= ТЕОРИЯ УПРАВЛЕНИЯ =

УДК 517.977.5

ОБ ОДНОМ КЛАССЕ ЗАДАЧ УПРАВЛЕНИЯ СО СМЕШАННЫМИ ОГРАНИЧЕНИЯМИ

© 2023 г. А. В. Арутюнов, Д. Ю. Карамзин

Исследована задача оптимального управления с нерегулярным смешанным ограничением, линейным по переменной управления. Предложены необходимые условия оптимальности в форме принципа максимума Понтрягина для такого класса задач. Рассмотрены соответствующие примеры.

DOI: 10.31857/S037406412304009X, EDN: ANTGIC

Введение. В работе исследуется один класс задач оптимального управления с нерегулярным смешанным ограничением, которое линейно по управляющему параметру. Приведём пример такой нерегулярной задачи.

Пример 1. Зафиксируем произвольную точку $a \in (0,1)$. На фиксированном отрезке [0,1] рассмотрим следующую одномерную задачу оптимального управления с закреплёнными концами:

$$\begin{cases} \int_{0}^{1} x(t) dt \to \min, \\ \dot{x}(t) = u(t), \\ (t - a)u(t) - x(t) \leq 0, \\ x(0) = 0, \quad x(1) = 1. \end{cases}$$
 (1)

В этой задаче существует допустимое управление, которое имеет вид $\bar{u}(t)=0$ при $t\leqslant a,$ $\bar{u}(t)=1/(1-a)$ при t>a. Соответствующая ему траектория имеет вид $\bar{x}(t)=0$ при $t\leqslant a,$ $\bar{x}(t)=(t-a)/(1-a)$ при t>a. Покажем, что этот процесс оптимален.

Для произвольного допустимого процесса $(x(\cdot),u(\cdot))$, используя интегрирование по частям, имеем

$$\int_{0}^{1} x(t) dt \geqslant \int_{0}^{1} (t - a)u(t) dt = \int_{0}^{1} (t - a)\dot{x}(t) dt = (t - a)x(t)|_{0}^{1} - \int_{0}^{1} x(t) dt.$$

Следовательно, справедливо неравенство

$$\int_{0}^{1} x(t) dt \geqslant \frac{1-a}{2}.$$

Однако в то же время

$$\int\limits_{0}^{1} \bar{x}(t) dt = \frac{1-a}{2},$$

что доказывает искомое утверждение.

В задаче (1) нарушаются условия регулярности смешанных ограничений при t=a. Применим формально к этой задаче известные условия оптимальности. Имеем

$$H(x, u, t, \psi, \lambda) = \psi u - \lambda x.$$

Поэтому $\dot{\psi}(t) = \lambda + \nu(t)$ – измеримая ограниченная неотрицательная функция, где $\lambda \geqslant 0$ – константа, ν – множитель Лагранжа, отвечающий за смешанные ограничения. Вместе с тем условие Эйлера–Лагранжа даёт

$$\psi(t) = (t - a)\nu(t).$$

Из этих двух равенств следует, что $\nu(t)$ – непрерывно дифференцируемая функция при $t \neq a$ и имеет место равенство $(t-a)\dot{\nu}(t) = \lambda$. Отсюда получим

$$\nu(t) = \nu(0) + \int_{0}^{t} \frac{\lambda}{s - a} \, ds.$$

Однако функция $\nu(t)$ неотрицательна, поэтому неограниченность интеграла влечёт за собой, что $\lambda=0$ и, следовательно, $\nu(t)$ постоянна при t< a и t>a. Поскольку $\lambda=\psi(a)=0$, то здесь известное условие нетривиальности

$$\lambda + |\psi(t)| > 0$$
 для любого $t \in [0,1]$

нарушено в точке t = a, в которой условие максимума неинформативно.

Рассмотрим ещё один двумерный пример задачи с фиксированным левым и свободным правым концами.

Пример 2. На отрезке [0,1] рассмотрим задачу оптимального управления

$$\begin{cases}
-\int_{0}^{1} x^{1}(t) dt \to \min, \\
\dot{x}^{1}(t) = u(t), \\
\dot{x}^{2}(t) = 2t, \\
tu(t) - x^{2}(t) \leqslant 0, \\
x(0) = 0.
\end{cases}$$
(2)

Здесь очевиден оптимальный процесс $\bar{u}(t)=t, \ \bar{x}(t)=(\bar{x}^1(t),\bar{x}^2(t))=(t^2/2,t^2).$ Условие регулярности смешанных ограничений нарушается при t=0. Применим формально принцип максимума. Имеем

$$H(x, u, \psi, t, \lambda) = \psi_1 u + 2t\psi_2 + \lambda x^1.$$

Значит, $\dot{\psi}_1(t)=-\lambda,\ \psi_1(1)=0,$ в то время как $\dot{\psi}_2(t)=-\nu(t),\ \psi_2(1)=0.$ Условие Эйлера-Лагранжа даёт равенство

$$\psi_1(t) = t
u(t)$$
 для п.в. $t \in [0,1]$.

Отсюда, поскольку $\nu(t)$ ограничена, $\psi_1(0)=0$, следовательно, $\psi_1=0$ и $\lambda=0$. Значит, $\nu=0$ и, таким образом, $\psi_2=0$. Получили, что все множители Лагранжа равны нулю одновременно. Поэтому следует вывод, что функция $\nu(t)$ может не быть ограниченной в задаче с нерегулярными смешанными ограничениями.

