= ЧИСЛЕННЫЕ МЕТОДЫ =

УДК 519.63

О КВАЗИАКУСТИЧЕСКОЙ СХЕМЕ А.П. ФАВОРСКОГО

© 2023 г. М. В. Абакумов, В. А. Исаков

Рассматривается явная консервативная квазимонотонная разностная схема второго порядка точности для численного решения уравнений газовой динамики, предложенная А.П. Фаворским. Приводятся обоснования основных методов и подходов, лежащих в основе её построения.

DOI: 10.31857/S0374064123060080, EDN: FGLOLL

Введение. Численным методам решения гиперболических уравнений и систем посвящено огромное количество работ (см., например, обзоры [1, 2]). Интерес к постоянному развитию этого направления прикладной математики обусловлен тем, что такие уравнения, в частности система уравнений Эйлера газовой динамики, являются базовой составляющей математических моделей, описывающих многие практически значимые задачи. При этом в силу нелинейности уравнений нахождение их решений аналитическими методами возможно лишь в редких частных случаях.

При построении разностных методов приближённого решения системы уравнений газовой динамики используются различные идеи и подходы, которые зачастую перекликаются между собой, однако имеют существенные отличия в определённых аспектах. В настоящей работе речь пойдет о так называемой квазиакустической разностной схеме, предложенной А.П. Фаворским, которую сам автор позиционировал как комбинацию консервативного метода Годунова [3] и сеточно-характеристического подхода [4]. Схема [5–9] является явной, имеет второй порядок точности на монотонных участках гладких решений, не содержит искусственных регуляризаторов и при этом сохраняет монотонность профиля решений, в том числе в окрестности разрывов. В указанных статьях основное внимание уделено численным исследованиям квазиакустической схемы. Чтобы дополнить эти исследования, в данной работе авторы постарались привести более детальные обоснования методов и подходов, использованных при построении вычислительного алгоритма, поскольку заложенные в них идеи по-прежнему представляются перспективными.

Работа посвящена памяти замечательного человека и талантливого ученого Антона Павловича Фаворского (29.08.1940–17.06.2013), который навсегда останется в сердцах его благодарных учеников, к которым, безусловно, относят себя и авторы статьи.

1. Разностная схема для уравнения переноса. Рассматривается начально-краевая задача для уравнения переноса

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, \quad 0 < x < l, \quad 0 < t \le T,$$
$$u(x, 0) = u_0(x).$$

Предполагается, что функция $u_0(x)$ является финитной на интервале (0, l), а значение T таково, что решение u(x, t), где t – время, x – пространственная переменная, остаётся финитным на том же интервале при всех $t \in (0, T]$. Это позволяет рассматривать однородные граничные условия

$$u(0,t) = u(l,t) = 0.$$

Далее для определённости будем считать, что a > 0.

На отрезках [0, l] и [0, T] вводится равномерная сетка

$$\omega_h = \{x_i = ih, i = 0, 1, \dots, N, Nh = l\}, \quad \omega_\tau = \{t_n = n\tau, n = 0, 1, \dots, K, K\tau = T\}.$$

Помимо узлов x_i пространственной сетки определяются границы разностных ячеек $x_{i+1/2} = (i+1/2)h$. В соответствии с общей идеологией построения конечно-объёмных разностных схем [2] вводится сеточная функция $y_i^n = y(x_i, t_n)$, определяемая в узлах сетки как интегральное среднее по разностной ячейке при $t = t_n$:

$$y_i^n = \frac{1}{h} \int_{x_{i-1/2}}^{x_{i+1/2}} u(x, t_n) \, dx. \tag{1}$$

Разностная схема строится интегро-интерполяционным методом [10, с. 114]. Для этого уравнение переноса интегрируется по пространственно-временной ячейке $x_{i-1/2} \leq x \leq x_{i+1/2}, t_n \leq t \leq t_{n+1}$. В результате получается соотношение

$$h(y_i^{n+1} - y_i^n) + w_{i+1/2}^n - w_{i-1/2}^n = 0,$$

где $w_{i+1/2}^n = a \int_{t_n}^{t_{n+1}} u(x_{i+1/2}, t) dt$. Величины $w_{i+1/2}^n$ представляют собой интегральные потоки через границы ячеек за время $\tau = t_{n+1} - t_n$.

