— ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ **—**

УДК 517.9

О НЕЛИНЕЙНЫХ КРАЕВЫХ ЗАДАЧАХ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ ВКЛЮЧЕНИЙ

© 2023 г. А. В. Арутюнов, З. Т. Жуковская, С. Е. Жуковский

Рассмотрены автономные дифференциальные включения с нелинейными краевыми условиями. Для них получены достаточные условия существования решений в классе абсолютно непрерывных функций. Показано, что соответствующая теорема существования применима к задаче Коши и к антипериодической краевой задаче. Полученный результат использован для выведения нового неравенства среднего значения для непрерывно дифференцируемых функций.

DOI: 10.31857/S0374064123110018, EDN: PEUEVQ

Введение. Пусть задано натуральное число n. Обозначим через $\langle \cdot, \cdot \rangle$ скалярное произведение в арифметическом пространстве \mathbb{R}^n , через $|\cdot|$ – соответствующую норму на \mathbb{R}^n , через B(x,r) – замкнутый шар в \mathbb{R}^n с центром в точке $x \in \mathbb{R}^n$ радиуса $r \geqslant 0$, т.е. B(x,r) := $\{z \in \mathbb{R}^n : |x-z| \leqslant r\}$.

Пусть заданы область $\Omega \subset \mathbb{R}^n$, многозначное отображение $G: \Omega \rightrightarrows \mathbb{R}^n$, вектор $x_0 \in \Omega$, число R>0 такое, что $\mathcal{B}:=B(x_0,R)\subset \Omega$, число $\tau>0$ и отображения $\Psi,\Phi:\mathcal{B}\to\mathbb{R}^n$.

Рассмотрим краевую задачу для дифференциального включения

$$\dot{x} \in G(x), \quad \Psi(x(0)) = \Phi(x(\tau)), \quad x(t) \in \mathcal{B}, \quad t \in [0, \tau]. \tag{1}$$

Под решением этой задачи будем понимать абсолютно непрерывную функцию $x:[0,\tau]\to\mathbb{R}^n$ такую, что $x(t)\in\mathcal{B}$ и $\dot{x}(t)\in G(x(t))$ для почти всех $t\in[0,\tau]$, при этом имеет место равенство $\Psi(x(0))=\Phi(x(\tau))$.

Цель настоящей работы – получить достаточные условия существования решения задачи (1). Утверждения о существовании и свойствах решений дифференциальных включений имеют приложения в теории управления, оптимальном управлении и негладком анализе. В данной статье мы применим полученную теорему существования решения задачи (1) для нахождения неравенств среднего значения для непрерывно дифференцируемых функций.

1. Основной результат. Сформулируем достаточные условия существования решения краевой задачи (1). Для этого предварительно введём необходимые обозначения.

Обозначим график многозначного отображения G на шаре \mathcal{B} через Γ , т.е.

$$\Gamma := \{ (x, y) \in \mathbb{R}^n \times \mathbb{R}^n : x \in \mathcal{B}, \quad y \in G(x) \}.$$

Множество Γ является подмножеством пространства $\mathbb{R}^n \times \mathbb{R}^n$. Норму в этом пространстве определим по формуле

$$|(x,y)| := |x| + |y|, \quad (x,y) \in \mathbb{R}^n \times \mathbb{R}^n.$$

Для произвольного множества $A \subset \mathbb{R}^n$ положим

$$\operatorname{dist}(x, A) := \inf_{a \in A} |x - a|, \quad x \in \mathbb{R}^n.$$

Здесь и далее инфимум пустого множества считаем равным $+\infty$, а супремум пустого множества – равным $-\infty$. Функцию dist будем использовать также для векторов и подмножеств пространства $\mathbb{R}^n \times \mathbb{R}^n$.

Напомним, что многозначное отображение $G:\Omega \rightrightarrows \mathbb{R}^n$ называется *полунепрерывным* сверху (см., например, [1, гл. 2, § 5; 2, § 2.3]), если для любого $x \in \Omega$ имеет место соотношение

$$\sup_{v \in G(u)} \operatorname{dist}(v, G(x)) \to 0 \quad \text{при} \quad u \to x.$$

Предположим, что:

- (A1) множество G(x) является непустым выпуклым компактом для любого $x \in \Omega$, многозначное отображение G полунепрерывно сверху;
 - (A2) отображения Ψ и Φ непрерывны.