Эти примеры демонстрируют, что класс существенно ограниченных измеримых функций является слишком узким, чтобы гарантировать включение для множителя Лагранжа, отвечающего нерегулярным смешанным ограничениям. Поэтому возникает естественный вопрос о более широком пространстве для этого множителя и соответственно об уточнённых необходимых условиях оптимальности для задач со смешанными ограничениями, которые не удовлетворяют известному условию регулярности. В настоящей работе предпринимается попытка найти такие пространство и условия, в частном случае, ограничений, линейных по переменной управления. Оказывается, что, как и в случае чистых фазовых ограничений, здесь возможно ограничиться запасом борелевских мер.

1. Постановка задачи, определения и основной результат. На фиксированном отрезке времени рассмотрим задачу оптимального управления со смешанными ограничениями

мотрим задачу оптимального управления со смешанными ограничениями
$$\begin{cases} \Phi(x_0,u(\cdot)) := \varphi(p) + \int\limits_0^1 f_0(x(t),u(t),t) \, dt \to \min, \\ \dot{x}(t) = f(x(t),u(t),t), \quad t \in [0,1], \\ g(x(t),t) + \langle u(t),a(t) \rangle \leqslant 0, \\ u(t) \in U$$
 для п.в. $t, p \in S$.

Здесь $p=(x_0,x_1),\ x_0=x(0),\ x_1=x(1),\ \langle\cdot\,,\cdot\rangle$ означает скалярное произведение векторов. Множества $U\subseteq\mathbb{R}^m$ и $S\subseteq\mathbb{R}^{2n}$ выпуклы и компактны. Отображения $\varphi:\mathbb{R}^{2n}\to\mathbb{R},\ f:\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}^n$ \mathbb{R}^n \mathbb{R}^n предполагаются непрерывно дифференцируемыми. При этом считается, что f – линейное отображение по переменной управления u, т.е.

$$f(x, u, t) = f_1(x, t) + F(x, t)u,$$

а $f_{\underline{0}}$ – выпуклая функция по u.

Пара функций (x,u) называется процессом управления, если $x(\cdot)$ абсолютно непрерывна, $u(\cdot)$ измерима и существенно ограничена, и $\dot{x}(t)=f(x(t),u(t),t)$ для п.в. $t\in[0,1]$. Процесс управления называется допустимым, если он удовлетворяет всем наложенным ограничениям задачи (3). Напомним, что допустимый процесс (\bar{x},\bar{u}) называется сильным минимумом в задаче (3), если существует число $\varepsilon_0>0$ такое, что для любого допустимого процесса (x,u) такого, что $|x(t)-\bar{x}(t)|\leqslant \varepsilon_0$ для любого $t\in[0,1]$, имеет место неравенство $\Phi(\bar{x}_0,\bar{u}(\cdot))\leqslant \leqslant \Phi(x_0,u(\cdot))$, где $\bar{x}_0=\bar{x}(0)$.

Введём обозначение

$$U(x,t) := \{ u \in U : r(x,u,t) \le 0 \},\$$

где $r(x,u,t) := g(x,t) + \langle a(t),u \rangle$. Рассмотрим подмножество $U_R(x,t)$ множества U(x,t), которое состоит из точек $u \in U(x,t)$, отвечающих следующему условию непрерывности: для любой окрестности O_u точки u найдётся окрестность O_x точки x такая, что $U(y,t) \cap O_u \neq \emptyset$ при всех $y \in O_x$. На простом примере проиллюстрируем как устроено множество точек непрерывности $U_R(x,t)$.

Рассмотрим случай, когда $U = \{u \in \mathbb{R}^m : |u| \leq 1\}$ – единичный шар. Зафиксируем точку $t_* \in [0,1]$ и пусть $a_* = a(t_*) \neq 0$. Пусть $\Gamma(x)$ обозначает гиперплоскость $g(x,t_*) + \langle a_*,u \rangle = 0$. Тогда имеют место несколько случаев.

- 1. Гиперплоскость $\Gamma(x)$ касается сферы $S^{m-1} = \partial U$ в точке u_* , и векторы u_* и a_* сонаправлены. В этом случае $U_R(x,t_*) = U(x,t_*)$ как следствие непрерывности функции g.
- 2. Гиперплоскость $\Gamma(x)$ пересекает сферу S^{m-1} более чем в одной точке. Тогда, очевидно, также имеем $U_R(x,t_*)=U(x,t_*)$.
- 3. Гиперплоскость $\Gamma(x)$ касается сферы S^{m-1} в точке u_* , и векторы u_* и a_* разнонаправлены. При этом в любой окрестности x существует хотя бы одно положительное значение функции $g(\cdot,t_*)+\langle a_*,u_*\rangle$. В этом случае $U_R(x,t_*)=\varnothing$.
- 4. Гиперплоскость $\Gamma(x)$ касается сферы S^{m-1} в точке u_* , и векторы u_* и a_* разнонаправлены. При этом $g(y,t_*) \leqslant -\langle a_*,u_* \rangle$ для всех y из некоторой окрестности точки x. Тогда $U_R(x,t_*) = U(x,t) = \{u_*\}$.
- 5. Гиперплоскость $\Gamma(x)$ не пересекает сферу S^{m-1} . В этом случае $U_R(x,t_*) = U(x,t_*)$. Таким образом, в разобранном примере всегда имеем равенство $U_R(x,t_*) = U(x,t_*)$, за исключением случая 3, в котором $U_R(x,t_*) = \emptyset \neq U(x,t_*)$.

Положим $\Theta(x,t) := \operatorname{cl} U_R(x,t)$, если $a(t) \neq 0$, и $\Theta(x,t) := U$, если $a(t) \neq 0$.

