= ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ =

УДК 517.968.28

О ФРЕДГОЛЬМОВОСТИ И РАЗРЕШИМОСТИ СИСТЕМЫ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ В ЗАДАЧЕ СОПРЯЖЕНИЯ ДЛЯ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА

© 2023 г. Ю. Г. Смирнов, О. В. Кондырев

Рассматривается скалярная трёхмерная краевая задача дифракции волны для уравнения Гельмгольца с условиями сопряжения, предполагающими наличие бесконечно тонкого материала на границе сред. Доказываются теоремы единственности и существования решения. Исходная задача сводится к системе интегральных уравнений по поверхности раздела сред. Приводятся расчётные формулы для системы линейных алгебраических уравнений, полученные после применения метода коллокации, и численные результаты решения задачи, когда область является шаром с определёнными условиями сопряжения.

DOI: 10.31857/S0374064123080083, EDN: IPHEJN

Введение. Краевые задачи сопряжения для уравнения Гельмгольца встречаются во многих разделах математической физики: акустике, механике, электродинамике. В частности, это задачи дифракции акустических или электромагнитных волн на препятствиях. Основные типы этих задач исследованы достаточно подробно (см., например, [1–4]). Однако в последнее время появился интерес к краевым задачам со специальными условиями сопряжения, которые предполагают наличие бесконечно тонкого слоя материала на поверхности раздела сред. В качестве примера можно рассмотреть случай графена, покрывающего диэлектрик [5, 6]. Поскольку графен имеет толщину в один атом, то его можно считать бесконечно тонким. Но его наличие на поверхности раздела сред изменяет условия сопряжения. В общем случае графен проявляет нелинейность в инфракрасном и терагерцовом диапазонах частот [7], однако во многих важных для приложений случаях нелинейностью можно пренебречь (формула Кубо–Хансена [8]). В настоящей статье будут рассмотрены линейные условия сопряжения.

Одним из наиболее популярных методов решения задач сопряжения является метод сведения к системе интегральных уравнений. Такой подход не только позволяет исследовать свойства и разрешимость задачи, но и ориентирован на её численное решение. При решении многих задач переход к интегральным уравнениям приводит к понижению размерности решаемой задачи, что очень важно при реализации вычислительного алгоритма с точки зрения быстродействия и памяти компьютера. Кроме того, вычислительные алгоритмы, построенные для решения интегральных уравнений, легко распараллеливаются, что позволяет использовать суперкомпьютеры для их решения.

В настоящей статье будут изучены вопросы единственности решения задачи сопряжения, разрешимости системы интегральных уравнений и представлены результаты численного решения задачи сопряжения в одном конкретном случае.

1. Постановка задачи. Рассмотрим задачу дифракции на теле (в области) Q с границей ∂Q класса гладкости C^2 , расположенном в однородном пространстве \mathbb{R}^3 , характеризующим-ся постоянным волновым числом k_0 .

Пусть $u_0 = e^{ik_0x_3}$, $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, – падающая плоская волна. Выбор источника в виде плоской волны не является принципиальным и будет использован только при численном решении конкретной задачи.

В области Q среда однородна и характеризуется волновым числом $k \neq k_0$. На границе ∂Q будем определять только предельное значение волнового числа с разных сторон поверхности. Требуется определить решение задачи сопряжения (полное поле), где искомая функция должна удовлетворять условиям гладкости

$$u \in C^2(Q) \bigcap C^1(\bar{Q}) \bigcap C^1(\overline{\mathbb{R}^3 \backslash Q}), \tag{1}$$

уравнению Гельмгольца

$$\Delta u + k^2(x)u = 0, \quad k^2(x) = \begin{cases} k_0^2, & x \in \mathbb{R}^3 \setminus \bar{Q}, \\ k^2, & x \in Q, \end{cases}$$
(2)

условию излучения Зоммерфельда для рассеянного пол
я $\,u_s=u-u_0\,$

$$\frac{\partial u_s}{\partial r} - ik_0 u_s = o(1/r), \quad r = |x| \to \infty, \tag{3}$$

и условиям сопряжения на границе ∂Q

$$[u]_{\partial Q} = 0, \quad \left[\frac{\partial u}{\partial n}\right]_{\partial Q} = [\gamma u]_{\partial Q}, \tag{4}$$

где $[\cdot]_{\partial Q}$ означает разность следов функции с разных сторон ∂Q . Здесь n – внешняя нормаль к области Q, а вещественный коэффициент γ равен γ_1 вне области Q и γ_2 внутри неё.

