= УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ =

УДК 517.956.223+517.929

СМЕШАННЫЕ КРАЕВЫЕ ЗАДАЧИ ДЛЯ СИЛЬНО ЭЛЛИПТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ В ОГРАНИЧЕННОЙ ОБЛАСТИ

© 2022 г. В. В. Лийко

Рассматривается смешанная краевая задача для сильно эллиптического дифференциально-разностного уравнения в ограниченной области. Установлена взаимосвязь этой задачи с нелокальной смешанной краевой задачей для эллиптического дифференциального уравнения. Сформулированы теоремы об однозначной разрешимости обеих задач и о гладкости их обобщённых решений.

DOI: 10.31857/S0374064122090059, EDN: CHXUSR

Введение. Эллиптические функционально-дифференциальные уравнения, интерес к которым вызван в связи с их важными приложениями, рассматриваются в работах многих математиков. Общая теория эллиптических функционально-дифференциальных уравнений построена в монографии [1], а современный обзор литературы приведён в статье [2]. В отличие от эллиптических дифференциальных уравнений, эти уравнения обладают рядом принципиально новых свойств. Например, гладкость обобщённых решений может нарушаться внутри области даже при бесконечно гладкой правой части и сохраняться лишь в некоторых подобластях (см. [1, 2]). В работе [3] исследована смешанная краевая задача для сильно эллиптического дифференциально-разностного уравнения в цилиндрического дифференциально-разностного уравнения и нелокальная смешанная задача для эллиптического дифференциального уравнения в произвольной ограниченной области с гладкой границей.

Отметим, что смешанные краевые задачи для сильно эллиптических систем дифференциально-разностных уравнений возникают при исследовании упругих деформаций трёхслойных пластин с гофрированным заполнителем в случае, когда две противоположные грани пластины жёстко закреплены, а другие две — свободны [4].

- 1. **Некоторые свойства разностных операторов.** Рассмотрим вспомогательные результаты о свойствах разностных операторов (доказательства см. в [1, гл. II]).
- **1.1.** Пусть $Q \subset \mathbb{R}^n$ ограниченная область с границей $\partial Q \in C^{\infty}$ или $Q = (0,d) \times G$, где $G \subset \mathbb{R}^{n-1}$ ограниченная область с границей $\partial G \in C^{\infty}$, если $n \geqslant 3$, и G = (a,b), если n = 2. Рассмотрим разностный оператор $R: L_2(\mathbb{R}^n) \to L_2(\mathbb{R}^n)$, определяемый по формуле

$$Ru(x) = \sum_{h \in \mathcal{M}} a_h u(x+h), \tag{1}$$

где $a_h \in \mathbb{C}, \ \mathcal{M} \subset \mathbb{R}^n$ – конечное множество векторов с целочисленными координатами, $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Введём оператор $R_Q: L_2(Q) \to L_2(Q)$ следующим образом: $R_Q = P_Q R I_Q$, где $I_Q: L_2(Q) \to L_2(\mathbb{R}^n)$ – оператор продолжения функций из пространства $L_2(Q)$ нулём в $\mathbb{R}^n \setminus Q$, $P_Q: L_2(\mathbb{R}^n) \to L_2(Q)$ – оператор сужения функций из $L_2(\mathbb{R}^n)$ на область Q. Операторы R_Q используются в краевых задачах для дифференциально-разностных уравнений.

Обозначим через Q_r открытые связные компоненты множества $Q \setminus (\bigcup_{h \in M} (\partial Q + h))$, где M – аддитивная абелева группа, порождённая множеством \mathscr{M} . Назовём компоненты Q_r подобластями, а множество \mathscr{R} всех подобластей Q_r , $r=1,2,\ldots,-$ разбиением области Q.