Условие непрерывности, с помощью которого определяется $\Theta(x,t)$, является некоторым общим предположением. Необходимо привести достаточные условия для проверки включения $u \in U_R(x,t)$. Сделаем это.

Обозначим через $N_U(u)$ нормальный конус ко множеству в точке, т.е.

$$N_U(u) = \{v \in \mathbb{R}^m : \langle v, w - u \rangle \leqslant 0$$
для любых $w \in U\}.$

Будем говорить, что точка $u \in U(x,t)$ регуляриа, если при $u \in U_0(x,t)$ выполняется условие $a(t) \notin -N_U(u)$, где $U_0(x,t) = \{u \in U : r(x,u,t) = 0\}$. Для каждой регулярной точки $u \in U(x,t)$ имеет место включение $u \in U_R(x,t)$. Этот факт вытекает из теоремы устойчивости Робинсона [1]. Действительно, регулярность точки u означает выполнение условия Робинсона для вариационной системы

$$\binom{r(x, u, t)}{u} \in (-\infty, 0] \times U,$$

которое заключается в том, что ядро сопряжённого оператора производной по u отображения слева имеет тривиальное пересечение с нормальным конусом ко множеству справа.

Рассмотрим функцию

$$\gamma(x,t) := \min_{u \in U_0(x,t)} \max_{q \in N_U(u)^* \cap B_1(0)} \langle a(t), q \rangle,$$

где K^* означает сопряжённый конус, $B_{\varepsilon}(x)$ – замкнутый шар радиуса ε с центром в x. Если $U_0(x,t)=\varnothing$, то по определению $\gamma(x,t)=+\infty$. Из того, что многозначные отображения $U_0(x,t)$ и $N_U(u)$ полунепрерывны сверху, а значит, $N_U(u)^*$ полунепрерывно снизу, непосредственно вытекает, что $\gamma(x,t)$ является полунепрерывной снизу функцией. Отсюда также имеем, что эта функция – борелевская, что используем ниже. Кроме того, $\gamma(x,t)\geqslant 0$.

Пусть E – заданное измеримое множество на прямой и $\tau \in E$. Обозначим через $\mathcal{F}(\tau; E)$ семейство замкнутых подмножеств $D \subseteq E$, которые обладают тем свойством, что $\tau \in D$ и точка τ является точкой плотности множества D.

Рассмотрим функцию Гамильтона-Понтрягина (см. [2, гл. 1, с. 24])

$$\mathcal{H}(x, u, t, \psi, \lambda) := \langle \psi, f(x, u, t) \rangle - \lambda f_0(x, u, t).$$

Сформулируем принцип максимума.

Определение 1. Процесс управления (\bar{x}, \bar{u}) удовлетворяет принципу максимума, если существуют множители Лагранжа: число $\lambda \geqslant 0$, вектор-функция с ограниченным изменением $\psi(t)$ и борелевская мера $\eta \geqslant 0$ такие, что выполняются следующие условия:

условие нетривиальности

$$\lambda + |\psi(0)| + ||\eta|| \neq 0;$$

сопряжённое уравнение

$$\psi(t) = \psi(0) - \int_{0}^{t} \mathcal{H}'_{x}(\bar{x}(s), \bar{u}(s), s, \psi(s), \lambda) ds + \int_{[0,t]} g'_{x}(\bar{x}(s), s) d\eta, \quad t \in (0,1];$$
(4)

условия трансверсальности

$$(\psi(0), -\psi(1)) \in \lambda \varphi'(\bar{p}) + N_S(\bar{p}); \tag{5}$$

условие максимума

$$\max_{u \in \Theta(\bar{x}(t),t)} \mathcal{H}(\bar{x}(t),u,t,\psi(t),\lambda) \leqslant \mathcal{H}(\bar{x}(t),\bar{u}(t),t,\psi(t),\lambda) \quad \text{для п.в.} \quad t \in [0,1];$$
 (6)

условие Эйлера—Лагранжа, которое принимает вид: для п.в. $t \in [0,1]$ существует множество $D \in \mathcal{F}(t;[0,1])$ такое, что

$$H_n'(\bar{x}(t), \bar{u}(t), t, \psi(t), \lambda) \in a(t)\mathcal{D}_n(t; D) + N_U(\bar{u}(t)), \tag{7}$$

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 59 № 4 2023

где $\mathcal{D}_{\eta}(t;D)$ – обобщённая производная меры η в смысле предела*)

$$\mathcal{D}_{\eta}(t;D) := \limsup_{\varepsilon \to 0} \frac{\eta(D \cap B_{\varepsilon}(t))}{2\varepsilon};$$

условие дополняющей нежёсткости, которое состоит из двух частей:

(a) для п.в. $t \in E := \{s \in [0,1]: r(\bar{x}(s),\bar{u}(s),s) < 0\}$ существует множество $D \in \mathcal{F}(t;E)$ такое, что

$$\mathcal{D}_{\eta}(t;D) = \{0\}; \tag{8}$$

(b) для любого отрезка $[c,d] \subseteq \{t \in [0,1] : a(t) = 0\}$ имеет место равенство

$$\int_{[c,d]} g(\bar{x}(t),t) \, d\eta = 0.$$

Кроме того, при каждых $t \in [0,1]$ и $\varepsilon > 0$ таких, что

$$B_{\varepsilon}(t) \cap [0,1] \subseteq \{s \in [0,1] : U_R(\bar{x}(s),s) \neq \varnothing\},\$$

имеет место оценка

$$\int_{B_{\varepsilon}(t) \cap [0,1]} \gamma(\bar{x}(s), s) \, d\eta \leqslant \text{const} \cdot \varepsilon. \tag{9}$$

Множество D в условиях (7) и (8) можно взять одним и тем же для п.в. $t \in E$.

