УДК 502.5:504.5(571.63)

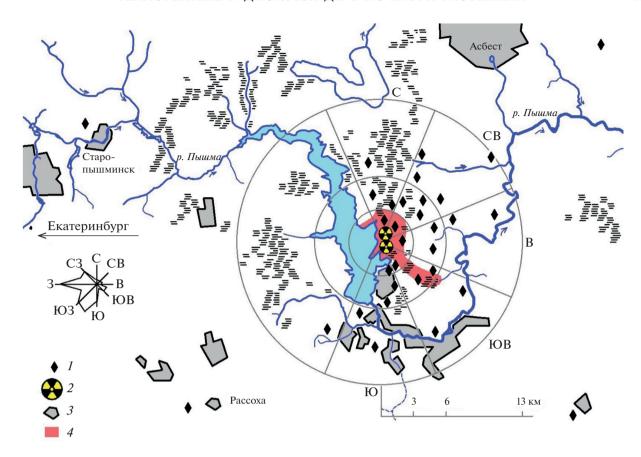
ТЕХНОГЕННЫЕ РАДИОНУКЛИДЫ В ПОЧВАХ И РАСТЕНИЯХ НАЗЕМНЫХ ЭКОСИСТЕМ В ЗОНЕ ВОЗДЕЙСТВИЯ АТОМНЫХ ПРЕДПРИЯТИЙ

© 2020 г. Л. Н. Михайловская^{а, *}, В. П. Гусева^а, О. В. Рукавишникова^а, З. Б. Михайловская^а

^аИнститут экологии растений и животных УрО РАН, Россия 620144 Екатеринбург, ул. 8 Марта, 202

*e-mail: mila mikhaylovska@mail.ru

Поступила в редакцию 11.04.2019 г. После доработки 10.08.2019 г. Принята к публикации 19.08.2019 г.


На территории Среднего Урала работают два близко расположенных крупных источника радиоактивного загрязнения: Белоярская АЭС (БАЭС) и Институт реакторных материалов (ИРМ). В зоне наблюдения БАЭС плотность загрязнения автоморфных почв 239,240 Ри поддерживается на уровне глобального фона, а 90 Sr и 137 Cs — на уровне регионального фона, сложившегося за счет выпадений из атмосферы радионуклидов различного генезиса. За последние 35 лет фронт радиоактивного загрязнения сместился в глубь почвенного профиля. На основании проведенных исследований впервые оконтурена территория приземления факела газоаэрозольных выбросов БАЭС и ИРМ. Вклад предприятий в ее загрязнение 137 Cs составляет 2.7 кБк/м². Коэффициенты перехода радионуклидов в растения в зоне БАЭС выше, чем на территории Восточно-Уральского радиоактивного следа, где уровни загрязнения 90 Sr и 137 Cs на 3—4 порядка величин превышают фоновые. Коэффициенты перехода зависят от свойств радионуклидов, таксономической принадлежности растений и снижаются со временем. Временной тренд вызван уменьшением атмосферных выпадений, вертикальной миграцией радионуклидов и увеличением прочности закрепления 137 Cs в почвах.

Ключевые слова: радионуклиды, выпадения из атмосферы, АЭС, пространственное распределение, накопление растениями, Урал