Разбиение \mathscr{R} естественным образом распадается на непересекающиеся классы: подобласти $Q_{r_1}, Q_{r_2} \in \mathscr{R}$ принадлежат одному и тому же классу, если существует вектор $h \in \mathsf{M}$, для которого справедливо равенство $Q_{r_2} = Q_{r_1} + h$. Обозначим подобласти Q_r через Q_{sl} , где s – номер класса $(s=1,2,\ldots)$, а l – порядковый номер данной подобласти в s-м классе. Очевидно, что каждый класс состоит из конечного числа N=N(s) подобластей Q_{sl} . Будем предполагать, что число различных классов конечно и равно s_1 .

1.2. Введём множество

$$\mathscr{K} = \bigcup_{h_1,h_2 \in M} \{ \overline{Q} \bigcap (\partial Q + h_1) \bigcap \overline{[(\partial Q + h_2) \setminus (\partial Q + h_1)]} \}.$$

Пусть множество $\mathcal{K} \cap \partial Q$ имеет нулевую (n-1)-мерную меру Лебега $\mu_{n-1}(\cdot)$. Однако в общем случае может оказаться, что $\mu_{n-1}(\mathcal{K} \cap \partial Q) \neq 0$ (см. [1, пример 7.6]).

Определим множества Γ_p как связные компоненты открытого в топологии ∂Q множества $\partial Q \backslash \mathscr{K}$. Можно доказать, что если $(\Gamma_p + h) \bigcap \overline{Q} \neq \emptyset$ при некотором $h \in M$, то либо $\Gamma_p + h \subset Q$, либо существует множество $\Gamma_r \subset \partial Q \setminus \mathscr{K}$ такое, что $\Gamma_p + h = \Gamma_r$. В силу этого утверждения множество $\{\Gamma_p + h : \Gamma_p + h \subset \overline{Q}, \ p = 1, 2, \dots, \ h \in M\}$ можно разбить на классы следующим образом: множества $\Gamma_{p_1} + h_1$ и $\Gamma_{p_2} + h_2$ принадлежат одному и тому же классу, если

- 1) существует $h \in M$ такое, что $\Gamma_{p_1} + h_1 = \Gamma_{p_2} + h_2 + h$,
- 2) направления внешних нормалей к границе ∂Q в точках $x \in \Gamma_{p_1} + h_1$ и $x h \in \Gamma_{p_2} + h_2$ совпадают (в случае $\Gamma_{p_1} + h_1$, $\Gamma_{p_2} + h_2 \subset \partial Q$).

Предположим, что число различных классов конечно и равно r_1 .

Очевидно, что множество $\Gamma_p \subset \partial Q$ может принадлежать лишь одному классу, а множество $\Gamma_p + h \subset Q$ — не более чем двум классам. Обозначим множества $\Gamma_p + h$ через Γ_{rj} , где $r = \overline{1,r_1}$ — номер класса, j — номер элемента в данном классе $(1 \leq j \leq J = J(r))$. Не ограничивая общности, будем считать, что $\Gamma_{r1}, \ldots, \Gamma_{rJ_0} \subset Q$, $\Gamma_{r,J_0+1}, \ldots, \Gamma_{rJ} \subset \partial Q$, $0 \leq J_0 = J_0(r) < J(r)$. Здесь через J = J(r) обозначено количество элементов в r-м классе, а через $J_0 = J_0(r)$ — количество элементов в r-м классе, принадлежащих области Q.

Из определения множества \mathcal{K} и фактов, представленных выше, вытекает, что для любого множества $\Gamma_{rj}\subset\partial Q$ существует подобласть Q_{sl} такая, что $\Gamma_{rj}\subset\partial Q_{sl}$, при этом $\Gamma_{rj}\bigcap\partial Q_{s_1l_1}=\varnothing$, если $(s_1,l_1)\neq(s,l)$. Тогда несложно показать, что для любого номера $r=\overline{1,r_1}$ существует единственное число s=s(r) такое, что N(s)=J(r), и после некоторой перенумерации подобластей Q_{sl} будут справедливы включения $\Gamma_{rl}\subset\partial Q_{sl},\ l=\overline{1,N(s)}$. Также для любого $\Gamma_{rj}\subset Q$ существуют подобласти $Q_{s_1l_1}$ и $Q_{s_2l_2}$ такие, что $Q_{s_1l_1}\neq Q_{s_2l_2}$, $\Gamma_{rj}\subset\partial Q_{s_1l_1}\cap\partial Q_{s_2l_2}$ и $\Gamma_{rj}\cap\partial Q_{s_3l_3}=\varnothing$, если $(s_3,l_3)\neq(s_1,l_1),(s_2,l_2)$.