2. Единственность решения задачи сопряжения.

Лемма (Реллиха) [9, с. 50]. Пусть u(x) – регулярное вне сферы S_{r_0} , $|x| = r > r_0$, решение уравнения Гельмгольца. Если

$$\lim_{r \to \infty} \int_{S_r} |u|^2 \, dS = 0,$$

где S_r – сфера радиуса r (с центром в нуле), то $u \equiv 0$ при $r > r_0$.

Запишем решение задачи в следующем виде:

$$u(x) = \begin{cases} u_+(x), & x \in \mathbb{R}^3 \backslash \bar{Q}, \\ u_-(x), & x \in Q. \end{cases}$$

Теорема 1. Решение задачи

$$\Delta u_+(x) + k_0^2 u_+(x) = 0, \quad x \in \mathbb{R}^3 \setminus \overline{Q},$$
$$\Delta u_-(x) + k^2 u_-(x) = 0, \quad x \in Q,$$

$$u_{+}|_{\partial Q} = u_{-}|_{\partial Q}, \quad \frac{\partial u_{+}}{\partial n}\Big|_{\partial Q} - \frac{\partial u_{-}}{\partial n}\Big|_{\partial Q} = \gamma_{1}u_{+}|_{\partial Q} - \gamma_{2}u_{-}|_{\partial Q}, \quad \frac{\partial u_{s}}{\partial r} - iku_{s} = o(1/r), \quad r \to \infty,$$
(5)

удовлетворяющее условию (1), где $u_s = u_+ - u_0$, единственно.

Доказательство. Так как поставленная задача линейна, достаточно рассмотреть соответствующую однородную задачу и показать, что она имеет только тривиальное решение.

Рассмотрим задачу

$$\Delta u_s(x) + k_0^2 u_s(x) = 0, \quad x \in \mathbb{R}^3 \backslash \bar{Q},$$

$$\Delta u_- + k^2 u_- = 0, \quad x \in Q,$$

$$u_s|_{\partial Q} = u_-|_{\partial Q},$$
(6)

$$\frac{\partial u_s}{\partial n}\Big|_{\partial Q} - \frac{\partial u_-}{\partial n}\Big|_{\partial Q} = \gamma_1 u_s |_{\partial Q} - \gamma_2 u_-|_{\partial Q},\tag{7}$$

$$\frac{\partial u_s}{\partial r} - iku_s = o(1/r), \quad r \to \infty.$$
(8)

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 59 № 8 2023

1090

Вместе с функциями u_s и u_- будем рассматривать комплексно-сопряжённые им \bar{u}_s и \bar{u}_- . Они удовлетворяют тем же однородным уравнениям и условиям сопряжения на границе ∂Q . Условия на бесконечности примут следующий вид:

$$\frac{\partial \bar{u}_s}{\partial r} + ik\bar{u}_s = o(1/r), \quad r \to \infty.$$
(9)

Применим вторую формулу Грина к функциям u_{-} и \bar{u}_{-} в области Q:

$$\int_{\partial Q} \left(u_{-} \frac{\partial \bar{u}_{-}}{\partial n_{1}} - \bar{u}_{-} \frac{\partial u_{-}}{\partial n_{1}} \right) dS = 0,$$

где n_1 – единичная нормаль к поверхности ∂Q , направленная во внешность тела.