Положим

$$\alpha := \max_{x \in \mathcal{B}} |\Psi(x) - x|, \quad \beta := \max_{x \in \mathcal{B}} |\Phi(x) + x - 2x_0|, \quad \gamma := \max_{(x,y) \in \Gamma} |y|.$$

Из предположений (A1) и (A2) вытекает, что указанные α , β и γ корректно определены.

Теорема А. Пусть выполняются предположения (А1) и (А2). Если

$$\alpha + \beta < 2R,\tag{2}$$

то для любого положительного числа au, удовлетворяющего неравенству

$$\tau \gamma \leqslant 2R - \alpha - \beta,\tag{3}$$

существует решение $\bar{x}:[0,\tau]\to\mathbb{R}^n$ задачи (1).

Доказательство этой теоремы приведено в п. 2. Прежде чем перейти к доказательству, обсудим её и сформулируем следствия.

Пусть $x_0=0,\ \Psi(x)\equiv x$ и $\Phi(x)\equiv -x.$ Тогда задача (1) является антипериодической краевой задачей, т.е. принимает вид

$$\dot{x} \in G(x), \quad x(0) + x(\tau) = 0, \quad x(t) \in B(0, R), \quad t \in [0, \tau].$$
 (4)

В рассматриваемом случае имеем $\alpha = \beta = 0$. Значит, условие (2) выполняется. Таким образом, для задачи (4) справедливо следующее утверждение.

Следствие 1. Пусть выполняется предположение (A1). Тогда для любого положительного числа τ , для которого $\gamma \tau \leq 2R$, существует решение $\bar{x}:[0,\tau] \to \mathbb{R}^n$ задачи (4).

Аналогичное утверждение для антипериодической краевой задачи для неявного обыкновенного дифференциального уравнения с несколько более слабой оценкой длины интервала времени τ было получено в статье [3].

Пусть теперь $x_0 = 0$, $\Psi(x) \equiv x$ и $\Phi(x) \equiv -x$. Тогда задача (1) является периодической краевой задачей, т.е. принимает вид

$$\dot{x} \in G(x), \quad x(0) = x(\tau), \quad x(t) \in B(0, R), \quad t \in [0, \tau].$$

В рассматриваемом случае $\alpha = 0$ и $\beta = 2R$. Поэтому условие (2) нарушается. Таким образом, теорема А неприменима к периодической краевой задаче.

Пусть теперь $\Psi(x) \equiv x$ и $\Phi(x) \equiv x_0$. Тогда задача (1) является задачей Коши, т.е. принимает вид

$$\dot{x} \in G(x), \quad x(0) = x_0, \quad x(t) \in \mathcal{B}, \quad t \in [0, \tau].$$

В данном случае $\alpha=0$ и $\beta=R$. Значит, условие (2) выполняется. Следовательно, для задачи Коши теорема А гарантирует существование решения на отрезке $[0,\tau]$ при τ таком, что $\gamma \tau \leqslant R$. Это утверждение о существовании решения задачи Коши хорошо известно (см., например, $[1,\S~7,$ теорема 1]).

Завершая обсуждение теоремы А, отметим, что в ней предположение (А1) можно заменить предположением

(A1') множество G(x) является непустым выпуклым компактом для любого $x \in \Omega$, многозначное отображение G полунепрерывно снизу*).

А именно, справедливо следующее утверждение.

^{*)} Многозначное отображение G называется *полунепрерывным снизу*, если для любого $x \in \Omega$ имеет место соотношение $\sup_{u \in G(x)} \operatorname{dist}(y, G(u)) \to 0$ при $u \to x$.

Следствие 2. Пусть выполняются предположения (A1'), (A2) и (2). Тогда для любого положительного числа τ , для которого $\gamma \tau \leqslant 2R$, существует решение $\bar{x}:[0,\tau] \to \mathbb{R}^n$ задачи (1).

Действительно, если выполняется (A1'), то по теореме Майкла о непрерывном селекторе (см., например, [2, теорема 2.6.1]) существует непрерывное отображение $g: \Omega \to \mathbb{R}^n$ такое, что $g(x) \in G(x)$ при всех $x \in \Omega$. Поэтому для задачи

$$\dot{x} = g(x), \quad \Psi(x(0)) = \Phi(x(\tau)), \quad x(t) \in \mathcal{B}, \quad t \in [0, \tau],$$

выполняются предположения теоремы A. Решение \bar{x} этой задачи существует по теореме A и, очевидно, является решением задачи (1).