2. Разностные операторы в пространствах Соболева.

2.1. Через $W_2^k(Q)$ обозначим пространство Соболева комплекснозначных функций из пространства $L_2(Q)$, имеющих все обобщённые производные из $L_2(Q)$ до порядка k включительно.

Обозначим через $W^1_{2,\Gamma}(Q)$ подпространство функций в $W^1_2(Q)$, удовлетворяющих краевым условиям

$$u|_{\Gamma_{rl}} = 0, \quad r \in B, \quad l = \overline{J_0 + 1, J},$$

где $J_0=J_0(r),\ J=J(r),\ B=\{r:J_0(r)>0\},\ \Gamma=\{\Gamma_{rl}\},\ r\in B,\ l=\overline{J_0+1,J}.$ Введём матрицы R_s $(s=\overline{1,s_1})$ порядка $N(s)\times N(s)$ с элементами вида

$$r_{ij}^s = \begin{cases} a_h, & h = h_{sj} - h_{si} \in \mathcal{M}, \\ 0, & h_{sj} - h_{si} \notin \mathcal{M}. \end{cases}$$
 (2)

Далее введём матрицы R_s^1 , получаемые из матриц R_s вычёркиванием последних $N-J_0$ столбцов, матрицы R_s^0 порядка $J_0 \times J_0$, получаемые из матриц R_s^1 вычёркиванием последних $N-J_0$ строк. Обозначим через e_i^r , $i=\overline{1,N}$, i-ю строку матрицы R_s^1 .

ЛИЙКО 1222

Определение 1. Разностный оператор $R_Q - L_2(Q) \to L_2(Q)$ называется регулярным,

если матрицы $R_s, s=\overline{1,s_1},$ и $R_s^0, s=s(r),$ $r\in B,$ невырожденные. Замечание. Если оператор R_Q является регулярным, то матрицы $R_{s(r)}^0$ невырожденные для всех $r \in B$. Следовательно, существуют такие коэффициенты γ_{ij}^{r} , $r \in B$, i = $=\overline{J_0(r)+1,J(r)},\;\;j=\overline{1,J_0(r)},\;\;$ что справедливо равенство

$$e_l^r = \sum_{j=1}^{J_0} \gamma_{lj}^r e_j^r, \quad l = \overline{J_0 + 1, J}.$$
 (3)

Обозначим через $W^1_{2,\Gamma,\gamma}(Q)$ подпространство функций в $W^1_2(Q)$, удовлетворяющих нелокальным краевым условиям

$$w(x + h_{sl})|_{\Gamma_{r1}} = \sum_{i=1}^{J_0} \gamma_{lj}^r w(x + h_{sj})|_{\Gamma_{r1}}, \quad r \in B, \quad l = \overline{J_0 + 1, J},$$

где $\gamma = \{\gamma_{ij}^r\}, \ \gamma_{ij}^r$ – комплексные числа.

Теорема 1. $\H{}$ Лусть оператор $R_Q: L_2(Q) o L_2(Q)$ является регулярным. Тогда отображение $R_Q: \mathring{W}^1_{2,\Gamma}(Q) \to W^1_{2,\Gamma,\gamma}(Q)$ – изоморфизм.

Это утверждение устанавливает связь между смешанной краевой задачей для сильно эллиптического дифференциально-разностного уравнения и сильно эллиптическим дифференциальным уравнением с нелокальными смешанными краевыми условиями.