DOI: 10.31857/S0367059720020092

Урал — один из регионов России, характеризующийся сложной радиоэкологической обстановкой. Вклад глобальных радиоактивных выпадений из атмосферы в загрязнение почв здесь соответствует выпадениям в средних широтах Северного полушария: ${}^{90}\text{Sr} - 1.3 \text{ кБк/м}^2$, ${}^{137}\text{Cs} - 2.2 \text{ кБк/м}^2$, 239,240 Pu — 0.011—0.30 кБк/м 2 [1, 2]. Деятельность расположенных на Урале промышленных предприятий ядерного топливного цикла привела к дополнительному загрязнению почв региона ⁹⁰Sr до $1.6-3.0 \text{ кБк/м}^2$, ^{137}Cs – до $4.6-6.8 \text{ кБк/м}^2$ [3]. Белоярская АЭС (БАЭС) и расположенный рядом Институт реакторных материалов (ИРМ) предприятия, определяющие радиоэкологическую ситуацию на Среднем Урале. Разделить их вклад в загрязнение окружающей среды невозможно [4]. Радиоэкологическая ситуация в зоне влияния предприятий уникальна, поскольку на одной площадке БАЭС функционировали разные типы реакторов (АМБ и БН) и ИРМ. В настоящее время работают БН-600 (с 1980 г.) и БН-800 (с 2015 г.) — единственные в мире промышленные энергоблоки с реакторами на быстрых нейтронах

[5]. Реакторы типа БН выбрасывают в окружающую среду меньше радиоактивных веществ, чем реакторы АМБ [3], но примерно такое же количество, как реакторы ВВЭР и их зарубежные аналоги PWR [4, 6]. Небольшое количество радионуклидов поступает в окружающую среду от любых реакторных установок, как правило, оно на порядки ниже допустимых норм, принятых в отечественных нормативно-методических документах и рекомендациях МАГАТЭ [4, 5]. Незначительное влияние газоаэрозольных выбросов АЭС на загрязнение зон наблюдения подтверждают и радиоэкологические исследования [7, 8], в том числе в зоне наблюдения БАЭС [3, 9]. Однако в единичных случаях в зоне вероятного приземления факела выбросов БАЭС плотность загрязнения почв 137 Cs достигала 9 кБк/м 2 , что в 4 раза превышало уровень глобального фона [1, 2]. Попытки оконтурить зону приземления факела выбросов не проводились. Современный уровень выпадений радиоактивных веществ из атмосферы в зоне наблюдения БАЭС действительно очень мал (п Бк/м² в год) по сравнению с общей плотностью

Рис. 1. Схема района исследований: 1 — реперные точки; 2 — предприятия ядерного топливного цикла; 3 — населенные пункты; 4 — санитарно-защитная зона БАЭС.

загрязнения почв ($n \cdot 10^3$ Бк/м²), но соизмерим с количеством радионуклидов, содержащихся в растительном покрове, и может вносить заметный вклад в загрязнение растений [10, 11].

Цели настоящей работы: 1) изучить пространственное распределение радионуклидов в зоне влияния БАЭС и ИРМ; 2) оценить вклад газоаэрозольных выбросов БАЭС и ИРМ в загрязнение почвенно-растительного покрова; 3) изучить закономерности накопления радионуклидов растениями разной таксономической принадлежности, произрастающими в зоне влияния двух атомных предприятий.

МАТЕРИАЛ И МЕТОДЫ

БАЭС и ИРМ расположены в 42 км к востоку от г. Екатеринбурга, работают в безаварийном режиме с 1964 г. и 1966 г. соответственно (рис. 1). Исследования проводили в период с 2005 г. по 2015 г. на территории радиусом 13 км, соответствующей границам зоны наблюдения БАЭС и включающей санитарно-защитную зону. На большей части (85.2%) обследованной территории представлены почвы земель лесного фонда: буроземы, ржавоземы, дерново-подбуры, дерно-

во-подзолистые, серые и темно-серые почвы среднего и легкого гранулометрического состава [9]. Наиболее распространены смешанные сосново-березовые леса. Широко представлена луговая растительность. Вся территория носит следы интенсивного воздействия человека, на лугах и опушках леса встречаются рудеральные растения. Мохово-лишайниковый покров развит слабо.