Поскольку решение u(x,t), фигурирующее в подынтегральных выражениях для потоков, заранее неизвестно, для их приближённого вычисления в каждой ячейке сетки используется линейная реконструкция [2] функции u(x,t) по значениям сеточной функции y_i^n . При $t = t_n$ реконструированная функция имеет вид

$$\tilde{u}_{i}^{n}(x,t_{n}) = y_{i}^{n} + (x-x_{i})D_{i}^{n}, \quad x_{i-1/2} \leqslant x \leqslant x_{i+1/2}.$$
(2)

Здесь коэффициенты D_i^n задают наклоны реконструкции и будут определены далее. Считая, что реконструированная функция удовлетворяет уравнению переноса, в соответствии с его характеристическими свойствами [10] при $t > t_n$ имеем

$$\tilde{u}_i^n(x,t) = y_i^n + (x - a(t - t_n) - x_i)D_i^n$$

и, в частности,

$$\tilde{u}_i^n(x_{i+1/2}, t) = y_i^n + (0.5h - a(t - t_n))D_i^n$$

Последнее выражение справедливо при всех $t \in [t_n, t_{n+1}]$ при ограничении на число Куранта [11]

$$q = \frac{a\tau}{h} \leqslant 1.$$

Замена неизвестной функции $u_i^n(x_{i+1/2},t)$ на $\tilde{u}_i^n(x_{i+1/2},t)$ позволяет вычислить приближённые выражения для потоков

$$w_{i+1/2}^n \approx \tilde{w}_{i+1/2}^n = \int_{t_n}^{t_{n+1}} a\tilde{u}(x_{i+1/2}, t) \, dt = a\tau(y_i^n + 0.5(h - a\tau)D_i^n)$$

В результате приближённое равенство

$$h(y_i^{n+1} - y_i^n) + \tilde{w}_{i+1/2}^n - \tilde{w}_{i-1/2}^n \approx 0$$

определяет семейство разностных схем

$$y_{t,i}^n + ay_{\bar{x},i}^n + \frac{a}{2}(h - a\tau)D_{\bar{x},i}^n = 0.$$
(3)

Здесь и далее используются краткие обозначения (см. [12]) для разностных производных $y_{t,i}^n = (y_i^{n+1} - y_i^n)/\tau$, $y_{\bar{x},i}^n = (y_i^n - y_{i-1}^n)/h$ и др. Различные схемы из этого семейства определяются

выбором коэффициентов наклона линейных реконструкций D_i^n . Так, например, при $D_i^n = 0$ получим схему первого порядка, монотонную [12] при $q \leq 1$, а при $D_i^n = y_{x,i}^n$ – схему Лакса–Вендроффа [13]

$$y_{t,i}^n + ay_{\hat{x},i}^n = a^2 \frac{\tau}{2} y_{\bar{x}x,i}^n$$

второго порядка аппроксимации, которая не является монотонной.

А.П. Фаворским была предложена разностная схема [6], которая может быть отнесена к описанному выше семейству, имеющая второй порядок аппроксимации на гладких монотонных участках решения исходной задачи, сохраняющая монотонность его профиля. В предложенной схеме наклоны линейных реконструкций выбираются следующим образом:

$$D_i^n = \frac{y_x |y_{\bar{x}}| + y_{\bar{x}} |y_x|}{|y_{\bar{x}}| + |y_x|}.$$
(4)

Здесь и далее индексы у разностных производных опущены. Как легко видеть, в точках локального экстремума численного решения, где знаки y_x , $y_{\bar{x}}$ различны, наклоны $D_i^n = 0$, как в схеме первого порядка. В противном случае

$$D_i^n = \frac{2y_{\bar{x}}y_x}{y_{\bar{x}} + y_x}.$$

При этом для гладкой функции u(x), обозначая $u_i = u(x_i)$,

$$D_i(u) = \frac{2(u_i - u_{i-1})(u_{i+1} - u_i)}{h(u_{i+1} - u_{i-1})} = u'_x + \underline{O}(h^2),$$

т.е. разностное отношение аппроксимирует пространственную производную, что, как известно [2], приводит к повышению порядка аппроксимации схемы. Покажем, что схема аппроксимирует гладкое решение исходной задачи на его монотонном участке со вторым порядком. Далее будем обозначать $y_{\bar{x}} \equiv y_{\bar{x},i-1}$.

Теорема 1. Пусть в узле сетки (x_i, t_n) знаки разностных производных $y_{\bar{x}}, y_{\bar{x}}, y_x$ совпадают. Тогда погрешность аппроксимации схемы (3) с наклонами (4) на достаточно гладком решении исходной задачи $\Psi_i^n = \underline{O}(h^2 + \tau^2 + \tau h).$

Доказательство. Запишем погрешность аппроксимации на решении u(x,t) в узле (x_i, t_n) , опуская аргументы функции u и её производных:

$$\Psi_i^n = \left(u_t' + \frac{\tau}{2}u_{tt}''\right) + a\left(u_x' - \frac{h}{2}u_{xx}''\right) + \frac{a}{2}(h - a\tau)D_{\bar{x}}(u) + \underline{O}(h^2 + \tau^2).$$

Учитывая, что при условии теоремы (опуская выкладки)

$$D_{\bar{x}}(u) = 2\frac{u_i - u_{i-1}}{h^2} \left(\frac{u_{i+1} - u_i}{u_{i+1} - u_{i-1}} - \frac{u_{i-1} - u_{i-2}}{u_i - u_{i-2}} \right) = u_{xx}'' - \frac{h}{2} u_{xxx}'' + \underline{O}(h^2),$$

получим (с учётом равенства $u'_t + au'_x = 0$)

$$\Psi_i^n = \frac{\tau}{2} u_{tt}'' - \frac{ah}{2} u_{xx}'' + \frac{a}{2} (h - a\tau) \left(u_{xx}'' + \underline{O}(h) \right) + \underline{O}(h^2 + \tau^2) =$$
$$= \frac{\tau}{2} (u_{tt}'' - a^2 u_{xx}'') + \underline{O}(h^2 + \tau^2 + \tau h).$$

Первое слагаемое обращается в нуль вследствие уравнения переноса.