2.2. Рассмотрим некоторое число $r \in B$ и соответствующие J = J(r) и $J_0 = J_0(r)$. Для этого r существуют такие p=p(r) и m=m(r), что $\Gamma_{r1}\subset\partial Q_{pm},\ Q_{pm}\neq Q_{s1}.$ Перенумеруем подобласти p-го класса таким образом, чтобы выполнялось условие

$$\Gamma_{rl} \subset \partial Q_{pl}, \quad l = \overline{1, J_0}, \quad J_0 \leqslant N(p).$$

Введём матрицу R_s^\prime , получаемую из матрицы R_s вычёркиванием последних $N(s)-J_0$ строк и первых J_0 столбцов. Если $N(p)>J_0$, то введём также матрицу R_p^\prime , получаемую из матрицы R_p вычёркиванием последних $N(p)-J_0$ строк и первых J_0 столбцов. Если N(p)> $> J_0$, то введём матрицу $T_r = (R_s' \mid R_p')$ порядка $J_0 \times (N(s) + N(p) - 2J_0)$, получаемую объединением столбцов матриц R'_s и R'_n .

Теорема 2. Пусть оператор $R_Q:L_2(Q)\to L_2(Q)$ является регулярным, и пусть для всех $r \in B$ таких, что $N(p) > J_0$, столбцы матрицы T_r линейно независимы, и для всех $r \in B$ таких, что $N(p) = J_0$, столбцы матрицы R_s' линейно независимы. Предположим также, что $R_Q^{-1}(H_1)\subset W_2^1(Q),$ где H_1 – линейное подпространство в $W_2^1(Q).$ Тогда справедливи

$$R_Q^{-1}(H_1) \subset \mathring{W}_{2,\Gamma}^1(Q) \quad u \quad H_1 \subset W_{2,\Gamma,\gamma}^1(Q).$$

Утверждение теоремы 2 показывает, что для регулярного разностного оператора R_{O} при выполнении дополнительных условий на коэффициенты наличие "минимальной гладкости" функций из некоторого подпространства H_1 и его прообраза $R_O^{-1}(H_1)$ означает, что функции из $R_Q^{-1}(H_1)$ имеют нулевые следы на многообразиях $\Gamma_{rl},\ r\in B,\ l=\overline{J_0+1,J},$ а функции из H_1 удовлетворяют нелокальным краевым условиям. Поэтому при рассмотрении смешанных краевых задач для сильно эллиптических дифференциально-разностных уравнений естественно задавать однородные условия Дирихле на многообразиях $\underline{\Gamma_{rl}}, r \in B, l = \overline{J_0 + 1, J},$ и краевые условия второго рода на многообразиях $\Gamma_{rl}, r \notin B, l = \overline{1,J}$. Такие задачи эквивалентны смешанным нелокальным краевым задачам для сильно эллиптических дифференциальных уравнений. Рассмотрение эллиптических дифференциальных уравнений с нелокальными краевыми условиями второго рода на сдвигах многообразий $\Gamma_{rl}, r \in B, l = J_0 + 1, J$, приводит к переопределённым задачам.

- 3. Смешанная краевая задача для сильно эллиптического дифференциально-разностного уравнения.
 - 3.1. Рассмотрим дифференциально-разностное уравнение

$$AR_{Q}u(x) = f_{0}(x), \quad x \in Q,$$
 (4)

со смешанными краевыми условиями

$$u|_{\Gamma_{rl}} = 0, \quad r \in B, \quad l = \overline{J_0(r) + 1, J(r)},$$

$$(5)$$

$$\left(\sum_{i,j} a_{ij} R_Q u_{x_j} \cos(\nu, x_i)\right)\Big|_{\Gamma_{rl}} = 0, \quad r \notin B, \quad l = \overline{1, J(r)}, \tag{6}$$

где $f_0 \in L_2(Q)$, ν – единичный вектор внешней нормали к Γ_{rl} , дифференциальный оператор

$$A = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} a_{ij} \frac{\partial}{\partial x_j}, \quad a_{ij} = a_{ji} \in \mathbb{R},$$