Реперные участки закладывали в соответствии с преимущественным направлением ветров (от южного до северо-западного) на разном расстоянии от БАЭС и ИРМ (см. рис. 1). Учитывая полученные ранее данные [3, 9, 12], на обследованной территории мы выделили вероятную зону приземления факела газоаэрозольных выбросов двух предприятий – сектор, ограниченный радиусами 3-6 км. Все реперные площадки имели однородный рельеф и почвенно-растительный покров, располагались в наиболее распространенных экосистемах на автоморфных элементах ландшафта. Гидроморфные элементы ландшафта, в том числе находящиеся в зоне воздействия жидких сбросов БАЭС, не включали в исследование. Контрольные участки закладывали за пределами наблюдаемой зоны.

	⁹⁰ Sr		¹³⁷ Cs		^{239,240} Pu		¹³⁷ Cs/ ⁹⁰ Sr	
Сектор, км	min-max	$M \pm \delta$	min-max	$M \pm \delta$	min-max	$M \pm \delta$	Cs/ 31	
			K	:Бк/м ²			min-max	$M \pm \delta$
0-3	0.8-2.0	1.3 ± 0.4	0.4-7.7	4.4 ± 2.4	0.036-0.145	0.099 ± 0.047	1.9-7.2	4.7 ± 1.8
3–6	0.9 - 4.2	$2.2 \pm 0.8*$	3.1-9.2	5.9 ± 1.5*	0.013 - 0.167	0.091 ± 0.044	1.0-11.0	3.5 ± 2.7
6-13	0.9-4.5	2.4 ± 0.9	0.5 - 7.8	4.4 ± 1.9	0.013 - 0.216	0.101 ± 0.064	0.1-4.3	1.9 ± 1.1
0-13	0.8 - 4.5	2.1 ± 0.8	0.4-9.2	5.1 ± 1.9	0.013 - 0.216	0.095 ± 0.049	0.1-11.0	2.9 ± 2.3
Контроль	0.9-2.1	1.4 ± 0.6	2.0 - 5.7	3.2 ± 1.2	0.053-0.175	0.096 ± 0.052	1.5-6.5	3.1 ± 1.7

Таблица 1. Плотность загрязнения радионуклидами почвенного покрова окрестностей БАЭС

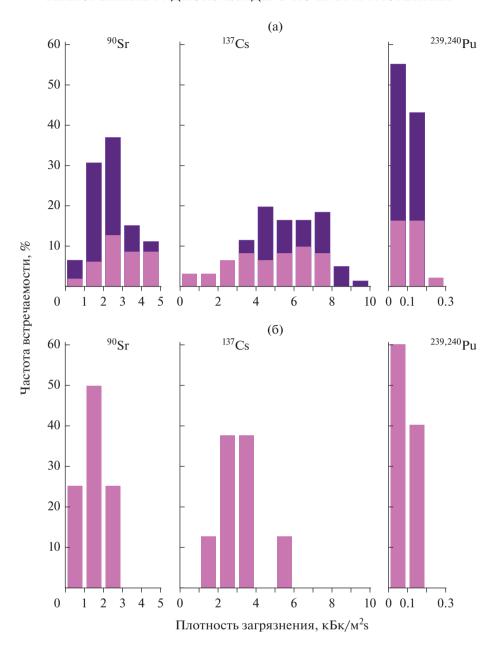
Почвенные разрезы размещали в вершинах равностороннего треугольника с длиной стороны 10 м, образцы почв отбирали слоями по 5 см с учетом площади. Пробы надземной массы основных лесообразующих пород (сосна обыкновенная *Pinus sylvestris* L. и береза пониклая *Betula pendula* Roth.), разнотравья, слоевищ эпифитных лишайников, дерновинок эпигейных мхов отбирали по 2—3 повторности.

