———ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ**——**

УДК 517.925

ПОВЕДЕНИЕ ТРАЕКТОРИЙ ЧЕТЫРЁХМЕРНОЙ МОДЕЛИ ВИЧ-ИНФЕКЦИИ

© 2023 г. А. Н. Канатников, О. С. Ткачева

Рассмотрена модель взаимодействия вируса иммунодефицита человека с иммунной системой человека. Проанализированы положения равновесия в фазовом пространстве системы и их устойчивость, построены итоговые (предельные) границы траекторий. Доказано, что локальная асимптотическая устойчивость положения равновесия, соответствующего отсутствию болезни, равносильна его глобальной асимптотической устойчивости. Показано, что потеря устойчивости вызвана транскритической бифуркацией.

DOI: 10.31857/S037406412311002X, EDN: PFOXHT

Введение. Вирус иммунодефицита человека (ВИЧ) привлекает внимание многих исследователей из различных областей мировой науки с 1980-х гг. В частности, интерес многих учёных был сосредоточен на разработке и изучении математических моделей, описывающих иммунологический ответ на инфекцию. Существуют различные типы таких динамических моделей, характеризующих взаимодействие ВИЧ с клетками иммунной системы [1–8].

В настоящее время во многих отраслях науки для предварительных исследований используются математические модели различных явлений и процессов, представляющие собой системы обыкновенных дифференциальных уравнений. Чаще всего такие модели возникают как упрощённый вариант более сложных моделей, включающих уравнения в частных производных, интегральные уравнения и т.д. Такие упрощённые модели, хотя и не дают точной информации, сохраняют многие качественные свойства протекающих процессов [9]. Особенно актуален и распространён анализ качественных свойств динамических систем, описываемых системами обыкновенных дифференциальных уравнений невысокой размерности, которые используются как модели различных процессов в биологии и медицине. Качественный анализ динамической системы традиционно включает исследование положений равновесия, анализ их количества в зависимости от параметров системы и анализ устойчивости, бифуркационный анализ, асимптотическое поведение траекторий, решение задач локализации циклов, сепаратрис, аттракторов и других структур фазового портрета системы [10, 11].

Эффективными методами поиска и анализа динамики систем обыкновенных дифференциальных уравнений являются функциональный метод локализации и теорема Ла-Салля [10–13]. Применение этих методов позволяет делать заключения об асимптотическом поведении траекторий, в частности, находить множества, которые захватывают все траектории системы.

В статье рассмотрена модель, описывающая взаимодействие иммунной системы человека с вирусом иммунодефицита человека [1, 7, 8, 14]. Модель учитывает взаимодействие четырёх популяций клеток: неинфицированных *T*-клеток, латентно инфицированных (пассивных) *T*-клеток, активно инфицированных *T*-клеток, а также свободных вирусных частиц.

В п. 1 описывается рассматриваемая математическая модель взаимодействия имунной системы с ВИЧ, п. 2 содержит некоторые теоретические сведения об используемых математических методах. Анализу положений равновесия в фазовом пространстве системы (неотрицательном ортанте) посвящён п. 3. В п. 4 определены условия локальной устойчивости. В п. 5 построены итоговые (предельные) границы траекторий системы, в п. 6 исследуется глобальная асимптотическая устойчивость положения равновесия E_0 , соответствующего отсутствию инфицированных клеток и вирусных частиц. Ситуация потери устойчивости в положении равновесия E_0 и характер бифуркации потери устойчивости обсуждаются в п. 7. 1. Математическая модель ВИЧ. Рассмотрим модель взаимодействия ВИЧ с *T*-клетками, являющимися составной частью иммунной системы человека. Эта модель, ранее предложенная в работах [1, 8], представляет собой следующую систему дифференциальных уравнений:

$$\dot{x} = \frac{a_0}{1+v} - a_1 x - a_2 v x + a_3 x \left(1 - \frac{x+y+z}{a_4}\right),$$

$$\dot{y} = a_2 v x - a_1 y - a_5 y, \quad \dot{z} = a_5 y - a_6 z, \quad \dot{v} = a_7 z - a_2 v x - a_8 v. \tag{1}$$

Здесь x – концентрация неинфицированных T-клеток; y – концентрация инфицированных пассивных T-клеток (т.е. латентных, не воспроизводящих вирус); z – концентрация инфицированных активных T-клеток; v – концентрация вирусных частиц. Все фазовые переменные предполагаются неотрицательными, а параметры системы a_i – положительными.