2. Доказательство теоремы **A.** Зафиксируем произвольное положительное число τ такое, что справедливо неравенство (3). Доказательство теоремы разобьем на три этапа.

Этап I. Построим последовательность липшицевых отображений $g_j: \mathbb{R}^n \to \mathbb{R}^n$, приближающих многозначное отображение G в следующем смысле:

$$\operatorname{dist}((x, g_j(x)), \Gamma) \leqslant \frac{1}{j}, \quad x \in \mathcal{B}; \quad |g_j(x)| \leqslant \gamma, \quad x \in \mathbb{R}^n, \quad j \in \mathbb{N}.$$
 (5)

В силу теоремы Челлины (см., например, [2, теорема 2.5.2]) существует последовательность непрерывных отображений $\widetilde{g}_j: \mathcal{B} \to \mathbb{R}^n, \ j \in \mathbb{N}$, для которой имеют место соотношения

$$\operatorname{dist}((x, \widetilde{g}_j(x)), \Gamma) \leqslant \frac{1}{3j}, \quad |\widetilde{g}_j(x)| \leqslant \gamma, \quad x \in \mathcal{B}, \quad j \in \mathbb{N}.$$
 (6)

Положим $\theta_j := (3j\gamma)^{-1}, \ j \in \mathbb{N}$. По теореме Вейерштрасса–Стоуна о приближении непрерывных функций многочленами (см., например, [4, гл. XVI, § 4, теорема 3]) существуют полиномиальные отображения $p_j : \mathbb{R}^n \to \mathbb{R}^n$, приближающие отображения $(1-\theta_j)\widetilde{g}_j$ в следующем смысле:

$$|(1 - \theta_j)\widetilde{g}_j(x) - p_j(x)| \leqslant \frac{1}{3j}, \quad x \in \mathcal{B}, \quad j \in \mathbb{N}.$$
 (7)

Отображения p_j удовлетворяют условию Липшица на шаре \mathcal{B} , т.е. при каждом j существует число $\ell_j \geqslant 0$ такое, что $|p_j(x_1) - p_j(x_2)| \leqslant \ell_j |x_1 - x_2|$ для любых $x_1, x_2 \in \mathcal{B}$.

Для каждого $x \in \mathbb{R}^n$ обозначим через $\pi(x)$ ближайшую точку к x в множестве \mathcal{B} . Как известно [5, § 1.9], поскольку множество \mathcal{B} выпукло, то такое отображение $\pi: \mathbb{R}^n \to \mathbb{R}^n$ однозначно определено и является липшицевым с константой, равной единице. Кроме того,

$$\pi(x) = x, \quad x \in \mathcal{B}; \quad \pi(x) \in \mathcal{B}, \quad x \in \mathbb{R}^n.$$
 (8)

Зададим отображения $g_j:\mathbb{R}^n \to \mathbb{R}^n$ по формуле

$$g_j(x) = p_j(\pi(x)), \quad x \in \mathbb{R}^n, \quad j \in \mathbb{N}.$$

При каждом $j \in \mathbb{N}$ отображение g_j липшицево с константой Липшица ℓ_j , поскольку π липшицево с константой, равной единице, и принимает значения в шаре \mathcal{B} , а отображение g_j липшицево с константой Липшица ℓ_j на \mathcal{B} . Кроме того,

$$q_i(x) = p_i(x), \quad x \in \mathcal{B}, \quad j \in \mathbb{N},$$
 (9)

в силу равенства (8).

Для любых $x \in \mathcal{B}$ и $j \in \mathbb{N}$ имеем соотношения

$$\operatorname{dist}((x, g_i(x)), \Gamma) = \operatorname{dist}((x, p_i(x)), \Gamma) \leqslant$$

$$\leq |(x, p_i(x)) - (x, (1 - \theta_i)\widetilde{q}_i(x))| + |(x, (1 - \theta_i)\widetilde{q}_i(x)) - (x, \widetilde{q}_i(x))| + \operatorname{dist}((x, \widetilde{q}_i(x)), \Gamma) =$$

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 59 № 11 2023

$$= |g_j(x) - (1 - \theta_j)\widetilde{g}_j(x)| + \theta_j|\widetilde{g}_j(x)| + \operatorname{dist}((x, \widetilde{g}_j(x)), \Gamma) \leqslant \frac{1}{3j} + \theta_j\gamma + \frac{1}{3j} = \frac{1}{j}.$$