Основной результат данной работы содержится в следующей теореме.

Теорема. Пусть процесс управления $(\bar{x}(\cdot), \bar{u}(\cdot))$ является сильным минимумом в задаче (3). Тогда $(\bar{x}(\cdot), \bar{u}(\cdot))$ удовлетворяет принципу максимума.

Приведём небольшой комментарий. Условие максимума (6) принимает нестандартную форму, так как максимум берётся по некоторому подмножеству $\Theta(\bar{x}(t),t)$ исходного допустимого множества $U(\bar{x}(t),t)$. Это подмножество содержит замыкание регулярных точек допустимого множества, но может оказаться пустым. В таком случае максимум полагается равным $-\infty$. Заметим, что неравенство (6) может быть строгим, а условие максимума в форме (6) обобщает аналогичное условие из статьи [3].

Обратимся к условию Эйлера–Лагранжа (7). Поскольку скалярная монотонная функция $\eta([0,t])$ почти всюду дифференцируема, а её производная почти всюду совпадает с плотностью абсолютно непрерывной компоненты меры $m(t) := d\eta_{\rm ac}/dt$, из (7) несложно с помощью леммы об измеримом селекторе выводится существование такой функции $\xi \in \mathbb{L}_1([0,1];\mathbb{R})$, что справедливо включение

$$H'_{u}(\bar{x}(t), \bar{u}(t), t, \psi(t), \lambda) - \xi(t)a(t) \in N_{U}(\bar{u}(t)).$$

При этом $\xi(t) \in [0, m(t)]$ для п.в. $t \in [0, 1]$. Поскольку множество D можно взять одним и тем же и в (7), и в (8), то для функции $\xi(\cdot)$ из (8) также имеем равенство

$$\xi(t)r(\bar{x}(t),\bar{u}(t),t)=0$$
 для п.в. t .

Приходим к условию Эйлера—Лагранжа в форме, предложенной в книге [4, гл. 1]. Осуществим и обратный переход, а значит, имеют место эквивалентные формы записи некоторых условий оптимальности из числа представленных здесь и в [4].

Рассмотрим условие дополняющей нежёсткости. Вторая часть этого условия, справедливая при a(t)=0, стандартна, т.е. такая же, как и в обычном принципе максимума для задачи с фазовыми ограничениями. Относительно же первой его части, ввиду условия "п.в." в (8),

^{*)} Здесь Lim sup означает множество всех предельных точек, или так называемый верхний предел в смысле Куратовского (см. [3]).

ничто не "запрещает" мере η иметь атом в любой точке отрезка [0,1], где $a(t) \neq 0$. Однако этот факт может оказаться в противоречии с оценкой (9) при наличии подходящих условий регулярности. Перейдём к таким условиям.

Определение 2. Траектория $\bar{x}(\cdot)$ называется регулярной в точке $t_0 \in [0,1]$ относительно смешанных ограничений, если для любой точки $u \in U_0(\bar{x}(t_0),t_0)$ существует такое $d=d(u,t_0)\in N_U(u)^*\bigcap S^{m-1}$, что выполняется неравенство $\langle a(t_0),d\rangle>0$. Траектория регулярна относительно смешанных ограничений, если она регулярна в каждой точке $t\in [0,1]$ равномерно по t, т.е. существует $\alpha_0>0$ такое, что $\langle a(t),d(u,t)\rangle>\alpha_0$ для всех $t\in [0,1]$ и $u\in U_0(\bar{x}(t),t)$.

Рассмотрим точку $t_0 \in [0,1]$, в которой траектория регулярна относительно смешанных ограничений. Из теоремы устойчивости Робинсона [1] вытекает, что $U_R(\bar{x}(t),t) \neq \varnothing$ для всех t из некоторой окрестности точки t_0 . С другой стороны, в силу определений и свойства компактности несложно проверяется, что $\gamma(\bar{x}(t_0),t_0)>0$. Поскольку γ полунепрерывна снизу, отсюда в силу (9) следует, что мера η абсолютно непрерывна в окрестности точки t_0 и, более того, липшицева (т.е. её производная Радона—Никодима существенно ограничена). Тогда, как несложно видеть, в окрестностях таких регулярных точек t_0 принцип максимума из определения 1 превращается в обычный принцип максимума, справедливый для регулярных смешанных ограничений (см. [5–7]).

Рассмотрим теперь точку $t_0 \in [0,1]$ такую, что a(t)=0 для всех t из некоторой окрестности t_0 . В такой окрестности, очевидно, будут выполнены условия обычного принципа максимума для задач с фазовыми ограничениями, и, в частности, если a(t)=0 для любого $t\in [0,1]$, то определение 1 представляет собой известный принцип максимума в форме Дубовицкого—Милютина [8,9].