Показано [1], что модель имеет два состояния равновесия: неинфицированное состояние, в котором вирус отсутствует, и эндемически инфицированное состояние, в котором присутствуют вирус и инфицированные *T*-клетки. Согласно рассматриваемой модели разные вирусные штаммы, характеризующиеся образованием разного количества инфекционных вирионов в инфицированных *T*-клетках, могут вызывать различную степень истощения *T*-клеток, и истощение может проходить с разной скоростью. Для данной модели в статье [8] найдены положения равновесия, введено оптимальное управление. Управление представляет собой процент эффекта химиотерапии на продукцию вируса. В работе [14] рассмотрена семимерная модель ВИЧ. Подход к исследованию динамики модели основан на сочетании метода локализации компактных инвариантных множеств и теоремы Ла-Салля. Изучены возможности искоренения популяций инфицированных клеток на ранней стадии инфекции пациента. Найдены конечные верхние границы для всех переменных моделей, определяющих политоп, со свойствами аттрактора.

В качестве фазового пространства системы (1) выбран неотрицательный ортант:

$$\mathbb{R}^4_{+,0} = \{ (x, y, z, v) \in \mathbb{R}^4 : x \ge 0, \quad y \ge 0, \quad z \ge 0, \quad v \ge 0 \}.$$

Отметим, что неотрицательный ортант является положительно инвариантным множеством, что можно интерпретировать как биологическую адекватность модели: траектории системы, начинающиеся в $\mathbb{R}^4_{+,0}$, остаются в этом множестве при возрастании времени.

2. Предварительные сведения. Качественное исследование модели распространения ВИЧ в значительной мере опирается на метод локализации инвариантных компактных множеств – функциональный метод локализации [10, 11]. В рамках этого метода строятся множества в фазовом пространстве системы, которые содержат все компактные множества, инвариантные для системы. В дальнейшем такие множества называются локализирующими. Локализирующие множества строятся с помощью гладких функций, называемых локализирующими функциями. Рассмотрим два ключевых факта этого метода.

Для произвольной функции ϕ , непрерывно дифференцируемой на фазовом пространстве Φ системы $\dot{x} = f(x)$, через $S(\phi)$ обозначим множество

$$S(\phi) = \{ x \in \Phi : \dot{\phi}(x) = 0 \},\$$

где $\dot{\phi}(x)$ – производная функции ϕ в силу системы: $\dot{\phi}(x) = \phi'(x)f(x)$. Указанное множество будем называть *универсальным сечением*, соответствующим функции ϕ .

Теорема 1 [10]. Пусть функция ϕ непрерывно дифференцируема на фазовом пространстве Φ системы $\dot{x} = f(x)$ и $Q \subseteq \Phi$. Тогда любой инвариантный компакт, содержащийся в Q, также содержится в множестве

$$\Omega(\phi, Q) = \{ x \in Q : \phi_{\inf}(Q) \leqslant \phi(x) \leqslant \phi_{\sup}(Q) \},\$$

где

$$\phi_{\inf}(Q) = \inf_{x \in S(\phi) \bigcap Q} \phi(x), \quad \phi_{\sup}(Q) = \sup_{x \in S(\phi) \bigcap Q} \phi(x).$$

Сформулированная теорема позволяет организовать итерационную процедуру построения локализирующих множеств. Пусть задана последовательность $\{\phi_i\}$ локализирующих функций. Положим

$$Q_0 = Q, \quad Q_i = \Omega(\phi_i, Q_{i-1}), \quad i \in \mathbb{N}.$$

Тогда, согласно построению,

$$Q_0 \supseteq Q_1 \supseteq Q_2 \supseteq \ldots \supseteq Q_n \supseteq \ldots$$

Обозначим $Q_{\infty} = \bigcap_{n=1}^{\infty} Q_n$. **Теорема 2** [10, 15]. Любой инвариантный компакт, содержащийся в множестве Q, также содержится и в множестве Q_{∞} .

В последовательности $\{\phi_n\}$ функции могут повторяться. На практике такая последовательность часто является некоторым циклически повторяющимся набором из нескольких функций.

Далее итоговыми границами траекторий динамической системы будем называть ограниченную область в фазовом пространстве системы, в которую в конечном счёте попадает любая траектория системы.

Ещё одним инструментом, использующимся при качественном анализе, является следующий принцип инвариантности Ла-Салля.

Теорема 3 [13]. Пусть $K \subset \Phi$ – компактное множество, положительно инвариантное для системы $\dot{x} = f(x)$. Если функция V непрерывно дифференцируема в Φ и $\dot{V}(x) \leqslant 0$ в K, то для любой траектории системы, имеющей стартовую точку $x_0 \in K$, её ω -предельное множество содержится в множестве М, являющимся наибольшим положительно инвариантным множеством в $S(V) \cap K$.