 $R_Q = P_Q R I_Q : L_2(Q) \to L_2(Q)$, оператор R задаётся по формуле (1). Будем предполагать, что оператор A сильно эллиптический, т.е. выполняется условие

$$\sum_{i,j=1}^{n} a_{ij}\xi_i\xi_j > 0, \quad 0 \neq \xi \in \mathbb{R}^n.$$

Пусть матрицы R_s , соответствующие разностному оператору R_Q , удовлетворяют условию $R_s + R_s^* > 0$, $s = \overline{1,s_1}$. В таком случае уравнение (4) будем называть сильно эллиптическим. Определение 2. Функция $u \in \mathring{W}^1_{2,\Gamma}(Q)$ называется обобщённым решением задачи (4)–(6), если для любой функции $v \in \mathring{W}^1_{2,\Gamma}(Q)$ выполняется интегральное тождество

$$\sum_{i,j=1}^{n} (a_{ij}R_{Q}u_{x_{j}}, v_{x_{i}})_{L_{2}(Q)} = (f_{0}, v)_{L_{2}(Q)}.$$

Теорема 3. Пусть уравнение (4) сильно эллиптическое. Тогда для любой функции $f_0 \in L_2(Q)$ существует единственное обобщённое решение $u \in \mathring{W}^1_{2,\Gamma}(Q)$ задачи (4)–(6), при этом справедлива оценка

$$||u||_{W_2^1(Q)} \le c_0 ||f_0||_{L_2(Q)},$$

 $\epsilon \partial e \ c_0 > 0$ – постоянная, не зависящая от f_0 .

3.2. Рассмотрим теперь вопрос о гладкости обобщённых решений задачи (4)–(6).

Теорема 4. Пусть уравнение (4) сильно эллиптическое. Предположим, что $u \in \mathring{W}^1_{2,\Gamma}(Q)$ – обобщённое решение задачи (4)–(6). Тогда $u \in W^2_2(Q_{sl} \setminus \mathscr{K}^{\varepsilon})$ для любого $\varepsilon > 0$ u всех $s = \overline{1, s_1}$, $l = \overline{1, N(s)}$, где $\mathscr{K}^{\varepsilon} = \{x \in \mathbb{R}^n : \operatorname{dist}(x, \mathscr{K}) < \varepsilon\}$.

В работе [3] показана справедливость теоремы 4 при $\varepsilon=0$ для случая, когда область $Q=(0,d)\times G$ является цилиндром, разностный оператор R имеет сдвиги по оси цилиндра, а дифференциальный оператор $A=-\Delta$, где Δ – оператор Лапласа. В общем случае теорема 4 при $\varepsilon=0$ неверна (см. [5]).

4. Связь с нелокальной эллиптической краевой задачей. Изучим связь между смешанной краевой задачей для сильно эллиптического дифференциально-разностного уравнения и сильно эллиптическим дифференциальным уравнением с нелокальными смешанными краевыми условиями, которую устанавливает теорема 1 об изоморфизме.

Рассмотрим дифференциальное уравнение

$$Aw(x) = f_0(x), \quad x \in Q, \tag{7}$$

с нелокальными смешанными краевыми условиями

$$w(x+h_{sl})|_{\Gamma_{r1}} = \sum_{j=1}^{J_0} \gamma_{lj}^r w(x+h_{sj})|_{\Gamma_{r1}}, \quad r \in B, \quad l = \overline{J_0(r)+1, J(r)},$$
(8)

$$\left(\sum_{i,j} a_{ij} w_{x_j} \cos(\nu, x_i)\right)\Big|_{\Gamma_{rl}} = 0, \quad r \notin B, \quad l = \overline{1, J(r)}, \tag{9}$$

где $f_0 \in L_2(Q)$, ν – единичный вектор внешней нормали к поверхности Γ_{rl} , дифференциальный оператор

$$A = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} a_{ij} \frac{\partial}{\partial x_j}, \quad a_{ij} = a_{ji} \in \mathbb{R},$$