Здесь первое равенство вытекает из (9), первое неравенство – из неравенства треугольника для функции dist, второе равенство – из определения нормы в $\mathbb{R}^n \times \mathbb{R}^n$, а последнее неравенство вытекает из неравенств в (6) и соотношения $\theta_j = (3j\gamma)^{-1}, \ j \in \mathbb{N}$. Кроме того,

$$|g_j(x)| = |p_j(\pi(x))| \le |p_j(\pi(x)) - (1 - \theta_j)\widetilde{g}_j(\pi(x))| + |(1 - \theta_j)\widetilde{g}_j(\pi(x))| \le \frac{1}{3j} + (1 - \theta_j)\gamma = \gamma$$

для любых $x \in \mathbb{R}^n$ и $j \in \mathbb{N}$. Здесь первое равенство вытекает из определения отображения g_j ; первое неравенство – это неравенство треугольника для нормы; второе неравенство вытекает из (7), второго соотношения в (6) и условия $\pi(x) \in \mathcal{B}$ в силу (8); а последнее равенство вытекает из равенства $\theta_j = (3j\gamma)^{-1}, \ j \in \mathbb{N}$. Итак, существование липшицевых отображений g_j , удовлетворяющих (5), доказано.

 $\Im man\ II.\$ Покажем, что для каждого $j\in\mathbb{N}$ краевая задача

$$\dot{x} = g_j(x), \quad \Psi(x(0)) = \Phi(x(\tau)), \quad x(t) \in \mathcal{B}, \quad t \in [0, \tau], \tag{10}$$

имеет абсолютно непрерывное решение $x_i:[0,\tau]\to\mathbb{R}^n$.

Зафиксируем произвольное $j \in \mathbb{N}$. Для доказательства существования искомой функции $x_j(\cdot)$ построим сначала вспомогательные отображения $\xi(\cdot)$, $\widetilde{\Psi}(\cdot)$, $\widetilde{\Phi}(\cdot)$ и вектор $\bar{a} \in \mathcal{B}$, и опишем их свойства.

Из второго неравенства в (5) и липшицевости отображения g_j на всём пространстве \mathbb{R}^n в силу теорем о существовании и единственности решения (см., например, [6, теоремы II.4.1, II.4.5]) следует, что для любого $a \in \mathcal{B}$ существует единственное решение $\xi(a, \cdot) : [0, \tau] \to \mathbb{R}^n$ задачи Коши

$$\dot{x} = g_i(x), \quad x(0) = a, \quad x \in \mathbb{R}^n, \quad t \in [0, \tau].$$
 (11)

Из [7, следствие 1.10.2] вытекает непрерывность отображения $\xi: \mathcal{B} \times [0,\tau] \to \mathbb{R}^n$. Кроме того, имеет место неравенство

$$|\xi(a,\tau) - a| = \left| \int_{0}^{\tau} g_j(\xi(t,a)) dt \right| \leqslant \int_{0}^{\tau} |g_j(\xi(t,a))| dt \leqslant \tau \gamma, \quad a \in \mathcal{B}.$$
 (12)

Здесь последнее неравенство вытекает из второй оценки в (5).

Непрерывные отображения $x\mapsto \Psi(x)-x$ и $x\mapsto \Phi(x)+x-2x_0, x\in \mathcal{B}$, ограничены константами α и β , т.е. $|\Psi(x)-x|\leqslant \alpha$ и $|\Phi(x)+x-2x_0|\leqslant \beta$ для всех $x\in \mathcal{B}$. Поэтому, по теореме Титце о продолжении, существуют непрерывные отображения $\widetilde{\Psi},\widetilde{\Phi}:\mathbb{R}^n\to\mathbb{R}^n$ такие, что

$$|\widetilde{\Psi}(x) - x| \leq \alpha, \quad |\widetilde{\Phi}(x) + x - 2x_0| \leq \beta, \quad x \in \mathbb{R}^n;$$

$$\Psi(x) = \widetilde{\Psi}(x), \quad \Phi(x) = \widetilde{\Phi}(x), \quad x \in \mathcal{B}.$$
(13)

Покажем теперь, что существует решение уравнения

$$\widetilde{\Psi}(a) = \widetilde{\Phi}(\xi(a,\tau)), \quad a \in \mathcal{B},$$
(14)

с неизвестным a. Сделаем замену $b = a - x_0$ и положим

$$\Upsilon(b) := b - \widetilde{\Psi}(b + x_0) + \widetilde{\Phi}(\xi(b + x_0, \tau)), \quad b \in B(0, R).$$