2. Доказательство теоремы **1.** Предположения линейности и выпуклости позволяют воспользоваться методом штрафов (см. [6, гл. 2]). Пусть i – произвольное натуральное число. Зафиксируем $\varepsilon > 0$ и рассмотрим штрафную задачу

$$\begin{cases} \Phi_{i}(x_{0}, u(\cdot)) := \Phi(x_{0}, u(\cdot)) + i \int_{0}^{1} (r(x(t), u(t), t)^{+})^{2} dt + \\ + |p - \bar{p}|^{2} + \varepsilon \int_{0}^{1} |u(t) - \bar{u}(t)|^{2} dt \to \min, \\ \dot{x}(t) = f(x(t), u(t), t), \\ p \in S, \\ |x(t) - \bar{x}(t)| \leqslant \varepsilon \quad \text{для любого} \quad t \in [0, 1], \\ u(t) \in U \quad \text{для п.в.} \quad t \in [0, 1]. \end{cases}$$

$$(10)$$

В силу предположений линейности и выпуклости, поскольку U – компакт, решение задачи (10) существует по теореме А.Ф. Филиппова [10]. Обозначим это решение через $(x_{0,i},u_i(\cdot))$, а через $x_i(\cdot)$ и p_i – траекторию и концевой вектор соответственно. Используя стандартные рассуждения, основанные на секвенциальной компактности, переходя к подпоследовательности, имеем сходимости $p_i \to p, \ u_i \stackrel{w}{\to} u$ слабо в $\mathbb{L}_2([0,1];\mathbb{R}^m)$ для некоторых $p = (x_0,x_1)$ и $u(\cdot)$. Тогда $x_i(t) \rightrightarrows x(t)$ равномерно на отрезке [0,1], где $x(\cdot)$ – абсолютно непрерывная функция такая, что $\dot{x}(t) = f(x(t),u(t),t)$ и $x(0) = x_0$.

Покажем что процесс управления $(x(\cdot), u(\cdot))$ допустим в исходной задаче (3). Действительно, имеем $\Phi_i(x_{0,i}, u_i(\cdot)) \leqslant \Phi_i(\bar{x}_0, \bar{u}(\cdot))$, откуда

$$\int_{0}^{1} (r(x_{i}(t), u_{i}(t), t)^{+})^{2} dt \leqslant \frac{\text{const}}{i}.$$

Отсюда при $i \to \infty$ следует, что $u(t) \in U(x(t),t)$ для п.в. $t \in [0,1]$, так как выпуклый функционал, стоящий в левой части, слабо полунепрерывен снизу. При этом также используется

тот факт, что выпуклое замкнутое множество в гильбертовом пространстве слабо замкнуто. Также очевидно, что $p \in S$. Таким образом, $(x(\cdot), u(\cdot))$ – допустимый процесс в задаче (3). Докажем, что $x(\cdot) = \bar{x}(\cdot)$ и $u(\cdot) = \bar{u}(\cdot)$. Имеем

$$\Phi(x_{0,i}, u_i(\cdot)) + |p_i - \bar{p}|^2 + \varepsilon \int_0^1 |u_i(t) - \bar{u}(t)|^2 dt \leqslant \Phi_i(x_{0,i}, u_i(\cdot)) \leqslant \Phi_i(\bar{x}_0, \bar{u}(\cdot)) = \Phi(\bar{x}_0, \bar{u}(\cdot)).$$

Используя слабую полунепрерывность снизу и переходя к пределу в последнем выражении, получаем неравенство

$$\Phi(x_0, u(\cdot)) + |p - \bar{p}|^2 + \varepsilon \int_0^1 |u(t) - \bar{u}(t)|^2 dt \leqslant \Phi(\bar{x}_0, \bar{u}(\cdot)).$$

Однако процесс $(x(\cdot),u(\cdot))$ допустим, поэтому $\Phi(x_0,u(\cdot))\geqslant \Phi(\bar{x}_0,\bar{u}(\cdot))$. Тогда $x(\cdot)=\bar{x}(\cdot),$ $u(\cdot)=\bar{u}(\cdot)$. Таким образом, установлено, что $x_i(t) \rightrightarrows \bar{x}(t), \ u_i(t) \overset{w}{\to} \bar{u}(t)$ при $i\to\infty,\ t\in[0,1]$. Более того, в силу полученной оценки $u_i(\cdot)\to\bar{u}(\cdot)$ сильно в пространстве L_2 после перехода к подпоследовательности можно считать, что $u_i(t)\to\bar{u}(t)$ для п.в. $t\in[0,1]$.

Используя то, что $|x_i(t) - \bar{x}(t)| < \varepsilon$ для всех t и всех достаточно больших i, применим к штрафной задаче известный принцип максимума (см., например, [11, теорема 6.27]). Существуют число $\lambda_i \geqslant 0$ и абсолютно непрерывная функция $\psi_i(\cdot)$, которые одновременно не равны нулю, такие, что имеют место равенства

$$\dot{\psi}_i(t) = -\mathcal{H}'_x(x_i(t), u_i(t), t, \psi_i(t), \lambda_i) + 2\lambda_i i r(x_i(t), u_i(t), t)^+ g'_x(x_i(t), t), \tag{11}$$

$$(\psi_i(0), -\psi_i(1)) \in \lambda_i \varphi'(p_i) + N_S(p_i) + 2\lambda_i (p_i - \bar{p}), \tag{12}$$

$$\max_{u \in U} (\mathcal{H}(x_i(t), u, t, \psi_i(t), \lambda_i) - \lambda_i i (r(x_i(t), u, t)^+)^2 - \lambda_i \varepsilon |u - \bar{u}(t)|^2) =$$

$$= \mathcal{H}(x_i(t), u_i(t), t, \psi_i(t), \lambda_i) - \lambda_i i(r(x_i(t), u_i(t), t)^+)^2 - \lambda_i \varepsilon |u_i(t) - \bar{u}(t)|^2$$
(13)

для п.в. $t \in [0, 1]$.

Из условия максимума (6) вытекает уравнение Эйлера-Лагранжа в форме

$$\mathcal{H}'_{u}(x_{i}(t), u_{i}(t), t, \psi_{i}(t), \lambda_{i}) - 2\lambda_{i}ir(x_{i}(t), u_{i}(t), t)^{+}a(t) - 2\lambda_{i}\varepsilon(u_{i}(t) - \bar{u}(t)) \in N_{U}(u_{i}(t))$$

$$(14)$$

для п.в. $t \in [0,1]$.