3. Положения равновесия. Чтобы найти положения равновесия системы (1) в неотрицательном ортанте, приравняем к нулю правые части системы (1):

$$\frac{a_0}{1+v} - a_1 x - a_2 v x + a_3 x \left(1 - \frac{x+y+z}{a_4}\right) = 0,$$

$$a_2 v x - a_1 y - a_5 y = 0, \quad a_5 y - a_6 z = 0, \quad a_7 z - a_2 v x - a_8 v = 0.$$
 (2)

В системе (2) последние три уравнения линейны относительно переменных у и z, что позволяет редуцировать систему, исключив из неё у и z. Из второго и третьего уравнений выражаем

$$y = \frac{a_2}{a_1 + a_5} v x$$
 и $z = \frac{a_5 a_2}{a_6(a_1 + a_5)} v x$

соответственно. В результате приходим к системе двух уравнений:

$$\frac{a_0}{1+v} - a_1 x - a_2 v x + \frac{a_3 x}{a_4} \left(a_4 - x \left(1 + \frac{a_2}{a_1 + a_5} v + \frac{a_5 a_2}{a_6(a_1 + a_5)} v \right) \right) = 0,$$

$$\left(a_7 \frac{a_5 a_2}{a_6(a_1 + a_5)} x - a_2 x - a_8 \right) v = 0.$$
(3)

Отметим, что любому неотрицательному решению системы (3) соответствует неотрицательное решение системы (2).

Из последнего уравнения системы (3) вытекают два случая: v = 0 и $v \neq 0$. При v = 0y = z = 0, а x находится как положительное решение следующего квадратного уравнения:

$$\frac{a_3}{a_4}x^2 - (a_3 - a_1)x - a_0 = 0.$$
(4)

Так как свободный член этого уравнения $-a_0 < 0$, то корни уравнения имеют разные знаки. Отрицательному корню соответствует решение системы (2), расположенное вне R_{+0}^4 , а положительному корню – расположенное на границе фазового пространства.

Таким образом, система (1) при любых значениях параметров имеет в неотрицательном ортанте положение равновесия $E_0 = (x_0, 0, 0, 0)$, где

$$x_0 = \frac{a_4(a_3 - a_1) + \sqrt{a_4^2(a_3 - a_1)^2 + 4a_4a_0a_3}}{2a_3}$$

При $v \neq 0$ система может иметь в $\mathbb{R}^4_{+,0}$ ещё одно положение равновесия $E_1 = (x_1, y_1, z_1, v_1)$, которое находится как решение следующей системы:

$$\frac{a_0}{1+v} - a_1 x - a_2 v x + \frac{a_3 x}{a_4} \left(a_4 - x \left(1 + \frac{a_2}{a_1 + a_5} v + \frac{a_5 a_2}{a_6(a_1 + a_5)} v \right) \right) = 0,$$

$$a_7 \frac{a_5 a_2}{a_6(a_1 + a_5)} x - a_2 x - a_8 = 0.$$
(5)

Из второго уравнения находим

$$x_1 = \frac{a_8}{a_2(d-1)},\tag{6}$$

где $d = a_7 a_5 / (a_6 (a_1 + a_5)).$

Первое уравнение системы (5) при известном x преобразуется к виду $a_0/(1+v) = d_1 + d_2 v$, где

$$d_1 = (a_1 - a_3)x_1 + \frac{a_3}{a_4}x_1^2, \quad d_2 = a_2x_1\left(1 + \frac{(a_5 + a_6)a_3}{(a_1 + a_5)a_6a_4}x_1\right)$$

Оно имеет два решения, меньшее из которых отрицательно и приводит к положению равновесия вне $\mathbb{R}^4_{+,0}$. Большее решение v_1 этого уравнения положительно при $d_1 < a_0$. По найденным значениям x_1 и v_1 можем найти значения

$$y_1 = \frac{a_2}{a_1 + a_5} v_1 x_1, \quad z_1 = \frac{a_5 a_2}{a_6(a_1 + a_5)} v_1 x_1.$$

Если $x_1 > 0$, $v_1 > 0$, то и $y_1 > 0$, $z_1 > 0$. Таким образом, положение равновесия E_1 попадает в $\mathbb{R}^4_{+,0}$ тогда и только тогда, когда d > 1 и $a_0 > d_1$. Отметим, что условие $a_0 > d_1$ означает выполнение неравенства

$$a_0 - (a_1 - a_3)x_1 - \frac{a_3}{a_4}x_1^2 > 0$$

Сравнивая его с неравенством (4), заключаем, что условие $a_0 > d_1$ равносильно условию $x_1 < x_0$.

4. Условия локальной устойчивости. Условие локальной устойчивости положения равновесия можно получить на основе анализа собственных значений матрицы системы линейного приближения. Такое условие, полученное для положения равновесия E_0 системы (1), представлено в следующей теореме.