Пусть Σ_R – сфера такого радиуса R, что содержит в себе область Q. Тогда, применив формулу Грина к функциям u_s и \bar{u}_s в области между Σ_R и ∂Q , получим

$$\int_{\partial Q} \left(u_s \frac{\partial \bar{u}_s}{\partial n_2} - \bar{u}_s \frac{\partial u_s}{\partial n_2} \right) dS + \int_{\Sigma_R} \left(u_s \frac{\partial \bar{u}_s}{\partial r} - \bar{u}_s \frac{\partial u_s}{\partial r} \right) dS = 0,$$

где n_2 – единичная нормаль к поверхности интегрирования и $n_2 = -n_1$ на ∂Q .

Сложим два предыдущих равенства:

$$\int_{\partial Q} \left(u_{-} \frac{\partial \bar{u}_{-}}{\partial n_{1}} - \bar{u}_{-} \frac{\partial u_{-}}{\partial n_{1}} \right) dS + \int_{\partial Q} \left(u_{s} \frac{\partial \bar{u}_{s}}{\partial n_{2}} - \bar{u}_{s} \frac{\partial u_{s}}{\partial n_{2}} \right) dS + \int_{\Sigma_{R}} \left(u_{s} \frac{\partial \bar{u}_{s}}{\partial r} - \bar{u}_{s} \frac{\partial u_{s}}{\partial r} \right) dS = 0.$$

Воспользуемся условием (6) и его аналогом для сопряжённой функции и приведём к одному вектору нормали. В результате получим

$$\int_{\partial Q} \left(u_{-} \left(\frac{\partial \bar{u}_{-}}{\partial n_{1}} - \frac{\partial \bar{u}_{s}}{\partial n_{1}} \right) + \bar{u}_{-} \left(\frac{\partial u_{s}}{\partial n_{1}} - \frac{\partial u_{-}}{\partial n_{1}} \right) \right) dS + \int_{\Sigma_{R}} \left(u_{s} \frac{\partial \bar{u}_{s}}{\partial r} - \bar{u}_{s} \frac{\partial u_{s}}{\partial r} \right) dS = 0.$$

Из условия (7) имеем равенство

$$\int_{\partial Q} \left(u_{-}(\gamma_{2}\bar{u}_{-} - \gamma_{1}\bar{u}_{s}) + \bar{u}_{-}(\gamma_{1}u_{s} - \gamma_{2}u_{-}) \right) dS + \int_{\Sigma_{R}} \left(u_{s}\frac{\partial\bar{u}_{s}}{\partial r} - \bar{u}_{s}\frac{\partial u_{s}}{\partial r} \right) dS = 0.$$

В нём первое слагаемое в силу условия (6) равно нулю. Второе слагаемое преобразуем с помощью условий (8) и (9) на бесконечности. При $R \to \infty$ будем иметь

$$\lim_{R \to \infty} \int_{\Sigma_R} |u_s|^2 \, dS = 0$$

Воспользовавшись леммой получаем, что $u_s \equiv 0$ всюду вне сферы \sum_R . Тогда, аналитически продолжая u_s вплоть до границы ∂Q (в силу аналитичности решения однородного уравнения Гельмгольца с постоянным коэффициентом), находим, что $u_s \equiv 0$ всюду вне Q.

Из условий сопряжения для функции u_{-} получаем однородную переопределённую задачу в области Q

$$\Delta u_{-} + k^{2}u_{-} = 0, \quad x \in Q,$$
$$u_{-}|_{\partial Q} = 0, \quad \frac{\partial u_{-}}{\partial n}\Big|_{\partial Q} = 0,$$

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 59 № 8 2023

откуда, применяя третью формулу Грина [4, с. 80] для решения однородного уравнения Гельмгольца, заключаем, что функция *u*₋ тождественно равна нулю.

