx}{(x - x_{0j})^2} \right| = (b - a) \|\bar{g}_N\|_{X_N},$$

что доказывает утверждение леммы.

Теперь можем сформулировать теорему относительно оценки точности приближённого решения уравнения (16).

Теорема 5. Пусть задано точное решение g(x) уравнения (16), производная которого имеет представление

$$g'(x) = \frac{\psi(x)}{(x-a)^{1-\lambda}(b-x)^{1-\mu}}, \quad \psi(x) \in H(\alpha), \quad 0 < \lambda, \quad \mu \le 1.$$

Тогда справедлива следующая оценка точности приближённого решения, полученного из уравнения (17):

$$\|\bar{g}_N - T_N g\|_{X_N} \leqslant O\left(\frac{\ln N}{N^{\beta}}\right),$$

 $r\partial e \ \beta = \min\{\alpha, \mu, \lambda\}.$

Доказательство. Из леммы 2 и оценки теоремы 4 следует

$$\|\bar{g}_N - T_N g\|_{X_N} \leqslant \frac{\|\bar{A}_N \bar{g}_N - \bar{A}_N T_N g\|_{Y_N}}{b - a} = \frac{\|T_N A g - \bar{A}_N T_N g\|_{Y_N}}{b - a} \leqslant$$

$$\leqslant \max_{1\leqslant j\leqslant N} \left\{ \left| \frac{(x_{0j}-a)(b-x_{0j})}{b-a} \frac{1}{(x_{0j}-a)(b-x_{0j})} O\left(\frac{\ln N}{N^{\beta}}\right) \right| \right\} \leqslant O\left(\frac{\ln N}{N^{\beta}}\right),$$

что доказывает утверждение теоремы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лифанов И.К., Ненашев А.С. Гиперсингулярные интегральные уравнения и теория проволочных антенн // Дифференц. уравнения. 2005. Т. 41. № 1. С. 121–137.
- 2. Лифанов И.К. Метод сингулярных интегральных уравнений и численный эксперимент. М., 1995.
- 3. Cemyxa~A.B. Метод граничных интегральных уравнений с гиперсингулярными интегралами в краевых задачах // Итоги науки и техн. Сер. Совр. математика и её прил. Темат. обз. 2019. Т. 160. С. 114-125.
- 4. *Белоцерковский С.М., Лифанов И.К.* Численные методы в сингулярных интегральных уравнениях и их применение в аэродинамике, теории упругости, электродинамике. М., 1985.
- 5. Дворак А.В., Ивенина С.В., Филимонов С.В. Модифицированный метод дискретных вихрей для решения сингулярных интегральных уравнений на отрезке // Науч. вестн. Московского гос. техн. ун-та гражданской авиации. 2011. С. 103–106.
- 6. *Сетуха А.В.* Сходимость численного метода решения гиперсингулярного интегрального уравнения на отрезке с применением кусочно-линейных аппроксимаций на неравномерной сетке // Дифференц. уравнения. 2017. Т. 53. № 2. С. 237–249.
- 7. Мусхелишвили Н.И. Сингулярные интегральные уравнения. М., 1968.

Научно-технологический университет "Сириус", пгт. Сириус, Краснодарский край Поступила в редакцию 03.04.2022 г. После доработки 21.04.2022 г. Принята к публикации 25.05.2022 г.