Тогда уравнение (14) принимает вид

$$b = \Upsilon(b), \quad b \in B(0, R). \tag{15}$$

Для каждого элемента $b \in \mathbb{R}^n$, для которого |b| = R, справедливо неравенство

$$\langle b, \Upsilon(b) \rangle \leqslant R^2. \tag{16}$$

Действительно,

$$\langle b, \Upsilon(b) \rangle = \langle b, b - \widetilde{\Psi}(b + x_0) + \widetilde{\Phi}(\xi(b + x_0, \tau)) \rangle = \langle b, b + x_0 - \widetilde{\Psi}(b + x_0) \rangle +$$

$$+ \langle b, \widetilde{\Phi}(\xi(b + x_0, \tau)) + \xi(b + x_0, \tau) - 2x_0 \rangle + \langle b, b + x_0 - \xi(b + x_0, \tau) \rangle - \langle b, b \rangle \leqslant$$

$$\leqslant \alpha R + \beta R + R\tau \gamma - R^2 \leqslant 2R^2 - R^2 = R^2.$$

Здесь первое равенство вытекает из определения отображения Υ , первое неравенство — из первой строки в (13), из соотношения (12) и из |b|=R, а последнее неравенство вытекает из (3).

Заметим, что

$$b \neq \lambda \Upsilon(b)$$
 для любых $\lambda \in (0,1)$ и $b \in \mathbb{R}^n$ такого, что $|b| = R$. (17)

Действительно, в противном случае если $b=\lambda \Upsilon(b)$ для некоторых b (|b|=R) и λ $(\lambda \in (0,1)),$ то

$$\langle b, \Upsilon(b) \rangle = \langle b, \lambda^{-1}b \rangle = \lambda^{-1}R^2 > R^2,$$

что противоречит (16).

Из (17) и непрерывности отображения Υ на шаре B(0,R) по теореме Боля о неподвижной точке (см., например, [8, § 5, теорема 7.2]) следует, что существует решение $\bar{b} \in B(0,R)$ уравнения (15). Значит, точка $\bar{a} := x_0 + \bar{b}$ является решением уравнения (14).

На этом построение отображений $\xi(\cdot)$, $\widetilde{\Psi}(\cdot)$, $\widetilde{\Phi}(\cdot)$ и вектора $\bar{a} \in \mathcal{B}$ завершено. Положим $x_j(t) := \xi(\bar{a},t), \ t \in [0,\tau],$ и покажем, что функция $x_j(\cdot)$ является искомой.

По определению функции $\xi(\cdot)$ функция $x_j(\cdot)$ является решением задачи Коши (11) при $a=\bar{a}$. Кроме того, поскольку $\bar{a}=x_j(0),\ \xi(\tau,\bar{a})=x_j(\tau)$ и \bar{a} является решением уравнения (14), то

$$\widetilde{\Psi}(x_j(0)) = \widetilde{\Psi}(\bar{a}) = \widetilde{\Phi}(\xi(\tau, \bar{a})) = \widetilde{\Phi}(x_j(\tau)).$$

Таким образом,

$$\dot{x}(t) = g_i(x(t)), \quad t \in [0, \tau], \quad \widetilde{\Psi}(x(0)) = \widetilde{\Phi}(x(\tau)), \quad x_i(0) = \bar{a} \in \mathcal{B}. \tag{18}$$

Покажем, что функция $x_i(\cdot)$ является решением задачи (10).

Из первого равенства в (18) и из второго неравенства в (5) следует, что

$$|x_j(t) - x_j(0)| \leqslant t\gamma, \quad |x_j(\tau) - x_j(t)| \leqslant (\tau - t)\gamma, \quad t \in [0, \tau]$$
(19)

(доказательство этих неравенств аналогично рассуждениям в (12)).