3. Сведение задачи к системе интегральных уравнений. Обозначим

$$G = G(x, y) = \frac{e^{ik|x-y|}}{4\pi|x-y|}, \quad G_0 = G_0(x, y) = \frac{e^{ik_0|x-y|}}{4\pi|x-y|}.$$

Функции u_s и u_- будем искать в виде потенциалов простого слоя:

$$u_s(x) = \int_{\partial Q} G_0(x, y)\phi(y) \, ds_y, \tag{10}$$

$$u_{-}(x) = \int_{\partial Q} G(x, y)\psi(y) \, ds_y, \tag{11}$$

где $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ и $y = (y_1, y_2, y_3) \in \mathbb{R}^3$. Падающая волна имеет вид $u_0(x) = e^{ik_0x_3}$. Итак, на контуре ∂Q будут выполняться два условия:

$$u_0 + u_s = u_-,$$
 (12)

$$\frac{\partial u_0}{\partial n} + \frac{\partial u_s}{\partial n} - \frac{\partial u_-}{\partial n} = \gamma_1 (u_0 + u_s) - \gamma_2 u_-.$$
(13)

Запишем условия (12) и (13) с учётом (10) и (11). Воспользуемся теоремой о производной потенциала простого слоя по направлению нормали [4, с. 65] и получим

$$u_0|_{\partial Q} + \int_{\partial Q} G_0(x, y)\phi(y) \, ds_y = \int_{\partial Q} G(x, y)\psi(y) \, ds_y, \tag{14}$$

$$\frac{\partial u_0}{\partial n} - \frac{1}{2}(\phi(x) + \psi(x)) + \int_{\partial Q} \left(\frac{\partial}{\partial n_x} G_0(x, y)\phi(y) - \frac{\partial}{\partial n_x} G(x, y)\psi(y) \right) ds_y =$$
$$= \gamma_1 \left(u_0|_{\partial Q} + \int_{\partial Q} G_0(x, y)\phi(y) ds_y \right) - \gamma_2 \int_{\partial Q} G(x, y)\psi(y) ds_y.$$
(15)

Систему интегральных уравнений (14) и (15) запишем в операторном виде

$$S_{11}\phi - S_{12}\psi = f_1, \quad (I + S_{21})\phi + (I + S_{22})\psi = f_2,$$
 (16)

где

$$S_{11}\phi = \int_{\partial Q} G_0(x,y)\phi(y) \, ds_y, \quad S_{12}\psi = \int_{\partial Q} G(x,y)\psi(y) \, ds_y,$$

$$S_{21}\phi = 2\gamma_1 \int_{\partial Q} G_0(x,y)\phi(y) \, ds_y - 2\int_{\partial Q} \frac{\partial}{\partial n_x} G_0(x,y)\phi(y) \, ds_y,$$

$$S_{22}\psi = 2\int_{\partial Q} \frac{\partial}{\partial n_x} G(x,y)\psi(y) \, ds_y - 2\gamma_2 \int_{\partial Q} G(x,y)\psi(y) \, ds_y,$$

$$f_1 = -u_0|_{\partial Q}, \quad f_2 = 2\left(\frac{\partial u_0}{\partial n}\Big|_{\partial Q} - \gamma_1 u_0|_{\partial Q}\right).$$

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 59 № 8 2023

4. Существование решения системы интегральных уравнений. Пусть $\tilde{\varphi} = \phi + \psi$, $\tilde{\psi} = \phi - \psi$. Тогда система (16) примет вид

$$\frac{1}{2}(S_{11} - S_{12})\tilde{\varphi} + \frac{1}{2}(S_{11} + S_{12})\tilde{\psi} = f_1, \quad \tilde{\varphi} + \frac{1}{2}(S_{21} + S_{22})\tilde{\varphi} + \frac{1}{2}(S_{21} - S_{22})\tilde{\psi} = f_2.$$
(17)

Будем искать решения системы интегральных уравнений в пространствах Гёльдера $\tilde{\varphi}, \tilde{\psi} \in$

Будем искать решения системы интерратына уразным уразным в програнотов с перегратор (QQ), $f_1 \in C^{1,\alpha}(\partial Q)$, $f_2 \in C^{0,\alpha}(\partial Q)$, где $0 < \alpha < 1$. Линейные ограниченные операторы $S_{21}, S_{22} : C^{0,\alpha}(\partial Q) \to C^{0,\alpha}(\partial Q)$ компактны [4, с. 73], следовательно, компактны операторы $S_{21} + S_{22}, S_{21} - S_{22} : C^{0,\alpha}(\partial Q) \to C^{0,\alpha}(\partial Q)$.