Далее покажем, что схема удовлетворяет условиям принципа максимума (условиям положительности коэффициентов), что и обеспечивает сохранение монотонности профиля численного решения [12, с. 40]. Теорема 2. Схема (3) с наклонами (4) удовлетворяет условиям принципа максимума.

Доказательство. Сначала будем считать, что разностные производные $y_{\bar{x}}$, $y_{\bar{x}}$, y_x в узле (x_i, t_n) имеют одинаковые знаки. Тогда разностную схему можно записать в виде

$$y_i^{n+1} - y_i^n + q\left(y_i^n + (1-q)h\frac{y_{\bar{x}}y_x}{y_{\bar{x}} + y_x}\right) - q\left(y_{i-1}^n + (1-q)h\frac{y_{\bar{x}}y_{\bar{x}}}{y_{\bar{x}} + y_{\bar{x}}}\right) = 0.$$

Учитывая равенство $hy_{\bar{x}} = y_i - y_{i-1}$ и вводя обозначения

$$\alpha = \frac{y_x}{y_{\bar{x}} + y_x}, \quad \beta = \frac{y_{\bar{x}}}{y_{\bar{x}} + y_{\bar{x}}},$$

перепишем разностное уравнение в виде

$$y_i^{n+1} = (1-q)(1-q(\alpha-\beta))y_i^n + q(1+(1-q)(\alpha-\beta))y_{i-1}^n.$$

Учитывая, что $\alpha, \beta \in [0, 1], q \leq 1$, условия принципа максимума выполняются. Это остаётся верным, если при наличии локальных экстремумов численного решения $D_i^n = 0$ или(и) $D_{i-1}^n = 0$, соответственно $\alpha = 0$ или(и) $\beta = 0$.

Подводя промежуточные итоги, целесообразно отметить, что описанную схему А.П. Фаворского следует отнести к классу нелинейных монотонных разностных методов, в которых осуществляется "переключение" между аппроксимацией первого и второго порядков.

2. Разностная схема для квазилинейного уравнения переноса. Далее рассмотрим начально-краевую задачу для квазилинейного уравнения переноса (уравнения Хопфа):

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0, \quad 0 < x < l, \quad 0 < t \le T,$$
$$u(0,t) = u(l,t) = 0, \quad u(x,0) = u_0(x).$$

Здесь также считается, что функция $u_0(x)$ является финитной на интервале (0, l), а решение u(x, t) остаётся финитным на том же интервале при всех $t \in (0, T]$. Временно будем полагать, что $u_0(x) \ge 0$, т.е. перенос осуществляется в положительном направлении оси x.

В точности также, как и для линейного уравнения, на равномерной разностной сетке $\omega_h \times \omega_{\tau}$ введём сеточную функцию y_i^n вида (1), определим её линейную реконструкцию $\tilde{u}_i^n(x,t_n)$ вида (2) и рассмотрим разностную схему

$$h(y_i^{n+1} - y_i^n) + \tilde{w}_{i+1/2}^n - \tilde{w}_{i-1/2}^n = 0.$$

Отличие состоит в том, что выражение для приближённых интегральных потоков теперь примет вид

$$\tilde{w}_{i+1/2}^n = \frac{1}{2} \int_{t_n}^{t_{n+1}} \tilde{u}^2(x_{i+1/2}, t) dt.$$

Записав уравнение прямой, проходящей через точки B и E (рис. 1), несложно построить автомодельное решение квазилинейного уравнения

$$\tilde{u}(x,t) = D_i^n \frac{x - x_{i-1/2} - u_L(t - t_n)}{1 + D_i^n (t - t_n)} + u_L,$$
(5)

где $u_{L,R} = y_i^n \pm h D_i^n/2$, совпадающее с реконструированной функцией $\tilde{u}_i^n(x, t_n)$ при $t = t_n$. В частности,

$$\tilde{u}(x_{i+1/2},t) = \frac{u_R}{1 + D_i^n(t - t_n)}$$

Рис. 1. Декомпозиция интегрального потока.