Содержание ¹³⁷Cs измеряли на многоканальных гамма-анализаторах фирмы "Canberra-Packard" (США) и "ORTEC" (США) [13], а 90Sr определяли радиохимическим методом по дочернему ⁹⁰Y с последующей радиометрией осадков на альфа-бета радиометре УМФ-2000 (Россия) [14]. Пределы обнаружения составляли 0.1-0.2 Бк, а погрешность методов не превышала 20%. Изотопы Ри выделяли радиохимическим методом с электролитическим осаждением. Активность образцов измеряли на альфа-спектрометре "ORTEC" (США) [15] — предел обнаружения 0.001 Бк, погрешность метода не превышала 30%. Все анализы выполнены в Отделе континентальной радиоэкологии Института экологии растений и животных УрО РАН (сертификат аккредитации САРК RU.0001.441492). Аккумулирующую способность растений оценивали величиной коэффициента перехода (КП), которую рассчитывали как отношение удельной активности радионуклида в надземной массе растений (Бк/кг сухой массы) к плотности загрязнения почвы (Бк/м 2) [16].

Статистическая обработка данных выполнена с использованием непараметрического критерия Манна-Уитни в программе STATISTICA.

РЕЗУЛЬТАТЫ

Пространственное распределение радионуклидов в почвенном покрове зоны наблюдения БАЭС


В обследованных почвах радионуклиды по уровню содержания располагаются в убывающем ряду: 137 Cs > 90 Sr > 239,240 Pu (табл. 1). Среднее со-

держание ¹³⁷Cs в почвах контрольных участков превышает глобальный фон, а ⁹⁰Sr и ^{239,240}Pu не отличается от уровня, обусловленного глобальными радиоактивными выпадениями [1, 2]. Радионуклиды распределяются на обследованной территории неравномерно. Диапазон значений плотности загрязнения почв ⁹⁰Sr варьирует в пределах $0.9-2.1 \text{ кБк/м}^2$ на контрольных участках и 0.8- $4.5 \text{ кБк/м}^2 \text{ в зоне наблюдения БАЭС; } ^{137}\text{Cs} - 2.0-$ 5.7 кБк/м² (фон) и 0.4—9.2 кБк/м² (зона БАЭС); 239,240 Pu -0.053-0.175 кБк/м 2 и 0.013-0.216 кБк/м 2 соответственно. Высокая вариабельность отмечена и для отношения 137 Cs/ 90 Sr. Средний уровень загрязнения радионуклидами 13-км зоны наблюдения и контрольных участков не отличается. В зоне вероятного приземления факела выбросов, ограниченной радиусами 3-6 км, плотность загрязнения 90 Sr (*U*-тест, n = 30, p = 0.046) и 137 Cs (*U*-тест, n = 30, p = 0.028) достоверно выше, чем на контрольных участках. Для ^{239,240} Pu отличий не обнаружено (*U*-тест, n = 30, p = 0.916).

Сопоставление этих результатов с данными, полученными в период пуска блока БН-600 (1978–1985 г.), показывает, что уровень загрязнения автоморфных почв изменился незначительно он составлял $1.3-2.2 \text{ кБк/м}^2 \text{ и } 4.3-9.3 \text{ кБк/м}^2$, а на контрольных участках -1.2-1.5 кБк/м 2 и 4.9- 6.8 кБк/м^2 для 90 Sr и 137 Cs соответственно [3, 9]. За истекший период времени плотность загрязнения почв ⁹⁰Sr и ¹³⁷Cs должна была бы снизиться более чем в 2 раза за счет радиоактивного распада. а потери не могли быть компенсированы газоаэрозольными выбросами БАЭС и ИРМ, которые составляют единицы Бк/м² в год. По-видимому, постоянство уровней загрязнения поддерживается за счет атмосферных выпадений от других источников.

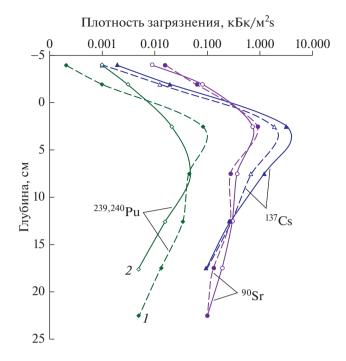
Анализ частотного распределения плотности загрязнения почв ^{239,240}Pu показал, что в зоне наблюдения БАЭС и на контрольных участках все значения не превышают фонового уровня, обра-

^{*} Значимые различия.