Пусть $k_1 > 0$ такое число, при котором внутренняя задача Неймана для уравнения Гельмгольца с волновым числом k_1 в области Q имеет только тривиальное решение. Тогда [10, с. 43] ограниченный оператор $T_1: C^{1,\alpha}(\partial Q) \to C^{0,\alpha}(\partial Q)$, определённый по формуле

$$T_1 f = \frac{\partial}{\partial n_x} \int\limits_{\partial Q} \frac{\partial}{\partial n_y} \frac{e^{ik_1|x-y|}}{4\pi |x-y|} f(y) \, ds_y,$$

непрерывно обратим, т.е. имеет ограниченный обратный оператор $T_1^{-1}: C^{0,\alpha}(\partial Q) \to C^{1,\alpha}(\partial Q)$. Далее пусть оператор $S_1: C^{0,\alpha}(\partial Q) \to C^{1,\alpha}(\partial Q)$ определён по формуле

$$S_1 f = \int\limits_{\partial Q} \frac{e^{ik_1|x-y|}}{4\pi|x-y|} f(y) \, ds_y$$

Тогда имеет место равенство [10, с. 44]

$$4T_1S_1 = 4K_1^2 - I, (18)$$

где I – тождественный оператор, а $K_1: C^{0,\alpha}(\partial Q) \to C^{0,\alpha}(\partial Q)$ – компактный оператор, определённый формулой

$$K_1 f = \int_{\partial Q} \frac{\partial}{\partial n_x} \frac{e^{ik_1|x-y|}}{4\pi|x-y|} f(y) \, ds_y$$

Подействуем на левую и правую части первого уравнения в (17) оператором T_1 и получим

$$\frac{1}{2}T_1(S_{11} - S_{12})\tilde{\varphi} + \frac{1}{2}T_1(S_{11} + S_{12})\tilde{\psi} = \tilde{f}_1,$$
(19)

где $\tilde{f}_1 = T_1 f_1$. Операторы $S_{11}, S_{12} : C^{0,\alpha}(\partial Q) \to C^{1,\alpha}(\partial Q)$ являются ограниченными [10, с. 43], а оператор $K_0 = S_{11} - S_{12} : C^{0,\alpha}(\partial Q) \to C^{1,\alpha}(\partial Q)$ – компактным, так как ядро интегрального оператора и его производная не имеют особенности:

$$G_0(x,y) - G(x,y) = i(k_0 - k)/4\pi + O(|x - y|),$$

 $\frac{\partial}{\partial x}(G_0(x,y) - G(x,y)) = O(1)$ при $|x - y| \to 0.$

Рассмотрим оператор $S_{11} + S_{12} : C^{0,\alpha}(\partial Q) \to C^{1,\alpha}(\partial Q)$. Имеем

$$S_{11} + S_{12} = 2S_1 + (S_{11} - S_1) + (S_{12} - S_1).$$

Операторы $S_{11} - S_1, S_{12} - S_1 : C^{0,\alpha}(\partial Q) \to C^{1,\alpha}(\partial Q)$ будут компактными (доказательство аналогично приведённому выше). Тогда, учитывая формулу (18), уравнение (19) можно записать в виде

$$\frac{1}{2}T_1K_0\tilde{\varphi} + \frac{1}{2}T_1(S_{11} - S_1)\tilde{\psi} + \frac{1}{2}T_1(S_{12} - S_1)\tilde{\psi} + \frac{1}{2}K_1^2\tilde{\psi} - \frac{1}{4}\tilde{\psi} = \tilde{f}_1,$$
(20)

ЛИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 59 № 8 2023

где все операторы (за исключением I/4), входящие в (20) и действующие в $C^{0,\alpha}(\partial Q) \to C^{0,\alpha}(\partial Q)$, компактны.