Теорема 4. Для того чтобы положение равновесия E_0 системы (1) было локально асимптотически устойчивым, необходимо и достаточно выполнения неравенства

$$d < 1 + \frac{a_8}{a_2 x_0}.$$
 (7)

Доказательство. Запишем матрицу Якоби для системы (1):

$$J(x,y,z,v) = \begin{pmatrix} F_x & \frac{-a_3x}{a_4} & \frac{-a_3x}{a_4} & F_v \\ a_2v & -a_1 - a_5 & 0 & a_2x \\ 0 & a_5 & -a_6 & 0 \\ -a_2v & 0 & a_7 & -a_2x - a_8 \end{pmatrix},$$

где

$$F_x = -a_1 - a_2v - a_3\left(\frac{2x + y + z}{a_4} - 1\right), \quad F_v = -\frac{a_0}{(1+v)^2} - a_2x.$$

В точке *E*₀ матрица Якоби имеет следующий вид:

$$J_0 = \begin{pmatrix} a_3 - a_1 - \frac{2x_0a_3}{a_4} & \frac{-a_3x_0}{a_4} & \frac{-a_3x_0}{a_4} & -a_0 - a_2x_0\\ 0 & -a_1 - a_5 & 0 & a_2x_0\\ 0 & a_5 & -a_6 & 0\\ 0 & 0 & a_7 & -a_2x_0 - a_8 \end{pmatrix}.$$

Очевидным собственным значением матрицы J_0 является

$$\lambda_1 = a_3 - a_1 - \frac{2x_0 a_3}{a_4}.$$

Отметим, что $-\lambda_1$ – это значение производной левой части квадратного уравнения (4) в точке x_0 , которое, таким образом, является положительным. Следовательно, $\lambda_1 < 0$.

Остальные три собственных значения представляют собой собственные значения блока третьего порядка в правом нижнем углу матрицы J₀. Запишем этот блок в виде

$$\begin{pmatrix} -\alpha_1 & 0 & \beta_1 \\ \beta_2 & -\alpha_2 & 0 \\ 0 & \beta_3 & -\alpha_3 \end{pmatrix},$$

где

 $\alpha_1 = a_1 + a_5, \quad \beta_1 = a_2 x_0, \quad \alpha_2 = a_6, \quad \beta_2 = a_5, \quad \alpha_3 = a_2 x_0 + a_8, \quad \beta_3 = a_7,$ (8)

т.е. все параметры α_i и β_i положительные.

Для анализа знаков действительных частей собственных значений используем критерий Гурвица [13, 16]. С этой целью запишем характеристический многочлен

$$P(\lambda) = (\alpha_1 + \lambda)(\alpha_2 + \lambda)(\alpha_3 + \lambda) - \beta_1 \beta_2 \beta_3 =$$
$$= \lambda^3 + (\alpha_1 + \alpha_2 + \alpha_3)\lambda^2 + (\alpha_1 \alpha_2 + \alpha_3 \alpha_1 + \alpha_2 \alpha_3)\lambda + \alpha_1 \alpha_2 \alpha_3 - \beta_1 \beta_2 \beta_3.$$
(9)

Для многочлена третьей степени $Q(\lambda) = \lambda^3 + a_1\lambda^2 + a_2\lambda + a_3$ условия критерия Гурвица сводятся к трём неравенствам:

 $a_1 > 0$, $a_1a_2 - a_3 > 0$, $a_3 > 0$.

В случае многочлена (9) эти неравенства принимают вид

$$\alpha_1 + \alpha_2 + \alpha_3 > 0, \quad (\alpha_1 + \alpha_2 + \alpha_3)(\alpha_1\alpha_2 + \alpha_3\alpha_1 + \alpha_2\alpha_3) - \alpha_1\alpha_2\alpha_3 + \beta_1\beta_2\beta_3 > 0, \quad \alpha_1\alpha_2\alpha_3 > \beta_1\beta_2\beta_3.$$

Первое и второе из этих неравенств выполняются при любых значениях параметров. Поэтому устойчивость многочлена $P(\lambda)$ определяется третьим неравенством, которое с учётом значений параметров (8) запишем как

$$(a_1 + a_5)a_6(a_2x_0 + a_8) > a_2x_0a_5a_7,$$

что эквивалентно неравенству (7). Теорема доказана.

5. Итоговые границы для траекторий системы. Как уже сказано, условием адекватности биологической модели является условие, что траектории не покидают неотрицательный ортант. Также биологического смысла не имеют траектории, уходящие в бесконечность, отсутствие которых можно назвать вторым условием адекватности модели.

КАНАТНИКОВ, ТКАЧЕВА

Построим итоговые границы траекторий системы (1) в неотрицательном ортанте, т.е. укажем ограниченную область в $\mathbb{R}^4_{+,0}$, в которую в конечном счёте попадает любая траектория системы.

Теорема 5. Все инвариантные компакты системы (1), содержащиеся в $\mathbb{R}^4_{+,0}$, содержатся в компактном политопе

$$\Pi = \{ (x, y, z, v) \in \mathbb{R}^4_{+,0} : x \leqslant x_1, \quad x + y \leqslant H_2, \quad z \leqslant z_{\max}, \quad v \leqslant v_{\max} \},$$

где

$$x_1 = \frac{a_8}{a_2(d-1)}, \quad H_2 = \max\left\{\frac{a_0}{a_1+a_5}, \frac{(a_3+a_5)a_4}{a_3}\right\}, \quad z_{\max} = \frac{a_5}{a_6}H_2, \quad v_{\max} = \frac{a_5a_7}{a_6a_8}H_2.$$

Доказательство. Используем итерационную процедуру построения локализирующих множеств, последовательно применяя несколько локализирующих функций.