Последнее равенство справедливо при всех $t \in [t_n, t_{n+1}]$ при ограничении $\tau \leq h/u_L$ (если временно не рассматривать влияние соседней слева ячейки, например, считая, что в ней значение реконструированной функции постоянно и равняется u_L). Тогда можно явно вычислить выражение для приближённых интегральных потоков

$$\tilde{w}_{i+1/2}^n = \frac{u_R^2}{2} \frac{\tau}{1+D_i^n \tau} = \frac{(y_i^n + hD_i^n/2)^2}{2} \frac{\tau}{1+D_i^n \tau}.$$
(6)

Выбрав наклоны линейных реконструкций D_i^n в виде (4), получим аналог разностной схемы, подробно описанной в п. 1. Однако важно отметить, что при построении обеих схем использовалась возможность явно записать решения задач Коши для уравнений переноса на отрезке $t \in [t_n, t_{n+1}]$ с начальными данными в виде реконструированного линейного профиля. В случае уравнений газовой динамики это уже не представляется возможным. В связи с этим для дальнейшего обобщения схемы на указанный случай проведём дополнительные построения.

Заметим, что решение u(x,t) квазилинейного уравнения переноса (до момента возможной "градиентной катастрофы") удовлетворяет соотношению

$$u(x + u(x,t) dt, t + dt) = u(x,t),$$

которое иллюстрирует перенос решения в неизменном виде вдоль прямолинейной характеристики dx/dt = u [14, с. 76]. Это, в частности, позволяет записать автомодельное решение, использованное выше. Кроме того, соотношение даёт основание интерпретировать решение задачи Коши как "послойную трансляцию" начального профиля, при которой каждое значение u переносится с той же скоростью параллельно оси x. Это соображение и лежит в основе идеи декомпозиции интегрального потока, которую опишем далее.

Целесообразно начать со случая, когда наклон линейной реконструкции $D_i^n = 0$, тогда $u_L = u_R$, а выражение для приближённого интегрального потока примет вид

$$\tilde{w}_{i+1/2}^n = \frac{u_R^2}{2}\tau.$$

Указанное значение равно площади треугольника ABC (рис. 2). На интервале $(0, u_R)$ выберем произвольное (фоновое) значение \bar{u} , а отрезок $[\bar{u}, u_R]$ разобьем на одинаковые промежутки $[u_{m-1}, u_m]$, $m = \overline{1, M}$. Значения u_m определяют набор "прямоугольных возмущений" относительно фонового значения \bar{u} внутри ячейки $[x_{i-1/2}, x_{i+1/2}]$. Площадь треугольника ABC может быть записана в виде

$$S_{ABC} = S_{AB'C'} + S_{C'B'BC} = \frac{\bar{u}^2}{2}\tau + \sum_{m=1}^{M} (u_m - u_{m-1}) \frac{u_m + u_{m-1}}{2}\tau.$$
 (7)

Слагаемые под знаком суммы, в свою очередь, можно интерпретировать как площади тех частей соответствующих прямоугольных возмущений, которые, двигаясь со скоростью $(u_m + u_{m-1})/2$, пересекли границу ячейки $x_{i+1/2}$ за время τ . Важно отметить, что в точном решении квазилинейного уравнения переноса с начальными данными $u(x,0) = u_m$ при $x < x_{i+1/2}$ и $u(x,0) = u_{m-1}$ при $x > x_{i+1/2}$ разрыв перемещается со временем как раз с указанной скоростью [14, с. 510]. Равенство (7) по сути определяет выражение для точной (в рассматриваемом случае $D_i^n = 0$) декомпозиции интегрального потока $\tilde{w}_{i+1/2}^n$, который, как уместно напомнить, сам по себе точным не является. Далее получим приближённый аналог этого равенства иным способом, который более удобен для обобщения декомпозиции на случай уравнений газовой динамики.

Рис. 2. Точная декомпозиция потока при $D_i^n = 0$.

Пусть \bar{u} – некоторое постоянное фоновое значение,
а δu – его малое возмущение. Представим потоковую комбинацию
 Wв виде

$$W = \frac{1}{2}(\bar{u} + \delta u)^2 \approx \frac{\bar{u}^2}{2} + \bar{u}\delta u = \bar{W} + \delta W.$$

Здесь отброшено слагаемое второго порядка малости относительно δu . Считая, что δu удовлетворяет линеаризованному уравнению

$$\frac{\partial(\delta u)}{\partial t} + \bar{u}\frac{\partial(\delta u)}{\partial x} = 0,$$

приходим к тому, что вклад возмущения в потоковый интеграл равен площади части профиля δu , которая пересекла границу ячейки, двигаясь с постоянной скоростью \bar{u} за время τ . Для набора прямоугольных возмущений, введённого выше, приходим к следующей формуле декомпозиции потока:

$$\tilde{w}_{i+1/2}^{n} \approx \bar{W}\tau + \sum_{m=1}^{M} \int_{t_{n}}^{t_{n+1}} \delta W_{m} \, dt = \frac{\bar{u}^{2}}{2}\tau + \sum_{m=1}^{M} (u_{m} - u_{m-1})u_{m-1}\tau.$$
(8)

Здесь слагаемые под знаком суммы соответствуют перемещениям каждого прямоугольного возмущения по индивидуальному фону u_{m-1} с той же (акустической) скоростью.