В результате имеем систему интегральных уравнений второго рода в пространстве $C^{0,\alpha}(\partial Q)$

$$-2T_1 K_0 \tilde{\varphi} - 2T_1 (S_{11} + S_{12} - 2S_1) \tilde{\psi} - 2K_1^2 \tilde{\psi} + \tilde{\psi} = -4\tilde{f}_1,$$

$$\tilde{\varphi} + \frac{1}{2} (S_{21} + S_{22}) \tilde{\varphi} + \frac{1}{2} (S_{21} - S_{22}) \tilde{\psi} = f_2.$$
 (21)

Заметим, что все преобразования и переходы от одной системы к другой эквивалентны, т.е. допускают обратные преобразования (именно для этого выбирался обратимый оператор T_1). Таким образом, система уравнений (21) эквивалентна системе (17).

Система уравнений (21) определяет фредгольмов оператор как сумму единичного и компактного операторов. Следовательно, для системы (21) справедлива альтернатива Фредгольма.

Теорема 2. Решения систем интегральных уравнений (16), (17), (21) существуют и единственны.

Доказательство. Пусть $\tilde{\varphi}$, $\tilde{\psi}$ – нетривиальное решение $(|\tilde{\varphi}| + |\tilde{\psi}| \neq 0)$ однородной системы (21) (при $\tilde{f}_1 \equiv 0$, $f_2 \equiv 0$). Так как оператор T_1 имеет ограниченный обратный, то эти функции являются решением однородной системы (17). По формулам $\phi = (\tilde{\varphi} + \tilde{\psi})/2$, $\psi = (\tilde{\varphi} - \tilde{\psi})/2$ определим функции ϕ , ψ , которые будут нетривиальным решением однородной системы (16). Далее по формулам (10), (11) определяем функции u_s и u_- , которые, как нетрудно проверить, дают нетривиальное решение однородной задачи (5) (с $u_0 \equiv 0$). Но это решение в силу теоремы 1 должно быть тривиальным. Полученное противоречие доказывает, что однородная система (21) может иметь только тривиальное решение.

Из фредгольмовости оператора системы (21), пользуясь альтернативой Фредгольма, заключаем, что решение системы (21) существует и единственно. Из эквивалентности систем (21), (17), (16) получаем существование и единственность решений и для систем (17) и (16).

Теорема 3. Решение краевой задачи (1)-(4) существует и единственно.

Доказательство. Из теоремы 2 следует, что построенное с помощью решений системы (21) по формулам (10), (11) решение краевой задачи удовлетворяет (2)–(4). Остаётся проверить условия гладкости решения (1). Потенциалы (10), (11), очевидно, бесконечно дифференцируемы в областях Q и $\mathbb{R}^3 \setminus \overline{Q}$. Известно [4, с. 62], что первые производные потенциала простого слоя с равномерно непрерывной по Гёльдеру плотностью можно продолжить с сохранением непрерывности по Гёльдеру вплоть до границы области, если граница ∂Q класса гладкости C^2 . Отсюда заключаем, что условие (1) также выполняется.

Теоремы 1–3 полностью обосновывают решение краевой задачи через потенциалы простого слоя, а также сводят решение краевой задачи (1)–(4) к одной из интегральных систем (16), (17) и (21).

5. Метод коллокации. Построим схему для решения системы интегральных уравнений (16) методом коллокации.