Рис. 2. Частотное распределение плотности загрязнения почв радионуклидами: а — наблюдаемая зона (темная заливка — зона приземления факела выбросов), б — контроль.

зованного глобальными выпадениями (рис. 2). В зоне наблюдения диапазон уровней загрязнения 90 Sr и 137 Cs шире, чем на контрольных участках. В большинстве случаев в зоне наблюдения уровень загрязнения почв 90 Sr составляет 1-3 кБк/м 2 и 137 Cs 4-8 кБк/м 2 , а на контрольных участках -1-3 кБк/м 2 и 2-4 кБк/м 2 соответственно. Плотность загрязнения почв в зоне наблюдения в 26% случаев для 90 Sr и 41% 137 Cs превышает контрольные уровни. Отчетливо выделяется по плотности загрязнения почв 137 Cs зона приземления факела выбросов. В этом секторе минимальная плот-

ность загрязнения почв 137 Cs > 3 кБк/м 2 , т.е. выше среднего уровня глобального фона, а максимальная > 8 кБк/м 2 .


В 1978—1985 гг. 80—95% радионуклидов от суммарного их содержания в почвенном профиле находилось в пределах 0—5 см слоя [12]. Через 35 лет в результате вертикальной миграции радионуклидов в этом слое автоморфных почв осталось около 35% 90 Sr, 45% 137 Cs и 30% 239,240 Pu. В 0—20 см слое почв находится 90—100% от их содержания в почвенном профиле. В качестве примера представлено вертикальное распределение радионук-

лидов в профиле типичного бурозема (рис. 3). Для всех изученных радионуклидов оно носит сходный характер. Минимальные значения плотности загрязнения наблюдаются в подстилке, максимальные — в слое 0-5 см. Характер распределения 90 Sr и 137 Cs по почвенному профилю не зависит от района исследований. Для 239,240 Pu отмечено заглубление максимума на глубину 5-10 см в буроземах наблюдаемой зоны БАЭС.

Детальное исследование зоны вероятного приземления факела выбросов по 5 азимутальным направлениям провели только для ⁹⁰Sr и ¹³⁷Cs, так как для ^{239,240} Pu не было обнаружено какого-либо вклада выбросов станции. Из табл. 2 видно, что максимальная вариабельность загрязнения наблюдается в подстилках. Загрязнение индикаторных компонентов почв (подстилка и слой 0-5 см) не отличается от контрольного уровня. Аналогичные данные получает и служба радиационной безопасности БАЭС, которая в ходе радиационного мониторинга обследует верхний 0-5 см слой почв [4]. Повышенный на 37%, или 0.8 кБк/м^2 , уровень загрязнения ⁹⁰Sr наблюдается в 0−25 см слое почв в секторе CB (*U*-тест, n = 6, p = 0.028), а 137 Cs на 45%, или 2.7 кБк/м², в секторах от С до ЮВ (*U*-тест, n = 6, p = 0.028 - 0.046), что соответствует преимущественному направлению ветров. Характер пространственного распределения радионуклидов в почвенном покрове позволяет заключить, что загрязнение зоны приземления факела выбросов произошло, вероятно, в период эксплуатации первой очереди станции, когда штатные выбросы БАЭС были значительно выше [3].

Накопление радионуклидов растениями

В соответствии с высокой гетерогенностью пространственного распределения радионуклидов наблюдается вариабельность их содержания в растениях (табл. 3). В обследованных таксономических группах растений диапазон концентраций радионуклидов в надземной массе может дости-

Рис. 3. Вертикальное распределение радионуклидов в буроземе типичном: 1—контроль, 2—зона наблюдения.

гать порядка величин. Следует отметить, что хвоя и листья древесных растений накапливают радионуклиды так же, как и надземная масса трав, а содержание радионуклидов в стволах деревьев существенно меньше. Растения наблюдаемой зоны и контрольных участков накапливают радионуклиды практически одинаково. Уровень загрязнения растений не превышает показателей, наблюдаемых в других регионах [7, 17, 18].