Заметим, что приближённое выражение (8) для $\tilde{w}_{i+1/2}^n$ отличается от точного (7) на величину $\tau(\Delta u)^2/(2M)$, где Δu – длина отрезка u, разбиваемого значениями u_m . Общее фоновое значение \bar{u} выбирается (см. далее) таким образом, что значения Δu сравнимы с величиной $D_i^n h$, поэтому выражение обеспечивает достаточную для схемы второго порядка точность даже при небольших значениях M.

АБАКУМОВ, ИСАКОВ

Вернёмся к более общему случаю $D_i^n \neq 0$. Отметим, что значение полученного ранее точного выражения (6) для $\tilde{w}_{i+1/2}^n$ по-прежнему совпадает с площадью треугольника *ABC* при $t = t_{n+1}$, который теперь не является прямоугольным (см. рис. 1). В качестве фонового значения выберем $\bar{u} = u_R$ (при положительном наклоне $\bar{u} = u_L$). Отрезок $[u_R, u_L]$, как и ранее, разобьем на одинаковые промежутки (слои) значениями u_0, u_1, \ldots, u_M . В пределах каждого слоя заменим трапециевидную (или треугольную) часть профиля реконструированной функции прямоугольником той же площади (см. рис. 1). Декомпозиция потока осуществляется аналогично предыдущему. Фоновая составляющая $\bar{u}^2/2$ соответствует площади треугольника *ABC'*. А площадь треугольника *BCC'* представляется (точно или приближённо) суммой тех частей прямоугольников (прямоугольных возмущений), которые, двигаясь со своими скоростями, пересекли границу ячейки $x_{i+1/2}$ за время τ . При этом, как уже отмечалось, в качестве скорости на слое с номером m можно выбирать как значение $(u_m + u_{m-1})/2$, так и значение u_{m-1} (акустическая скорость).

Как уже отмечалось, проведённые построения справедливы в предположении, что линейный профиль автомодельного решения (5) на промежутке времени $t \in [t_n, t_{n+1}]$ не искажается вследствие влияния данных соседней слева (относительно рассматриваемой $[x_{i-1/2}, x_{i+1/2}]$) ячейки. Чтобы исключить подобное влияние, достаточно проводить те же построения не на целых ячейках, а на их половинах $[x_i, x_{i+1/2}]$. Дополнительно необходимо потребовать выполнения условия

$$\tau \leq 0.5h/\max|\tilde{u}|$$

где максимум берётся по всем значениям реконструированных функций во всех ячейках.

И, наконец, в наиболее общем случае (не предполагая, что $u_0(x) \ge 0$) может оказаться, что реконструированные функции в соседних ячейках принимают значения разных знаков. Тогда необходимо рассматривать две "полуячейки", примыкающие к общей границе $x_{i+1/2}$, т.е. отрезок $[x_i, x_{i+1}]$ (рис. 3).

Рис. 3. Случай различных знаков реконструированных функций.

Общее фоновое значение \bar{u} можно выбирать различными способами. Например, в качестве такового может выступать минимальное из значений двух реконструированных функций, определённых на соответствующих полуячейках. Далее промежуток между общим минимумом и максимумом двух функций ($[u_R, u_L]$ для профилей, представленных на рис. 3) разбивается на слои значениями u_0, u_1, \ldots, u_M , и в каждой полуячейке определяются прямоугольные возмущения аналогично описанному выше. Фоновая составляющая интегрального потока $\tilde{w}_{i+1/2}^n$ по-прежнему равна $\bar{u}^2/2$. Вклады прямоугольных возмущений учитываются так же, как описано ранее, только площади частей прямоугольников, пересекающих границу $x_{i+1/2}$ в отрицательном направлении оси x, не суммируются, а вычитаются. **3.** Схема для уравнений газовой динамики. Рассмотрим систему уравнений газовой динамики [15] в пространственно одномерном приближении совместно с уравнением состояния идеального газа:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0, \quad \frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2 + p)}{\partial x} = 0, \quad \frac{\partial (\rho e)}{\partial t} + \frac{\partial (\rho u e + up)}{\partial x} = 0,$$
$$e = \varepsilon + \frac{u^2}{2}, \quad p = (\gamma - 1)\rho\varepsilon. \tag{9}$$

Здесь t – время, x – пространственная координата, ρ – плотность газа, u – скорость, p – давление, ε – удельная внутренняя энергия, e – полная удельная энергия, γ – показатель адиабаты.

Система уравнений (9), записанная в консервативной форме, может быть преобразована к следующему виду, содержащему исключительно "примитивные" переменные ρ , u, p и их производные:

$$\frac{\partial \mathbf{q}}{\partial t} + A \frac{\partial \mathbf{q}}{\partial x} = 0, \quad \mathbf{q} = (\rho, u, p)^{\mathrm{T}}, \quad A = \begin{bmatrix} u & \rho & 0\\ 0 & u & 1/\rho\\ 0 & \rho c^2 & u \end{bmatrix}.$$
(10)

Здесь $c=\sqrt{\gamma p/\rho}$ – скорость звука. Несложно проверить, что матрица Aимеет собственные значения $\lambda_{\pm}=u\pm c,~\lambda_0=u$ и отвечающие им собственные векторы

$$\mathbf{l}_{\pm} = (0, \pm 1, 1/(c\rho)), \quad \mathbf{l}_0 = (1, 0, -1/c^2),$$

определённые с точностью до нормирующих множителей.