В качестве первой локализирующей функции выберем $\phi_1(x, y, z, v) = x$. Тогда универсальное сечение $S(\phi_1)$ будет описываться уравнением

$$\frac{a_0}{1+v} - a_1 x - a_2 v x + a_3 x \left(1 - \frac{x+y+z}{a_4}\right) = 0.$$
(10)

Необходимо найти минимальное и максимальное значения x, при которых уравнение (10) имеет решения. Заметим, что данное уравнение – квадратное уравнение относительно x. Запишем его в виде

$$\frac{a_3}{a_4}x^2 + q_0(y, z, v)x - \frac{a_0}{1+v} = 0,$$
(11)

где $q_0(y, z, v) = a_3 a_4^{-1}(y+z) + a_2 v + (a_1 - a_3)$. Уравнение (11) имеет корни разных знаков, поэтому следует рассматривать только больший корень

$$x_{10} = \frac{a_4}{2a_3} \left(-q_0 + \sqrt{q_0^2 + 4\frac{a_0a_3}{a_4(1+v)}} \right) = \frac{2a_0}{1+v} \left(q_0 + \sqrt{q_0^2 + 4\frac{a_0a_3}{a_4(1+v)}} \right)^{-1}$$

Из второго представления величины x_{10} видно, что оно увеличивается при убывании q_0 . Следовательно, наименьшее значение $x_{\min} = 0$ достигается при $q_0 \to +\infty$ (например, при $y \to +\infty$ и фиксированных z и v). Максимальное значение x_{10} достигается при минимально возможном значении q_0 . Следовательно, необходимо положить y = z = 0. Далее анализируем переменную v и делаем вывод, что при убывании v величина x_{10} возрастает, так что необходимо положить v = 0. В результате получаем, что

$$x_{\max} = \frac{a_4(a_3 - a_1) + \sqrt{a_4^2(a_3 - a_1)^2 + 4a_4a_0a_3}}{2a_3} = x_0$$

Мы нашли локализирующее множество $\Omega_1 = \Omega(\phi_1)$, определяемое неравенствами $0 \leq x \leq x_0$.

В качестве следующей локализирующей функции выбираем $\phi_2(x, y, z, v) = x + y$. Тогда универсальное сечение будет описываться уравнением

$$\frac{a_0}{1+v} - a_1 x + a_3 x \left(1 - \frac{x+y+z}{a_4} \right) - (a_1 + a_5) y = 0.$$

Чтобы найти экстремальные значения локализирующей функции на универсальном сечении, исключим из уравнения универсального сечения y с помощью замены $y = \phi_2 - x$:

$$\frac{a_0}{1+v} - a_1 x + a_3 x \left(1 - \frac{\phi_2 + z}{a_4}\right) - (a_1 + a_5)(\phi_2 - x) = 0.$$

В таком виде уравнение позволяет выразить ϕ_2 через координатные переменные:

$$\phi_2(x,z,v) = \left(\frac{a_0}{1+v} + \left(a_3 + a_5 - \frac{z}{a_4}\right)x\right) \left(\frac{a_3x}{a_4} + a_1 + a_5\right)^{-1}.$$

Функция ϕ_2 в таком представлении неотрицательна, а нулевого значения достигает при $x = 0, v \to +\infty$, что определяет значение $\phi_{2,\min}$.

Её максимум по z и v при фиксированном x достигается при z = v = 0, так как функция по z и v убывает:

$$\phi_{2,\sup} = \max_{x} \phi_2(x,0,0) = \max_{x} \left\{ (a_0 + (a_3 + a_5)x) \left(\frac{a_3x}{a_4} + a_1 + a_5\right)^{-1} \right\}.$$
 (12)

Дробно-линейная функция переменного x в (12) монотонна на интервале $(0,\infty)$, поэтому её максимальное значение достигается либо при x = 0, либо при $x \to \infty$:

$$\phi_{2,\sup} = \max\left\{\frac{a_0}{a_1 + a_5}, \frac{(a_3 + a_5)a_4}{a_3}\right\} = H_2.$$

Таким образом, получаем второе локализирующее множество $\Omega_2 = \Omega(\phi_2)$, которое описывается неравенствами $0 \leq x + y \leq H_2$.