Для $t \in [0, \tau]$ имеем соотношения

$$2|x_{j}(t) - x_{0}| =$$

$$= |(x_{j}(t) - x_{j}(0)) + (x_{j}(0) - \widetilde{\Psi}(x_{j}(0))) + (\widetilde{\Phi}(x_{j}(\tau)) + x_{j}(\tau) - 2x_{0}) + (x_{j}(t) - x_{j}(\tau))| \leq$$

$$\leq |x_{j}(t) - x(0)| + |x_{j}(0) - \widetilde{\Psi}(x_{j}(0))| + |\widetilde{\Phi}(x_{j}(\tau)) + x_{j}(\tau) - 2x_{0}| + |x_{j}(t) - x_{j}(\tau)| \leq$$

$$\leq t\gamma + \alpha + \beta + (\tau - t)\gamma \leq 2R.$$

Здесь равенство вытекает из того, что $\widetilde{\Psi}(x_j(0)) = \widetilde{\Phi}(x_j(\tau))$ в силу (18); первое неравенство – это неравенство треугольника для нормы; второе неравенство вытекает из первой строки в (13) и из (19), а последнее неравенство вытекает из (3). Из доказанного неравенства следует, что

$$x_i(t) \in \mathcal{B}, \quad t \in [0, \tau].$$
 (20)

Имеем

$$\Psi(x_i(0)) = \widetilde{\Psi}(x_i(0)) = \widetilde{\Phi}(x_i(\tau)) = \Phi(x_i(\tau)).$$

Здесь первое и последнее равенства вытекают из второй строки в (13) и включения (20); а второе равенство вытекает из второго равенства в (18). Из полученного равенства, из тождества в (18) и из включения (20) следует, что функция $x_i(\cdot)$ является решением краевой задачи (10).

Этап III. Построенная на этапе II последовательность непрерывно дифференцируемых функций $x_j:[0,\tau]\to\mathbb{R}^n$ равномерно ограничена и равностепенно непрерывна. Это вытекает из того, что $x_j(\cdot)$ является решением краевой задачи (10) и из второго неравенства в (5). Поэтому, по теореме Арцела (см., например, [9, гл. II, § 7.7]), существует равномерно сходящаяся подпоследовательность последовательности $\{x_j(\cdot)\}$. Переходя к подпоследовательности, не ограничивая общности, будем считать, что $\{x_j(\cdot)\}$ сходится равномерно к некоторой функции $\bar{x}:[0,\tau]\to\mathbb{R}^n$. По построению $\bar{x}(t)\in\mathcal{B}\subset\Omega$ для любого $t\in[0,\tau]$. Докажем, что функция \bar{x} является искомой.

Сначала покажем, что

$$\dot{x}_j(t) \in B(\text{conv } G(B(x_j(t), 2j^{-1})), 2j^{-1}), \quad t \in [0, \tau].$$
 (21)

Здесь conv – это выпуклая оболочка множества, $B(A,r):=\bigcup_{a\in A}B(a,r)$ для любого непустого множества $A\subset \mathbb{R}^n$, для любого $r\geqslant 0$.

Зафиксируем $t \in [0,\tau]$. Поскольку функция $x_j(\cdot)$ является решением задачи (10), то $\dot{x}_j(t) = g(x_j(t))$. Отсюда и из (5) следует, что существует точка $(x,y) \in \Gamma$ такая, что

$$|x_j(t) - x| + |\dot{x}_j(t) - y| \le 2j^{-1}.$$

Следовательно, $x \in B(x_i(t), 2j^{-1}), \dot{x}_i(t) \in B(y, 2j^{-1})$ и $y \in G(x)$. Поэтому

$$\dot{x}_j(t) \in B(y, 2j^{-1}) \subset B(G(x), 2j^{-1}) \subset B(G(B(x_j(t), 2j^{-1})), 2j^{-1}).$$

Отсюда, в силу произвольности выбора t, следует, что выполняется включение (21).

Поскольку $\bar{x}(t) \in \Omega$ для любого $t \in [0,\tau]$, из (21) по лемме о приближении решений включения (см., например, [2, лемма 2.8.1] или [1, § 7, лемма 1]) следует, что функция $\bar{x}(\cdot)$ является решением включения $\dot{x} \in G(x)$, т.е. $\dot{\bar{x}}(t) \in G(\bar{x}(t))$ для п.в. $t \in [0,\tau]$. Кроме того, поскольку функции $x_j(\cdot)$ являются решениями краевых задач (10), то $\Psi(x_j(0)) = \Phi(x_j(\tau))$. Отсюда, из непрерывности отображений Ψ и Φ и из равномерной сходимости $x_j(\cdot)$ к $\bar{x}(\cdot)$ вытекает, что $\Psi(\bar{x}(0)) = \Phi(\bar{x}(\tau))$. Значит, $\bar{x}(\cdot)$ является решением задачи (1). Теорема А доказана.