Наряду с "примитивными", также будем использовать характеристические переменные

$$r_{\pm} = \mathbf{l}_{\pm}\mathbf{q} = \pm u + p/(c\rho), \quad r_0 = \mathbf{l}_0\mathbf{q} = \rho - p/c^2.$$

Обратное преобразование, как легко видеть, даёт равенства

$$\rho = \frac{\rho}{2c}(r_+ + r_-) + r_0, \quad u = \frac{1}{2}(r_+ - r_-), \quad p = \frac{c\rho}{2}(r_+ + r_-).$$

В предположении, что решение системы (10) имеет вид

$$\rho = \bar{\rho} + \delta \rho, \quad u = \bar{u} + \delta u, \quad p = \bar{p} + \delta p,$$

где $\bar{\rho}, \bar{u}, \bar{p}$ – постоянные значения, а $\delta\rho, \delta u, \delta p$ – функции малых возмущений, получим систему линеаризованных уравнений

$$\frac{\partial(\delta \mathbf{q})}{\partial t} + \bar{A}\frac{\partial(\delta \mathbf{q})}{\partial x} = 0, \quad \delta \mathbf{q} = (\delta \rho, \delta u, \delta p)^{\mathrm{\scriptscriptstyle T}}, \quad \bar{A} = \begin{bmatrix} \bar{u} & \bar{\rho} & 0\\ 0 & \bar{u} & 1/\bar{\rho}\\ 0 & \bar{\rho}\bar{c}^2 & \bar{u} \end{bmatrix},$$

где $\bar{c} = \sqrt{\gamma \bar{p} / \bar{\rho}}$. Отметим, что матрица \bar{A} получается из матрицы A системы (10) заменой функций ρ , u, p на постоянные $\bar{\rho}$, \bar{u} , \bar{p} . Поэтому выражения для характеристических переменных получаются из записанных ранее путём аналогичных модификаций.

В характеристических переменных

$$\delta r_{\pm} = \pm \delta u + \delta p / (\bar{c}\bar{\rho}), \quad \delta r_0 = \delta \rho - \delta p / \bar{c}^2$$

линеаризованная система распадается на три независимых друг от друга уравнения переноса

$$\frac{\partial(\delta r_{\pm})}{\partial t} + \bar{\lambda}_{\pm} \frac{\partial(\delta r_{\pm})}{\partial x} = 0, \quad \frac{\partial(\delta r_0)}{\partial t} + \bar{\lambda}_0 \frac{\partial(\delta r_0)}{\partial x} = 0,$$

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 59 № 6 2023

 6^*

АБАКУМОВ, ИСАКОВ

где $\bar{\lambda}_{\pm} = \bar{u} \pm \bar{c}$, $\bar{\lambda}_0 = \bar{u}$. Это позволяет записать известное решение задачи Коши для линеаризованной системы с начальными данными $\delta \rho^0(x)$, $\delta u^0(x)$, $\delta p^0(x)$ и отвечающими им начальными распределениями характеристических переменных $\delta r^0_{\pm}(x)$, $\delta r^0_0(x)$:

$$\delta\rho(x,t) = \frac{\rho}{2\bar{c}} (\delta r^0_+(\bar{\xi}_+) + \delta r^0_-(\bar{\xi}_-)) + \delta r^0_0(\bar{\xi}_0),$$

$$\delta u(x,t) = \frac{1}{2} (\delta r^0_+(\bar{\xi}_+) - \delta r^0_-(\bar{\xi}_-)), \quad \delta p(x,t) = \frac{\bar{c}\bar{\rho}}{2} (\delta r^0_+(\bar{\xi}_+) + \delta r^0_-(\bar{\xi}_-)).$$

где $\bar{\xi}_{\pm} = x - (\bar{u} \pm \bar{c})t$, $\bar{\xi}_0 = x - \bar{u}t$. Отметим, что выражения в правых частях равенств несложно записать через функции $\delta \rho^0$, δu^0 и δp^0 .

Как вытекает из результатов предыдущего пункта, для построения разностной схемы необходимо записать приближённые выражения для потоков массы, импульса и энергии, фигурирующих в исходной системе (9). Для этого также воспользуемся процедурой расщепления потоков на общую фоновую составляющую и вклады малых прямоугольных возмущений, которые А.П. Фаворский для краткости именовал "кирпичами". Чтобы получить формулы приближённого вычисления вкладов возмущений в подынтегральные выражения для потоков, как и ранее представим потоковые комбинации в виде (на примере потока импульса)

$$W^{I} = \rho u^{2} + p = (\bar{\rho} + \delta\rho)(\bar{u} + \delta u)^{2} + \bar{p} + \delta p \approx \bar{\rho}\bar{u}^{2} + \bar{p} + \bar{u}^{2}\delta\rho + 2\bar{\rho}\bar{u}\delta u + \delta p = \overline{W}_{I} + \delta W^{I}.$$