В качестве третьей локализирующей функции выбираем $\phi_3(x, y, z, v) = z$. Универсальное сечение $S(\phi_3)$ описывается уравнением $a_5y - a_6z = 0$, откуда находим $\phi_3 = z = a_5a_6^{-1}y$. Локализирующее множество Ω_2 даёт границы для переменной $y: 0 \leq y \leq H_2$. Поэтому

$$\phi_{3,\sup} = z_{\max} = \frac{a_5}{a_6} H_2, \quad \phi_{3,\inf} = z_{\min} = 0.$$

Таким образом, получаем третье локализирующее множество $\Omega_3 = \Omega(\phi_3, \Omega_2)$, которое описывается неравенствами

$$0 \leqslant z \leqslant \frac{a_5}{a_6} H_2, \quad 0 \leqslant x + y \leqslant H_2.$$

В качестве последней локализирующей функции выберем $\phi_4(x, y, z, v) = v$. Универсальное сечение для этой функции задаётся уравнением $a_7 z - a_2 v x - a_8 v = 0$, из которого имеем

$$\phi_4 = v = \frac{a_7 z}{a_2 x + a_8}.$$

Учитывая границы $0 \leq x \leq x_{\max}$, $0 \leq z \leq z_{\max}$, определяемые локализирующими множествами Ω_1 и Ω_3 , заключаем, что

$$\phi_{4,\inf} = v_{\min} = 0, \quad \phi_{4,\sup} = v_{\max} = \frac{a_7 z_{\max}}{a_8} = \frac{a_5 a_7}{a_6 a_8} H_2.$$

Мы получили локализирующее множество Ω_4 , которое описывается неравенствами $0 \leq \leq v \leq v_{\text{max}}$. Пересечение четырёх локализирующих множеств даёт политоп П. Теорема доказана.

Теорема 6. Политоп Π – положительно инвариантное множество, все траектории в $\mathbb{R}^4_{+,0}$ либо попадают в Π и остаются в этом множестве, либо неограниченно приближаются к нему.

Доказательство. Для доказательства этого факта рассмотрим политоп

$$\Pi(\varepsilon) = \{ (x, y, z, v) \in \mathbb{R}^4_{+,0} : x \leqslant x_1 + \varepsilon, \ x + y \leqslant H_2 + \varepsilon, \ z \leqslant z_{\max} + \varepsilon_1, \ v \leqslant v_{\max} + \varepsilon_2 \},$$

где число $\varepsilon > 0$ выбрано произвольно, а $\varepsilon_1 > 0$ и $\varepsilon_2 > 0$ будут далее подобраны в зависимости от значения ε . Покажем, что при соответствующем согласовании ε_1 , ε_2 с ε политоп $\Pi(\varepsilon)$ является положительно инвариантным.

Из доказательства теоремы 5 вытекает, что в полупространстве $x > x_{\text{max}}$ производная ϕ_1 не обращается в нуль и потому сохраняет знак. Легко убедиться в том, что эта производная отрицательна. Следовательно, на границе $x = x_{\text{max}} + \varepsilon$ политопа $\Pi(\varepsilon)$ векторное поле системы направлено внутрь политопа.

Аналогично в области $\phi_2(x, y, z, v) > H_2 + \varepsilon$ производная ϕ_2 сохраняет знак и является отрицательной, значит на границе $x + y = H_2 + \varepsilon$ политопа $\Pi(\varepsilon)$ траектории системы направлены внутрь политопа.

Ограничение $x + y \leq H_2 + \varepsilon$ даёт ограничение переменной $y: y \leq H_2 + \varepsilon$. В полосе $0 \leq y \leq H_2 + \varepsilon$ универсальное сечение $S(\phi_3)$ попадает в множество $0 \leq z \leq z_{\max} + a_5 a_6^{-1} \varepsilon$. Выбрав $\varepsilon_1 = 2a_5 a_6^{-1} \varepsilon$, заключаем, что в множестве $x + y < H_2 + \varepsilon$, $z > z_{\max} + \varepsilon_1$ производная $\dot{\phi}_3$ сохраняет знак и является отрицательной. Это означает, что на части границы $z = z_{\max} + \varepsilon_1$ политопа $\Pi(\varepsilon)$ траектории направлены внутрь.

Наконец, в политопе $\Pi(\varepsilon)$ имеется ограничение $0 \leq z \leq z_{\max} + \varepsilon_1$. При этом ограничении универсальное сечение $S(\phi_4)$ попадает в полосу $0 \leq v \leq a_7 a_8^{-1}(z_{\max} + \varepsilon_1)$. Следовательно, выбрав $\varepsilon_2 = 2a_7 a_8^{-1} \varepsilon_1$, получаем, что в множестве $0 \leq z \leq z_{\max} + \varepsilon_1$, $v > v_{\max} + \varepsilon_2$ производная $\dot{\phi}_4$ сохраняет знак и является отрицательной, значит на границе $v = v_{\max} + \varepsilon_2$ политопа $\Pi(\varepsilon)$ траектории системы направлены внутрь.