3. Неравенства среднего значения. Применим теорему А для получения неравенств среднего значения для гладких функций. Пусть далее $x_0=0,\ \mathcal{B}=B(0,R)\subset\Omega$ и задана функция $f:\Omega\to\mathbb{R}$.

Известно (см., например, [10, 11]) следующее утверждение. Пусть функция f непрерывно дифференцируема. Тогда существует точка $a \in \mathcal{B}$ такая, что имеет место оценка

$$|f'(a)| \le \frac{1}{2R} \left(\max_{x \in \mathcal{B}} f(x) - \min_{x \in \mathcal{B}} f(x) \right), \tag{22}$$

где f'(a) – градиент функции f в точке a.

Для чётной на \mathcal{B} функции f, не являющейся постоянной, это утверждение тривиально выполняется с a=0. При этом правая часть неравенства в (22) положительна. Поэтому представляется естественным получение более сильной оценки, чем (22), которая будет точной для чётных функций f. Такую оценку даёт следующее утверждение.

Предложение. Пусть функция f непрерывно дифференцируема. Тогда существует точка $a \in \mathcal{B}$ такая, что

$$|f'(a)| \le \frac{1}{2R} \max_{x \in \mathcal{B}} (f(x) - f(-x)).$$
 (23)

Доказательство. Если f'(x) = 0 в некоторой точке $x \in \mathcal{B}$, то точка a = x является искомой. Поэтому далее будем предполагать, что $f'(x) \neq 0$ для любого $x \in \mathcal{B}$. Тогда существует область $\widetilde{\Omega} \subset \Omega$ такая, что $\mathcal{B} \subset \widetilde{\Omega}$ и $f'(x) \neq 0$ для любого $x \in \widetilde{\Omega}$. Не ограничивая общности, будем считать, что $\Omega = \widetilde{\Omega}$.

Положим $\varepsilon:=\min_{x\in\mathcal{B}}|f'(x)|$. По предположению $\varepsilon>0$. Пусть $\tau:=2\varepsilon R$. Рассмотрим краевую задачу

$$\dot{x} = \frac{f'(x)}{|f'(x)|^2}, \quad x(0) + x(\tau) = 0, \quad x(t) \in \mathcal{B}, \quad t \in [0, \tau],$$

которая совпадает с задачей (4) при $G(x) := \{f'(x)|f'(x)|^{-2}\}, x \in \Omega$. Для отображения G выполняется предположение (A1), поскольку функция f непрерывно дифференцируема и $f'(x) \neq 0$ для любого $x \in \Omega$. Кроме того,

$$\gamma := \max_{x \in \mathcal{B}} \left| \frac{f'(x)}{|f'(x)|^2} \right| = \max_{x \in \mathcal{B}} \frac{1}{|f'(x)|} = \frac{1}{\min_{x \in \mathcal{B}} |f'(x)|} = \varepsilon^{-1}.$$

Значит, $\gamma \tau \leqslant 2R$. Поэтому, в силу следствия 1, существует абсолютно непрерывная функция $\bar{x}:[0,\tau] \to \mathbb{R}^n$ такая, что

$$\dot{\bar{x}}(t) \equiv \frac{f'(\bar{x}(t))}{|f'(\bar{x}(t))|^2}, \quad \bar{x}(0) + \bar{x}(\tau) = 0, \quad \bar{x}(t) \in \mathcal{B}, \quad t \in [0, \tau].$$
(24)

Имеем

$$f(\bar{x}(\tau)) - f(\bar{x}(0)) = \int_{0}^{\tau} \langle f'(\bar{x}(t)), \dot{x}(t) \rangle dt = \int_{0}^{\tau} \left\langle f'(\bar{x}(t)), \frac{f'(\bar{x}(t))}{|f'(\bar{x}(t))|^2} \right\rangle dt = \tau.$$

Здесь первое равенство – это формула Ньютона–Лейбница, а второе равенство вытекает из тождества в (24). Отсюда, поскольку в силу (24) имеет место равенство $\bar{x}(0) = -\bar{x}(\tau)$, полагая $x_* := \bar{x}(\tau)$, получаем, что

$$f(x_*) - f(-x_*) = f(\bar{x}(\tau)) - f(-\bar{x}(\tau)) = f(\bar{x}(\tau)) - f(\bar{x}(0)) = \tau = 2\varepsilon R.$$

Из последнего равенства имеем

$$\varepsilon = \frac{1}{2R}(f(x_*) - f(-x_*)) \leqslant \frac{1}{2R} \max_{x \in \mathcal{B}} (f(x) - f(-x)).$$

Отсюда и из того, что $\varepsilon = \min_{x \in \mathcal{B}} |f'(x)|$, получаем (23). Предложение доказано.