Выражение для вклада возмущений, в котором отброшены слагаемые второго и третьего порядка малости относительно $\delta \rho$ и δu , запишем на основе известного решения линеаризованной системы:

$$\begin{split} \delta W^{I} &= \bar{u}^{2} \delta \rho + 2 \bar{\rho} \bar{u} \delta u + \delta p = \bar{u}^{2} \frac{\bar{\rho}}{2\bar{c}} (\delta r^{0}_{+} + \delta r^{0}_{-}) + \bar{u}^{2} \delta r^{0}_{0} + \bar{\rho} \bar{u} (\delta r^{0}_{+} - \delta r^{0}_{-}) + \frac{\bar{c} \bar{\rho}}{2} (\delta r^{0}_{+} + \delta r^{0}_{-}) = \\ &= \frac{\bar{\rho} (\bar{u} + \bar{c})^{2}}{2\bar{c}} \delta r^{0}_{+} + \frac{\bar{\rho} (\bar{u} - \bar{c})^{2}}{2\bar{c}} \delta r^{0}_{-} + \bar{u}^{2} \delta r^{0}_{0}. \end{split}$$

Здесь аргументы $\bar{\xi}_{\pm}$ и $\bar{\xi}_0$ функций δr_{\pm}^0 и δr_0^0 , отвечающих начальным возмущениям примитивных переменных, опущены. Аналогично получаются формулы приближённого вычисления вкладов возмущений в подынтегральные выражения для потоков массы и энергии:

$$\delta W^{M} = \frac{\bar{\rho}(\bar{u}+\bar{c})}{2\bar{c}} \delta r_{+}^{0} + \frac{\bar{\rho}(\bar{u}-\bar{c})}{2\bar{c}} \delta r_{-}^{0} + \bar{u} \delta r_{0}^{0},$$

$$\delta W^{E} = \frac{\bar{\rho}(\bar{u}+\bar{c})}{2\bar{c}} \left(\frac{\bar{u}^{2}}{2} + \bar{u}\bar{c} + \frac{\bar{c}^{2}}{\gamma-1}\right) \delta r_{+}^{0} + \frac{\bar{\rho}(\bar{u}-\bar{c})}{2\bar{c}} \left(\frac{\bar{u}^{2}}{2} - \bar{u}\bar{c} + \frac{\bar{c}^{2}}{\gamma-1}\right) \delta r_{-}^{0} + \frac{\bar{u}^{3}}{2} \delta r_{0}^{0}.$$

Отметим, что полученные выражения для вкладов возмущений несложно записать через функции $\delta \rho^0$, δu^0 и δp^0 . Так, например,

$$\delta W^{I} = \delta W^{I}_{+} + \delta W^{I}_{-} + \delta W^{I}_{0}, \quad W^{I}_{\pm} = \frac{\bar{\rho}(\bar{u} \pm \bar{c})^{2}}{2\bar{c}} \left(\pm \delta u^{0}(\bar{\xi}_{\pm}) + \frac{\delta p^{0}(\bar{\xi}_{\pm})}{\bar{c}\bar{\rho}} \right),$$
$$W^{I}_{0} = \bar{u}^{2} \left(\delta \rho^{0}(\bar{\xi}_{0}) - \frac{\delta p^{0}(\bar{\xi}_{0})}{\bar{c}^{2}} \right). \tag{11}$$

Это может быть удобным, поскольку в оригинальной схеме А.П. Фаворского реконструируются функции примитивных переменных.

Сама же схема строится аналогично описанному выше. На той же равномерной пространственно-временной сетке определяется векторная сеточная функция

$$\mathbf{y}_i^n = \frac{1}{h} \int\limits_{x_{i-1/2}}^{x_{i+1/2}} \mathbf{u}(x, t_n) \, dx, \quad \mathbf{u} = (\rho, \rho u, \rho e)^{\mathrm{\scriptscriptstyle T}}.$$

В точном интегральном соотношении

$$h(\mathbf{y}_{i}^{n+1} - \mathbf{y}_{i}^{n}) + \mathbf{w}_{i+1/2}^{n} - \mathbf{w}_{i-1/2}^{n} = 0,$$

где

$$\mathbf{w}_{i+1/2}^{n} = \int_{t_{n}}^{t_{n+1}} \mathbf{W}(x_{i+1/2}, t) \, dt, \quad \mathbf{W} = (\rho u, \rho u^{2} + p, \rho u e + up)$$

интегральные по времени потоки $\mathbf{w}_{i+1/2}^n$ заменяются на их приближённые выражения $\tilde{\mathbf{w}}_{i+1/2}^n$. Эти выражения получаются путём реконструкции каждой из примитивных переменных $f \in \{\rho, u, p\}$ в ячейках сетки:

$$\tilde{f}_i^n(x,t_n) = f_i^n + (x-x_i)D_i^n, \quad D_i^n = \frac{f_x|f_{\bar{x}}| + f_{\bar{x}}|f_x|}{|f_{\bar{x}}| + |f_x|}.$$