 γ_{ij}^r — комплексные числа. Пусть оператор A сильно эллиптический, т.е. выполняется условие

$$\sum_{i,j=1}^{n} a_{ij}\xi_i\xi_j > 0, \quad 0 \neq \xi \in \mathbb{R}^n.$$

Также предположим, что справедливо следующее

Условие А. Пусть для заданных чисел γ_{ij}^r существуют числа $a_h \in \mathbb{C}$ $(h \in \mathcal{M})$ такие, что выполняются равенства (3), при этом матрицы R_s вида (2) удовлетворяют условию

$$R_s + R_s^* > 0 \quad (s = \overline{1, s_1}).$$

Определение 3. Функция $w \in W^1_{2,\Gamma,\gamma}(Q)$ называется обобщённым решением задачи (7)— (9), если для любой функции $v \in \mathring{W}^{1}_{2,\Gamma}(Q)$ выполняется интегральное тождество

$$\sum_{i,j=1}^{n} (a_{ij}w_{x_j}, v_{x_i})_{L_2(Q)} = (f_0, v)_{L_2(Q)}.$$

Утверждение теоремы 1 устанавливает эквивалентность задач (4)–(6) и (7)–(9). Пусть выполняется условие A, функция $w \in W^1_{2,\Gamma,\gamma}(Q)$ – обобщённое решение задачи (7)–(9). Тогда функция $u = R_O^{-1} w \in \mathring{W}^1_{2,\Gamma}(Q)$ является обобщённым решением задачи (4)–(6). В силу теоремы 3 можно доказать следующую теорему.

Теорема 5. Пусть выполняется условие A. Тогда для любой функции $f_0 \in L_2(Q)$ существует единственное обобщённое решение $w \in W^1_{2\Gamma_{\alpha}}(Q)$ задачи (7)-(9), при этом справедлива оценка

$$||w||_{W_2^1(Q)} \le c_1 ||f_0||_{L_2(Q)},$$

где $c_1 > 0$ – постоянная, не зависящая от f_0 .

Рассмотрим теперь вопрос о гладкости обобщённых решений задачи (7)–(9).

Теорема 6. Пусть выполняется условие А. Предположим, что $w \in W^1_{2,\Gamma,\gamma}(Q)$ – обобщённое решение задачи (7)-(9). Тогда $w \in W_2^2(Q \setminus (\partial Q \cap \mathscr{K})^{\varepsilon})$ для любого $\varepsilon > 0$.

Из теоремы 6 можно получить обобщение теоремы 4 о гладкости обобщённых решений смешанной краевой задачи для эллиптического дифференциально-разностного уравнения, предположив, что R_Q – регулярный оператор.

Теорема 7. Пусть оператор R_Q регулярный, и пусть $u \in \mathring{W}^1_{2,\Gamma}(Q)$ – обобщённое решение задачи (4)-(6). Тогда $u \in W^2_2(Q_{sl} \setminus \mathscr{K}^{\varepsilon})$ для любого $\varepsilon > 0$ и всех $s = \overline{1, s_1}, \ l = \overline{1, N(s)}$.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (соглашение № 075-15-2022-1115).

СПИСОК ЛИТЕРАТУРЫ

- 1. Skubachevskii A.L. Elliptic functional differential equations and applications // Operator Theory. Adv. and Appl. V. 91. Basel; Boston; Berlin, 1997.
- 2. Скубачевский А.Л. Краевые задачи для эллиптических функционально-дифференциальных уравнений и их приложения // Успехи мат. наук. 2016. Т. 71. № 5 (431). С. 3–112.
- 3. Liiko V.V., Skubachevskii A.L. Smoothness of solutions to the mixed problem for elliptic differential-difference equation in cylinder // Complex Variables and Elliptic Equat. 2022. V. 67. № 2. P. 462–477.
- 4. On anov G.G., Tsvetkov E.L. On the minimum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory // Rus. J. of Math. Phys. 1995. V. 3. № 4. P. 491–500.
- 5. Liiko V.V. Mixed boundary value problem for strongly elliptic differential difference equations in a bounded domain // Rus. J. of Math. Phys. 2021. V. 28. № 2. P. 270–274.

Российский университет дружбы народов, г. Москва, Московский центр фундаментальной и прикладной математики Поступила в редакцию 16.06.2022 г. После доработки 16.06.2022 г. Принята к публикации 15.08.2022 г.