Тем самым доказано, что политоп $\Pi(\varepsilon)$, если выбраны $\varepsilon_1 = 2a_5a_6^{-1}\varepsilon$, $\varepsilon_2 = 2a_7a_8^{-1}\varepsilon_1$, является положительно инвариантным множеством, каково бы ни было $\varepsilon > 0$. Но имеем соотношения

$$\bigcap_{\varepsilon} \Pi(\varepsilon) = \Pi, \quad \bigcup_{\varepsilon} \Pi(\varepsilon) = \mathbb{R}^4_{+,0}.$$

Первое соотношение показывает, что политоп П является положительно инвариантным (как пересечение положительно инвариантных множеств). Второе соотношение означает, что траектория системы, стартующая в произвольной точке $x_* \in \mathbb{R}^4_{+,0}$, оказывается в одном из множеств П(ε), а в силу его положительной инвариантности не выходит за пределы этого множества. Так как все политопы П(ε) компактны, каждая траектория в $\mathbb{R}^4_{+,0}$ остаётся ограниченной при возрастании времени. Следовательно, у такой траектории ω -предельное множество не пусто и компактно. В силу теоремы 5 ω -предельное множество принадлежит П. Теорема доказана.

6. Условия глобальной асимптотической устойчивости. Условия глобальной асимптотической устойчивости для положения равновесия *E*₀ можно получить с помощью принципа инвариантности Ла-Салля.

Теорема 7. Если выполнено условие (7), то положение равновесия E_0 системы (1) является глобально асимптотически устойчивым.

Доказательство. Рассмотрим функцию $V = \eta_1 y + \eta_2 z + \eta_3 v$, положительные параметры η_1 , η_2 , η_3 которой подберём так, чтобы производная V этой функции в силу системы сохраняла знак.

Вычисляем производную *V*:

$$\dot{V} = \eta_1(a_2vx - a_1y - a_5y) + \eta_2(a_5y - a_6z) + \eta_3(a_7z - a_2vx - a_8v) = = v(a_2x(\eta_1 - \eta_3) - a_8\eta_3) + y(-(a_1 + a_5)\eta_1 + a_5\eta_2) + z(a_7\eta_3 - a_6\eta_2).$$

Условие $\dot{V} \leq 0$ выполняется внутри П при любых значениях переменных x, y, z, v тогда и только тогда, когда верны неравенства

$$a_2 x(\eta_1 - \eta_3) - a_8 \eta_3 < 0, \quad -(a_1 + a_5)\eta_1 + a_5 \eta_2 < 0, \quad a_7 \eta_3 - a_6 \eta_2 < 0.$$
⁽¹³⁾

Преобразуем записанные неравенства, разрешив их относительно параметров

$$\eta_1 < \frac{a_2 x + a_8}{a_2 x} \eta_3, \quad \eta_2 < \frac{a_1 + a_5}{a_5} \eta_1, \quad \eta_3 < \frac{a_6}{a_7} \eta_2.$$

Первое неравенство должно выполняться при всех допустимых значениях $x \in [0, x_{\max}]$, где $x_{\max} = x_0$, поэтому в нём выражение $(a_2x + a_8)/(a_2x)$ нужно заменить минимальным:

$$\eta_1 < \left(1 + \frac{a_8}{a_2 x_0}\right) \eta_3.$$

Второе и третье неравенства позволяют исключить параметр η_2 , в результате чего получим систему двух неравенств

$$\eta_1 < \left(1 + \frac{a_8}{a_2 x_0}\right) \eta_3, \quad \eta_3 < \frac{a_6(a_1 + a_5)}{a_7 a_5} \eta_1.$$

Эта система имеет решение относительно η_1 , η_3 , если

$$\frac{a_7 a_5}{a_6(a_1+a_5)} < 1 + \frac{a_8}{a_2 x_0},$$

что эквивалентно условию (7).

Итак, существуют такие значения параметров η_1 , η_2 , η_3 , что выполняются неравенства (13). Это означает, что $\dot{V} \leq 0$ в П, причём $\dot{V} = 0$ только при выполнении условий

$$y = z = v = 0.$$

Согласно принципу инвариантности Ла-Салля ω -предельные множества всех траекторий в $\mathbb{R}^4_{+,0}$ принадлежат максимальному положительно инвариантному множеству на оси Ox. Но таким является положение равновесия E_0 . Поэтому все траектории в $\mathbb{R}^4_{+,0}$ стремятся к E_0 . Теорема доказана.

7. О бифуркации потери устойчивости. Согласно теореме 4 при возрастании параметра *d* положение равновесия *E*₀ теряет устойчивость. Это происходит в момент, когда неравенство (7) переходит в равенство

$$d = 1 + \frac{a_8}{a_2 x_0}.$$
 (14)

В такой ситуации мы можем рассматривать параметр d как бифуркационный, а значение d, определяемое формулой (14), как бифуркационное. Возникает вопрос, какого рода бифуркация приводит к потере устойчивости?

Если выполнено равенство (14), то, согласно (6),

$$x_1 = a_8 \left(a_2 \left(1 + \frac{a_8}{a_2 x_0} - 1 \right) \right)^{-1} = x_0.$$

При этом $d_1 = a_0$, и из системы (5) заключаем, что $v_1 = 0$. Следовательно, $y_1 = z_1 = 0$.