Из метода штрафов следует, что

$$i\int_{0}^{1} (r(x_{i}(t), u_{i}(t), t)^{+})^{2} dt \to 0 \quad \text{при} \quad i \to \infty.$$
 (15)

Обозначим через η_i абсолютно непрерывную борелевскую меру такую, что

$$\eta_i(B) = 2\lambda_i i \int_B r(x_i(t), u_i(t), t)^+ dt.$$

Пронормируем множители Лагранжа следующим образом:

$$\lambda_i + |\psi_i(0)| + ||\eta_i|| = 1. \tag{16}$$

Из (16), используя слабую-* секвенциальную компактность в пространстве борелевских мер и переходя к подпоследовательности, имеем сходимость $\eta_i \stackrel{w}{\to} \eta$ для некоторой борелевской меры η на $\sigma([0,1])$. При этом $\|\eta_i\| \to \|\eta\|$. Также в силу компактности имеем $\lambda_i \to \lambda$

для некоторого числа $\lambda \geqslant 0$ и $\psi_i(t) \rightarrow \psi(t)$ для некоторой функции ψ с ограниченным изменением на [0, 1]. Причём сходимость имеет место для всех точек непрерывности функции ψ , включая концы отрезка времени. Здесь учтено то, что последовательность функций $\psi_i(t)$ равномерно ограничена. Это несложно вытекает из (11), (16) и неравенства Гронуолла. Существование искомой функции $\psi(t)$ следует из теоремы Хелли.

Теперь перейдём последовательно к пределу в условиях (11)-(14). Переходя к пределу в (11) стандартным образом, используя интегральную форму представления, получаем (4). Переходя к пределу в (12), используя свойство полунепрерывности сверху предельного нормального конуса, приходим к условию (5).

Перейдём к пределу в условии максимума (13). По определению множества $U_R(x,t)$ для всех $t \in [0,1]: a(t) \neq 0$ и $u \in U_R(\bar{x}(t),t)$ при каждом достаточно большом i существует вектор $v_i \in U(x_i(t),t)$ такой, что $|v_i-u| \to 0$ при $i \to \infty$. Поэтому, подставляя при заданном t в условие максимума (13) в качестве u вектор v_i и переходя к пределу при $i \to \infty$, приходим к условию

$$\mathcal{H}(\bar{x}(t), u, t, \psi(t), \lambda) - \lambda \varepsilon |u - \bar{u}(t)|^2 \leqslant \mathcal{H}(\bar{x}(t), \bar{u}(t), t, \psi(t), \lambda)$$

для любого $u \in U_R(\bar{x}(t),t)$ и п.в. t таких, что $a(t) \neq 0$. При этом мы использовали тот факт, что в силу (15) с точностью до подпоследовательности можно считать, что

$$i(r(x_i(t), u_i(t), t)^+)^2 \to 0$$
 для п.в. $t \in [0, 1]$.

Для п.в. $t \in [0,1]$ таких, что a(t) = 0, очевидно, имеем

$$\max_{u \in U} (\mathcal{H}(\bar{x}(t), u, t, \psi(t), \lambda) - \lambda \varepsilon |u - \bar{u}(t)|^2) = \mathcal{H}(\bar{x}(t), \bar{u}(t), t, \psi(t), \lambda).$$

Перейдём к пределу в (14). По теореме Егорова для любого $\delta > 0$ существует измеримое множество E_{δ} : $\ell(E_{\delta}) \geqslant 1 - \delta$, на котором последовательность функций $u_i(t)$ сходится равномерно к $\bar{u}(t)^*$). Рассмотрим точку $t_0 \in E_\delta$ такую, что t_0 есть точка плотности E_δ и одновременно точка аппроксимативной непрерывности $\bar{u}(t)$. Известно, что почти все точки множества обладают такими свойствами. Рассмотрим измеримое подмножество $D = D(t_0, \delta) \subseteq E_{\delta}$, для

которого
$$t_0 \in D$$
 и справедливы равенства: i) $\lim_{h \to 0} \frac{\ell(D \bigcap [t_0 - h, t_0 + h])}{2h} = 1;$ ii) $\lim_{D} \bar{u}(t) = \bar{u}(t_0).$

ii)
$$\lim_{\substack{t \to t_0}} \bar{u}(t) = \bar{u}(t_0).$$

Модификация множества D, которая для упрощения изложения опускается, позволяет считать, что D – замкнутое множество с сохранением свойств i), ii), и более того, что предельная мера η непрерывна в точках τ_i , σ_i , где τ_i , σ_i определяются из следующей формулы для открытого дополнения:

$$(0,1)\setminus D=\bigcup_j(\tau_j,\sigma_j).$$

Здесь используется тот факт, что любое измеримое множество можно аппроксимировать по мере изнутри замкнутым множеством.

Интегрируя (14) на множестве $D \cap B_{\epsilon}(t_0)$, где $\epsilon > 0$ выбрано так, что точки $t_0 \pm \epsilon$ суть точки непрерывности η , и переходя к пределу сначала при $i \to \infty$, а потом и по $\epsilon \to 0$, с учётом равномерной сходимости функций $u_i(t)$ и сходимости по построению

$$\int_{D \bigcap B_{\epsilon}(t_0)} a(t) d\eta_i \to \int_{D \bigcap B_{\epsilon}(t_0)} a(t) d\eta$$

приходим к равенству (7) в точке t_0 . При этом конвексификация правой части в (7) возникает из-за интегрирования. Поскольку множествами E_{δ} можно исчерпать с точностью до п.в. отрезок [0,1], получаем условие (7) для п.в. $t \in [0,1]$.