Будем считать, что Q – шар радиуса R с центром в начале координат. Перейдём к сферической системе координат, точка в пространстве теперь определяется следующим образом:

$$x = (\varphi_x, \theta_x, \rho_x), \quad y = (\varphi_y, \theta_y, \rho_y).$$

На
 $\partial Q=\{x: 0<\varphi<2\pi, 0<\theta<\pi, \rho=R\}$ в сферических координатах введём прямоугольную сетку

$$\Pi_{kl} = \{ x : x_{1,k} < \varphi < x_{1,k+1}, \ x_{2,l} < \theta < x_{2,l+1}, \ \rho = R \},\$$

$$h_1 = \frac{2\pi}{n}, \quad h_2 = \frac{\pi}{n}, \quad x_{1,k} = h_1 k, \quad x_{2,l} = h_2 l,$$

где $k, l = \overline{0, n - 1}$.

Определим кусочно-постоянную на сетке функцию

$$\chi_{kl}(x) = \begin{cases} 1, & x \in \Pi_{kl}, \\ 0, & x \notin \Pi_{kl}. \end{cases}$$

Перенумеруем базисные функции и их носители с помощью одного индекса $\chi_I(x)$, $I = \overline{1, N}$, $N = n^2$. Теперь функции $\phi(x)$ и $\psi(x)$ можно определить следующим образом:

$$\phi(x) = \sum_{I=1}^{N} \alpha_I \chi_I(x), \quad \psi(x) = \sum_{I=1}^{N} \beta_I \chi_I(x).$$

где $\chi_I(x)$ – базисные кусочно-постоянные функции, $\alpha = (\alpha_1, \ldots, \alpha_N)^{\mathrm{T}}, \beta = (\beta_1, \ldots, \beta_N)^{\mathrm{T}}$ – вектор-столбцы неизвестных коэффициентов.

После применения метода коллокации получим систему линейных алгебраических уравнений

$$A_{11}\alpha - A_{12}\beta = B_1, \quad A_{21}\alpha + A_{22}\beta = B_2, \tag{22}$$

элементы матриц A₁₁, A₁₂, A₂₁, A₂₂ и вектор-столбцов B₁, B₂ определяются формулами

$$\begin{aligned} A_{11}^{ij} &= \int_{\Pi_j} G_0(x_i, y) \, ds_y, \quad A_{12}^{ij} &= \int_{\Pi_j} G(x_i, y) \, ds_y, \\ A_{21}^{ij} &= \delta_{ij} + 2\gamma_1 \int_{\Pi_j} G_0(x_i, y) \, ds_y - 2 \int_{\Pi_j} \frac{\partial}{\partial n} G_0(x_i, y) \, ds_y, \\ A_{22}^{ij} &= \delta_{ij} + 2 \int_{\Pi_j} \frac{\partial}{\partial n} G(x_i, y) \, ds_y - 2\gamma_2 \int_{\Pi_j} G(x_i, y) \, ds_y, \\ B_1^i &= -u_0(x_i), \quad B_2^i = 2 \left(\frac{\partial}{\partial n} u_0(x_i) - \gamma_1 u_0(x_i) \right), \end{aligned}$$

где координаты точек коллокации

$$x_i = (x_{i1}, x_{i2}, R), \quad x_{i1} = (i_1 + 1/2)h_1, \quad x_{i2} = (i_2 + 1/2)h_2,$$

а δ_{ij} – символ Кронекера.

Решив систему линейных алгебраических уравнений (22), найдём приближённое решение поставленной задачи. Интегралы в коэффициентах матрицы вычислялись по квадратурным формулам с учётом особенностей ядер интегральных операторов.

Заметим, что можно было решать систему интегральных уравнений второго рода (21) (с учётом того, что действие оператора T_1 на операторы S_{11} и S_{12} вычисляется аналитически по формулам (18)).

В этой статье мы не будем доказывать сходимость метода коллокации. Доказательство сходимости этого метода для таких систем интегральных уравнений, а также оценки скорости сходимости, см. в [11]. Некоторой трудностью при доказательстве сходимости является то обстоятельство, что базисные функции не вложены в пространство решений, однако она преодолевается с помощью понятия дискретной сходимости [12].