Здесь f_i^n выражаются через известные значения компонент \mathbf{y}_i^n . Далее для каждой переменной выбирается фоновое значение $\bar{f}_{i+1/2}^n$ и разбиваются реконструированные профили по разные стороны от границы ячеек $x_{i+1/2}$ на малые прямоугольные возмущения так же, как описано в п. 2. Важно отметить, что количество слоёв разбиения M для всех переменных одно и то же. Приближённые выражения для интегральных потоков в соответствии с проведёнными выше построениями имеют вид

$$\tilde{\mathbf{w}}_{i+1/2}^{n} = \bar{\mathbf{W}}_{i+1/2}^{n} \tau + \sum_{m=1}^{M} \int_{t_{n}}^{t_{n+1}} (\delta \mathbf{W}_{+} + \delta \mathbf{W}_{-} + \delta \mathbf{W}_{0})_{m,i+1/2}^{n} dt,$$
$$\bar{\mathbf{W}}_{i+1/2}^{n} = (\bar{\rho}\bar{u}, \bar{\rho}\bar{u}^{2} + \bar{p}, \gamma \bar{u}\bar{p}/(\gamma - 1) + \bar{\rho}\bar{u}^{3}/2)_{i+1/2}^{n}.$$

Здесь индекс *m* по-прежнему обозначает номер слоя разбиения. Интегрирование сводится к нахождению площадей тех частей прямоугольных возмущений, которые, двигаясь с соответствующей характеристической скоростью по своему индивидуальному фону (т.е. значения $\bar{\rho}$, \bar{u} , \bar{c} , $\bar{\xi}$ в выражениях (11) различны для разных номеров *m*), пересекли границу ячейки $x_{i+1/2}$ за время $\tau = t_{n+1} - t_n$.

Заключение. В работе приведены обоснования основных подходов, использованных при построении квазиакустической разностной схемы для уравнений газовой динамики, предложенной А.П. Фаворским. Результаты численных расчётов (некоторые содержатся в работах А.П. Фаворского, перечисленных во введении), а также возможные модификации описанной схемы в рамках данной статьи не обсуждаются. Указанные вопросы предполагается рассмотреть в последующих публикациях.

СПИСОК ЛИТЕРАТУРЫ

- 1. Toro E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin, 1999.
- 2. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М., 2001.
- 3. Годунов С.К. Разностный метод численного расчёта разрывных решений гидродинамики // Мат. сб. 1959. Т. 47 (89). № 3. С. 271–306.
- 4. Магомедов К.М., Холодов А.С. Сеточно-характеристические численные методы. М., 1988.
- 5. Фаворский А.П., Тыглиян М.А., Тюрина Н.Н., Галанина А.М., Исаков В.А. Численное моделирование распространения акустических импульсов в гемодинамике // Дифференц. уравнения. 2009. Т. 45. № 8. С. 1179–1187
- 6. Фаворский А.П., Тыглиян М.А., Тюрина Н.Н., Галанина А.М., Исаков В.А. Численное моделирование распространения гемодинамических импульсов // Мат. моделирование. 2009. Т. 21. № 12. С. 21–34.

- 7. Абакумов М.В., Галанина А.М., Исаков В.А., Тюрина Н.Н., Фаворский А.П., Хруленко А.Б. Квазиакустическая схема для уравнений Эйлера газовой динамики // Дифференц. уравнения. 2011. Т. 47. № 8. С. 1092–1098.
- 8. Исаков В.А., Фаворский А.П. Квазиакустическая схема для уравнений Эйлера газовой динамики в случае двух пространственных измерений // Мат. моделирование. 2012. Т. 24. № 12. С. 55–59.
- 9. Галанина А.М., Исаков В.А., Тюрина Н.Н., Фаворский А.П. Конструктивный подход к численному решению квазилинейных уравнений переноса // Мат. моделирование. 2013. Т. 25. № 8. С. 80–88.
- 10. Самарский А.А., Попов Ю.П. Разностные методы решения задач газовой динамики. М., 2004.
- 11. Courant R., Friedrichs K., Lewy H. Uber die partiellen Differenzengleichungen der mathematischen Physik // Mathematische Annalen. 1928. Bd. 100. № 1. S. 32–74.
- 12. Самарский А.А. Теория разностных схем. М., 1989.
- 13. Lax P.D., Wendroff B. Difference schemes for hyperbolic equations with high order of accuracy // Comm. on Pure and Appl. Math. 1964. V. 17. № 3. P. 381–398.
- 14. Рождественский Б.Л., Яненко Н.Н. Системы квазилинейных уравнений и их приложения к газовой динамике. М., 1978.
- 15. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 4. Гидродинамика. М., 1986.

Московский государственный университет имени М.В. Ломоносова

Поступила в редакцию 20.02.2023 г. После доработки 30.03.2023 г. Принята к публикации 18.04.2023 г.