^{*)} Здесь ℓ означает меру Лебега на прямой.

Докажем условие дополняющей нежёсткости (8). Положим

$$Z := \{t \in [0,1] : r(\bar{x}(t), \bar{u}(t), t) < 0\}.$$

Рассмотрим точку $t_0 \in Z \cap E_\delta$, являющуюся точкой плотности $Z \cap E_\delta$. Как и выше, рассмотрим замкнутое множество $D \subseteq Z \cap E_\delta$, удовлетворяющее свойству i), такое, что мера η непрерывна в точках τ_j , σ_j (см. выше). Тогда в силу равномерной сходимости на множестве D при малом $\epsilon > 0$ таком, что точки $t_0 \pm \epsilon$ также точки непрерывности η , имеем

$$\eta_i(D \cap B_{\epsilon}(t_0)) = 2\lambda_i i \int_{D \cap B_{\epsilon}(t_0)} r(x_i(t), u_i(t), t)^+ dt = 0.$$

Отсюда в силу слабой-* сходимости мер имеем, что $\eta(D \cap B_{\epsilon}(t_0)) = 0$. Поскольку множествами E_{δ} можно исчерпать с точностью до п.в. всё множество Z, приходим к условию (3). Вторая часть условий, справедливая при a(t) = 0, вытекает непосредственно из предела (15). Докажем оценку (9). Возьмём число $\alpha > 0$ и положим

$$U_{\alpha}(x,t) := \{ u \in U : |r(x,u,t)| \leq \alpha \},$$

$$\gamma_{\alpha}(t) := \min_{u \in U_{\alpha}(B_{\alpha}(\bar{x}(t)),t)} \max_{q \in (N_{U}(u))^{*} \cap B_{1}(0)} \langle a(t), q \rangle.$$

Заметим, что функция $\gamma_{\alpha}(t)$ полунепрерывна снизу и $\gamma_{\alpha_1}(t) \leqslant \gamma_{\alpha_2}(t)$ при $\alpha_2 < \alpha_1$. Также очевидно, что $\gamma_0(t) = \gamma(\bar{x}(t),t)$.

Рассмотрим точку $t_0 \in [0,1]$, в некоторой окрестности $O = (t_0 - \epsilon, t_0 + \epsilon)$ которой множество $U_R(\bar{x}(t),t)$ всюду непусто. Пусть η непрерывна на границе такой окрестности. Из условия непустоты множества и условия максимума (13) следует, что $r(x_i(t),u_i(t),t)^+ \rightrightarrows 0$ равномерно на O. Поэтому, умножая скалярно (13) на произвольный вектор $q \in (N_U(u_i(t)))^* \cap B_1(0)$, приходим к оценке

$$\int_{O} \gamma_{\alpha}(t) \, d\eta_{i} \leqslant \text{const} \cdot \ell(O).$$

Переходя здесь к пределу, используя свойства полунепрерывности снизу и слабой-* сходимости мер, получаем соотношения

$$\int_{O} \gamma_{\alpha}(t) d\eta \leqslant \liminf_{i \to \infty} \int_{O} \gamma_{\alpha}(t) d\eta_{i} \leqslant \text{const} \cdot \ell(O).$$

Остаётся заметить, что $\lim_{\alpha\to 0}\gamma_{\alpha}(t)=\gamma_0(t)$. Поэтому по теореме Б. Леви (см. [12, с. 299]), переходя к пределу в последнем неравенстве, приходим к оценке (9). Если η имеет атомы на границе O, то $\gamma_0(t)$ автоматически обнуляется в таких точках, и поэтому все предельные переходы выше сохраняются.

Полученные множители Лагранжа зависят от $\varepsilon > 0$, поэтому нужен ещё один предельный переход по $\varepsilon \to 0$ в полученных условиях. Но этот предельный переход совершается по схеме, аналогичной описанной выше. Теорема доказана.

3. Приложение. Рассмотрим приложение полученной теоремы к двум примерам, разобранным во введении. Для этого будем рассматривать задачи (1) и (2) с дополнительным ограничением $u \in B_c(0)$, где $c := \|\bar{u}\|_{L_\infty} + 1$. Такое ограничение введено формально, чтобы удовлетворить требованиям теоремы о компактности множества U. Оно не влияет на минимум задачи и дальнейшие рассуждения.

Начнём с задачи (1). Из оценки (9) следует, что мера η абсолютно непрерывна при $t \neq a$. Положим $m(t) := d\eta/dt$ для п.в. t. Сопряжённое уравнение (4) имеет вид

$$d\psi(t) = \lambda dt + d\eta,$$

поэтому при $t \neq a$ функция $\psi(t)$ также абсолютно непрерывна, и имеют место соотношения

$$\dot{\psi}(t) = \lambda + m(t), \quad \psi(t) = (t - a)m(t),$$

где последнее равенство справедливо в силу условия Эйлера-Лагранжа (7).

Тогда функция m(t) непрерывно дифференцируема при $t \neq a$ и $(t-a)\dot{m}(t) = \lambda$. Значит, $m(t) = \lambda \ln(t-a) + \mathrm{const}$ при t > a, что влечёт за собой $\lambda = 0$, так как $m(t) \geqslant 0$. Покажем, что $\eta(\{a\}) = 0$. Действительно, в противном случае из сопряжённого уравнения имеем, что $\psi(t)$ разрывна в точке t=a. Однако из условия Эйлера-Лагранжа вытекает, что $\psi(t)$ непрерывна в t=a, поскольку m(t) интегрируема. Таким образом, получаем следующий набор множителей: $\lambda = 0$, $\eta = c_1 \ell$ на [0,a] и $\eta = c_2 \ell$ на [a,1], $\psi(t) = c_1(t-a)$ на [0,a] и $\psi(t) = c_2(t-a)$ на [a,1], где c_1 и c_2 – неотрицательные константы такие, что $c_1 + c_2 > 0$.