6. Численные результаты. Пусть радиус рассматриваемого тела R = 0.006 м, параметр $k_0 = 1846$ м⁻¹, а $k = 1.5k_0$. Условия сопряжения следующие:

$$u_0 + u_s = u^-, \quad \frac{\partial u_0}{\partial n} + \frac{\partial u_s}{\partial n} - \frac{\partial u^-}{\partial n} = 5000(u_0 + u_s) - u^-.$$
(23)

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 59 № 8 2023

Применим метод коллокации и решим полученную систему линейных алгебраических уравнений (СЛАУ). На рис. 1 изображены найденные функции плотности $\phi(x)$ (a) и $\psi(x)$ (b).

Рис. 1. Модуль функций плотности $\phi(x)$ и $\psi(x)$.

Рассмотрим внутреннюю сходимость приближённого решения. Для этого построим решения задачи с сеткой 10×10 (a), 20×20 (б), 30×30 (в) и 70×70 (г) (рис. 2).

Рис. 2. Сходимость функции плотности $\phi(x)$.

Зная функции плотности, можно построить полное поле (рис. 3) в выбранной области при помощи введённых ранее потенциалов простого слоя (10) и (11).

Рис. 3. Модуль полного поля в сечении плоскостью x = 0.

При реализации вычислительного алгоритма применялось распараллеливание вычисления коэффициентов матрицы и решения СЛАУ на 10 процессов.

Заключение. В работе рассмотрена краевая задача для уравнения Гельмгольца со специальными условиями сопряжения. С помощью потенциалов простого слоя (10) и (11) исходная

задача сведена к исследованию системы интегральных уравнений по границе области ∂Q . Доказаны единственность и существование решения как системы интегральных уравнений, так и задачи сопряжения. Существование решения обосновано с помощью теоремы единственности для решения задачи сопряжения и фредгольмовости оператора системы интегральных уравнений.

Для численного решения системы интегральных уравнений применён метод коллокации. Рассмотрен пример, когда область есть шар. Выполнен переход к сферической системе координат и получена блочная система линейных алгебраических уравнений с кусочно-постоянными базисными функциями на прямоугольной сетке. Представлены численные результаты для плотностей при определённых условиях сопряжения. Рассмотрена внутренняя сходимость решения и построено полное поле внутри и вне области Q.

Работа выполнена при финансовой поддержке Российского научного фонда (проект 20-11-20087).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ладыженская О.А. Краевые задачи математической физики. М., 1973.
- 2. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. М., 1984.
- 3. Nedelec J.-C. Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems. New York, 2001.
- 4. Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М., 1987.
- 5. *Лерер А.М.* Численная оценка погрешности метода возмущения при решении задачи об отражении электромагнитной волны от нелинейного графенового слоя // Радиотехника и электроника. 2022. Т. 67. № 9. С. 855–858.
- 6. Смирнов Ю.Г., Тихов С.В., Гусарова Е.В. О распространении электромагнитных волн в диэлектрическом слое, покрытом графеном // Изв. вузов. Поволжский регион. Физ.-мат. науки. 2022. № 3. С. 11–18.
- Mikhailov S.A. Quantum theory of the third-order nonlinear electrodynamic effects of graphene // Phys. Rev. B. 2016. V. 93. № 8. Art. 085403.
- 8. Hanson G.W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene // J. of Appl. Phys. 2008. V. 103. № 6. Art. 064302.
- 9. Ильинский А.С., Кравцов В.В., Свешников А.Г. Математические модели электродинамики и акустики. М., 1991.
- 10. Colton D., Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. New York, 2013.
- 11. Vainikko G. Multidimensional Weakly Singular Integral Equation. Berlin; Heidelberg, 1993.
- 12. Вайникко Г.М., Карма О.О. О сходимости приближённых методов решения линейных и нелинейных операторных уравнений // Журн. вычислит. математики и мат. физики. 1974. Т. 14. № 4. С. 828–837.

Пензенский государственный университет

Поступила в редакцию 26.05.2023 г. После доработки 26.05.2023 г. Принята к публикации 20.07.2023 г.