Сравним оценки (22) и (23). Во-первых, для правых частей неравенств (22) и (23) очевидно справедливо соотношение

$$\max_{x \in \mathcal{B}} (f(x) - f(-x)) \leqslant \max_{x \in \mathcal{B}} f(x) - \min_{x \in \mathcal{B}} f(x).$$

Во-вторых, для произвольной чётной на \mathcal{B} функции f, не являющейся постоянной, правая часть в (22) положительна, а правая часть в (23) равна нулю. Таким образом, оценка (23) сильнее оценки (22) и неравенство в (23) превращается в равенство для чётных функций f.

Приведём простое следствие предложения.

Следствие 3. Пусть функция $f_0: \Omega \to \mathbb{R}$ чётна на \mathcal{B} , функция $f: \Omega \to \mathbb{R}$ непрерывно дифференцируема. Тогда существует точка $a \in \mathcal{B}$ такая, что

$$|f'(a)| \leqslant \frac{1}{R} \max_{x \in \mathcal{B}} |f(x) - f_0(x)|.$$

Доказательство. Из предложения следует, что существует точка $a \in \mathcal{B}$ такая, что

$$|f'(a)| \leqslant \frac{1}{2R} \max_{x \in \mathcal{B}} (f(x) - f(-x)) \leqslant \frac{1}{2R} \max_{x \in \mathcal{B}} (|f(x) - f_0(x)| + |f(-x) - f_0(-x)|) \leqslant$$
$$\leqslant \frac{1}{2R} (\max_{x \in \mathcal{B}} |f(x) - f_0(x)| + \max_{x \in \mathcal{B}} |f(-x) - f_0(-x)|) = \frac{1}{R} \max_{x \in \mathcal{B}} |f_1(x)|.$$

Здесь второе неравенство вытекает из чётности функции f_0 и неравенства треугольника для модуля, а последнее неравенство вытекает из неравенства треугольника для функции max. Следствие доказано.

Из приведённого утверждения следует, что нуль является устойчивой критической точкой чётной функции в следующем смысле: если последовательность гладких функций f_j сходится равномерно к чётной (не обязательно гладкой) функции, то существует сходящаяся к нулю последовательность точек $\{a_j\}\subset\mathcal{B}$ такая, что $f_j'(a_j)\to 0$.

Работа выполнена при финансовой поддержке Российского научного фонда (проект 20-11-20131).

СПИСОК ЛИТЕРАТУРЫ

- 1. Φ илиппов $A.\Phi$. Дифференциальные уравнения с разрывной правой частью. М., 1985.
- 2. Арутнонов А.В. Лекции по выпуклому и многозначному анализу. М., 2014.
- 3. *Аруттонов А.В., Жуковская З.Т., Жуковский С.Е.* Антипериодическая краевая задача для неявного обыкновенного дифференциального уравнения // Вестн. рос. ун-тов. Математика. 2022. Т. 27. № 139. С. 205–213.
- 4. Зорич В.А. Математический анализ. Ч. II. М., 2012.
- 5. Половинкин Е.С., Балашов М.В. Элементы выпуклого и сильно выпуклого анализа. М., 2004.
- 6. *Варга Джс.* Оптимальное управление дифференциальными и функциональными уравнениями. М., 1977.
- 7. Картан А. Дифференциальное исчисление. Дифференциальные формы. М., 1971.
- 8. Granas A., Dugundji J. Fixed Point Theory. New York, 2003.
- 9. Колмогоров А.Н. Элементы теории функций и функционального анализа. М., 2004.
- 10. Clarke F.H., Ledyaev Yu.S. Mean value inequalities // Proc. of the Amer. Math. Soc. 1994. V. 122. \mathbb{N}^2 4. P. 1075–1083.
- 11. $Arutyunov\ A.V.$, $Zhukovskiy\ S.E.$ Variational principles and mean value estimates // J. Optim. Theory Appl. 2022. V. 193. P. 21–41.

Институт проблем передачи информации имени А.А. Харкевича РАН, г. Москва, Институт проблем управления имени В.А. Трапезникова РАН, г. Москва

Поступила в редакцию 24.05.2023 г. После доработки 24.05.2023 г. Принята к публикации 20.09.2023 г.