Перейдём ко второму примеру. Условия принципа максимума дают равенства

$$d\psi_1(t) = -\lambda dt$$
, $d\psi_2(t) = -d\eta$, $\psi_1(t) dt = t d\eta$.

Вместе с тем $\psi_1(1) = 0$, $\psi_2(1) = 0$.

Из (9) следует, что мера η абсолютно непрерывна при t>0. Поэтому для п.в. t имеем

$$\dot{\psi}_1(t) = -\lambda, \quad \dot{\psi}_2(t) = -m(t), \quad \psi_1(t) = tm(t),$$

где $m(t) = d\eta/dt$.

Отсюда, поскольку m(t) суммируема, $\psi_1(0)=0$, из условий трансверсальности имеем, что $\psi_1(t)\equiv 0$ и $\lambda=0$. Значит, m(t)=0 для п.в. t. Поэтому единственный с точностью до нормировки набор множителей Лагранжа, удовлетворяющий условиям оптимальности, будет следующим:

$$\lambda = 0, \quad \eta = \delta(0), \quad \psi_1(t) = 0, \quad \psi_2(t) = \begin{cases} -1, & t = 0, \\ 0, & t > 0. \end{cases}$$

Одной из первых работ по задачам со смешанными ограничениями является статья [13]. Смешанные ограничения рассматривались также, например, в работах [14, гл. 6, с. 282; 15, гл. 5; 16, с. 283; 17–21].

Заключение. Теорема дополняет результаты других авторов о необходимых условиях оптимальности в задачах управления с нерегулярными смешанными ограничениями.

Работа выполнена при финансовой поддержке Российского научного фонда (проект 20-11-20131).

СПИСОК ЛИТЕРАТУРЫ

- 1. Robinson Stephen M. Regularity and stability for convex multivalued functions // Mathematics of Operations Research. 1976. V. 1. № 2. P. 130–143.
- 2. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М., 1983.
- 3. Arutyunov A.V., Karamzin D.Y., Pereira F.L., Silva G.N. Investigation of regularity conditions in optimal control problems with geometric mixed constraints // Optimization. 2016. V. 65. P. 185–206.
- 4. Милютин А.А. Принцип максимума в общей задаче оптимального управления. М., 2001.
- 5. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. М., 1979.
- 6. Арутюнов А.В. Условия экстремума. М., 1997.
- 7. *Милютин А.А.*, *Дмитрук А.В.*, *Осмоловский Н.П.* Принцип максимума в оптимальном управлении. М., 2004.
- 8. Дубовицкий А.Я., Милютин А.А. Задачи на экстремум при наличии ограничений // Журн. вычислит. математики и мат. физики. 1965. Т. 5. № 3. С. 395–453.
- 9. *Dmitruk A.V.* On the development of Pontryagin's maximum principle in the works of A.Ya. Dubovitskii and A.A. Milyutin // Control and Cybernetics. 2009. V. 38. № 4a. P. 923–958.
- 7 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 59 № 4 2023

- 10. Φ илиппов $A.\Phi$. О некоторых вопросах теории оптимального регулирования // Вестн. Моск. ун-та. Сер. 3. Φ из. Астрон. 1959. № 2. С. 25.
- 11. Mordukhovich B.S. Variational Analysis and Generalized Differentiation. V. II. Applications. Berlin, 2006.
- 12. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М., 1968.
- 13. Дубовицкий А.Я., Милютин А.А. Необходимые условия слабого экстремума в задачах оптимального управления со смешанными ограничениями типа неравенства // Журн. вычислит. математики и мат. физики. 1968. Т. 8. № 4. С. 725–779.
- 14. Neustadt L.W. Optimization. Princeton, 1976.
- 15. Тер-Крикоров А.М. Оптимальное управление и математическая экономика. М., 1977.
- 16. Milyutin A.A., Osmolovskii N.P. Calculus of Variations and Optimal Control. Providence, 1998.
- 17. de Pinho M.R., Vinter R.B., Zheng H. A maximum principle for optimal control problems with mixed constraints // IMA J. Math. Control Inform. 2001. V. 18. P. 189–205.
- 18. Clarke F., de Pinho M.R. Optimal control problems with mixed constraints // SIAM J. Control Optim. 2010. V. 48. P. 4500–4524.
- 19. Дубовицкий А.Я., Милютин А.А. Необходимые условия слабого минимума в общей задаче оптимального управления. М., 1971.
- 20. Дубовицкий A.Я., Mилютин A.A. Принцип максимума в линейных задачах с выпуклыми смешанными ограничениями // Zeitschift fur Analysis und Anvwendungen. 1985. Bd. 4 (2). S. 133–191.
- 21. Becerril J.A., de Pinho M.D.R. Optimal control with nonregular mixed constraints: an optimization approach // SIAM J. on Control and Optimization. 2021. V. 59. N 3. P. 2093–2120.

Институт проблем управления имени В.А. Трапезникова РАН, г. Москва, Федеральный исследовательский центр "Информатика и управление" РАН, г. Москва

Поступила в редакцию 22.01.2023 г. После доработки 22.01.2023 г. Принята к публикации 24.02.2023 г.