Таким образом, в момент бифуркации положения равновесия E_0 и E_1 совпадают. На рис. 1 показаны изменения координат положений равновесия при возрастании параметра d.

Из проведённого анализа следует, что потеря устойчивости положения равновесия E_0 вызвана транскритической бифуркацией. При такой бифуркации происходит обмен собственными значениями: устойчивое собственное значение E_0 переходит к E_1 .

Динамика собственных значений двух положений равновесия при изменении бифуркационного параметра показана на рис. 2 (собственные значения λ_1 и λ_2 в обоих положениях равновесия являются комплексно-сопряжёнными, приведена динамика их действительной части). Видно, что действительные части собственных значений λ_1 , λ_2 , λ_3 обоих положений равновесия отрицательны, в то время как собственное значение λ_4 в момент бифуркации меняет знак: в положении равновесия E_0 с минуса на плюс, а в положении равновесия E_1 с плюса на минус. Таким образом, положение равновесия E_0 теряет устойчивость, а положение равновесия E_1 её приобретает.

Рис. 1. Графики зависимости координат x, y, z, v от параметра d.

Рис. 2. Графики зависимости собственных чисел от параметра d.

Заключение. В работе проведён анализ четырёхмерной модели взаимодействия вируса иммунодефицита человека с клетками иммунной системы. Доказано, что все траектории в неотрицательном ортанте $\mathbb{R}^4_{+,0}$ являются ограниченными и имеют ω -предельные множества в компактном политопе П. Также проведён анализ асимптотической устойчивости положения равновесия E_0 , отражающего отсутствие инфицированных клеток и вирусных частей в организме. Показано, что локальная асимптотическая устойчивость этого положения равновесия эквивалентна и глобальной асимптотической устойчивости. Потеря асимптотической устойчивости происходит в рамках транскритической бифуркации, при этом в неотрицательном ортанте возникает второе положение равновесия, которое в рассмотренном примере оказывается устойчивым. Это положение равновесия можно интерпретировать как стабилизировавшееся состояние болезни. Исследование не отвечает на вопрос, всегда ли второе положение равновесия приобретает асимптотическую устойчивость и сохраняет ли её при дальнейшем изменении параметров системы.

Работа выполнена при поддержке программы "Приоритет 2030" МГТУ имени Н.Э. Баумана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Kirschner D., Lenhart S., Serbin S. Dynamics of HIV infection of CD4+T cells // Math. Biosci. 1993. V. 114. P. 81–125.
- Perelson A.S., Nelson P.W. Mathematical analysis of HIV-1 dynamics in vivo // SIAM Rev. 1999. V. 41. P. 3–44.
- 3. *Elaiw A.M.* Global properties of a class of HIV models // Nonlin. Anal. Real World Appl. 2010. V. 11. P. 2253–2263.
- Hadjiandreou M., Conejeros R., Vassiliadis V.S. Towards a long-term model construction for the dynamic simulation of HIV infection // Math. Biosci. Eng. 2007. V. 4. P. 489–504.
- De Leenheer P., Smith H.L. Virus dynamics: a global analysis // SIAM J. Appl. Math. 2003. V. 63. P. 1313–1327.
- 6. Nowak M., May R.M. Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford, 2000.
- 7. Dehghan M., Nasri M., Razvan M.R. Global stability of a deterministic model for HIV infection in vivo // Chaos, Solitons & Fractals. 2007. V. 34. P. 1225–1238.
- Kirschner D., Lenhart S., Serbin S. Optimal control of the chemotherapy of HIV // J. Math. Biol. 1997. V. 35. P. 775–792.
- 9. Малинецкий Г.Г. Математические основы синергетики. М., 2017.
- 10. Крищенко А.П. Локализация инвариантных компактов динамических систем // Дифференц. уравнения. 2005. V. 41. № 12. С. 1597–1604.
- 11. Канатников А.Н., Крищенко А.П. Инвариантные компакты динамических систем. М., 2011.
- 12. *Крищенко А.П.* Поведение траекторий автономных систем // Дифференц. уравнения. 2018. Т. 54. № 11. С. 1445–1450.
- 13. Халил Х.К. Нелинейные системы. М.; Ижевск, 2009.
- 14. Starkov K.E., Kanatnikov A.N. Eradication conditions of infected cell populations in the 7-order HIV model with viral mutations and related results // Math. 2021. V. 9. Art. 1862.
- 15. Kanatnikov A.N., Krishchenko A.P. Iteration procedure of localization in a chronic Leukemia model // AIP Conf. Proc. 2020. Art. 210004-1.
- 16. Четаев Н.Г. Устойчивость движения. М., 1965.

Московский государственный технический университет имени Н.Э. Баумана Поступила в редакцию 01.05.2023 г. После доработки 01.05.2023 г. Принята к публикации 20.09.2023 г.