Согласно рис. 4, в 1981—1991 гг. высшие сосудистые растения (деревья и травы) накапливали 90 Sr и 137 Cs в меньших количествах (КП = 2.0—30.0 для 90 Sr и 0.2—7.9 для 137 Cs), чем мхи и лишайники (КП = 97.4—209.2 для 90 Sr и 76.0—131.3 для 137 Cs) [19]. К настоящему времени КП 90 Sr для высших

Таблица 2. Распределение 90 Sr и 137 Cs в зоне вероятного приземления факела выбросов Белоярской АЭС в зависимости от азимутального направления (плотность загрязнения, кБк/м²)

			=				
Сектор		⁹⁰ Sr		¹³⁷ Cs			
	A0	0-5 см	0-25 см	A0	0-5 см	0—25 см	
C	0.12 ± 0.07	0.72 ± 0.38	2.10 ± 0.79	0.073 ± 0.043	0.94 ± 0.44	5.98 ± 1.18*	
C-B	0.09 ± 0.07	0.58 ± 0.14	2.28 ± 0.56 *	0.050 ± 0.036	2.78 ± 1.56	5.84 ± 1.54 *	
В	0.07 ± 0.08	0.73 ± 0.24	2.30 ± 0.67	0.079 ± 0.077	3.17 ± 1.04	6.05 ± 1.84 *	
Ю-В	0.11 ± 0.14	0.66 ± 0.35	2.11 ± 1.26	0.059 ± 0.071	2.46 ± 1.79	5.96 ± 1.92*	
Ю	0.04 ± 0.03	0.47 ± 0.22	1.39 ± 0.56	0.025 ± 0.037	1.61 ± 0.11	3.97 ± 0.75	
Контроль	0.09 ± 0.06	0.73 ± 0.35	1.44 ± 0.58	0.036 ± 0.035	2.35 ± 0.61	3.22 ± 1.23	

^{*} Значимые различия.

 50.7 ± 39.9

,						
Объект	Часть растения	Место отбора	9	⁹⁰ Sr	¹³⁷ Cs	
ООВЕКТ			min-max	$M \pm \delta$	min-max	$M \pm \delta$
Деревья:						
хвойные	Хвоя	a	4.9-20.6	9.8 ± 1.5	0.7-5.4	1.8 ± 0.4
		б	11.2-20.6	14.7 ± 5.6	0.9-3.0	1.76 ± 0.9
	Ветки	a	2.9 - 12.5	7.6 ± 3.6	0.28-2.41	1.02 ± 0.79
		б	11.6-24.5	16.7 ± 7.6	0.66-2.4	1.29 ± 1.54
	Ствол	a	12.4-27.4	19.9 ± 13.3	1.88-2.50	2.19 ± 0.55
лиственные	Листья	a	20.3-57.5	38.1 ± 5.6	1.8-7.9	4.4 ± 0.9
	Ветки	a	30.1-35.5	31.9 ± 3.0	0.69-3.18	2.07 ± 1.47
	Ствол	a	10.5-21.0	15.1 ± 1.6	0.46-0.75	0.60 ± 0.17
Разнотравье	Надземная	a	9.0 - 37.3	$22.8.0 \pm 16.5$	2.6-12.3	7.3 ± 4.5
	масса	б	9.4-88.3	38.3 ± 7.9	0.4-5.5	1.6 ± 0.5
Лишайники	Биомасса	a	13.5-57.8	28.6 ± 12.4	96.0-226.0	138.1 ± 23.0
		б	9.5-95.3	34.7 ± 11.4	14.5-46.0	23.0 ± 7.4
Мхи	Биомасса	a	11.5-42.5	20.7 ± 3.1	14.5-138.0	49.9 ± 11.1
				_		

2.1 - 24.0

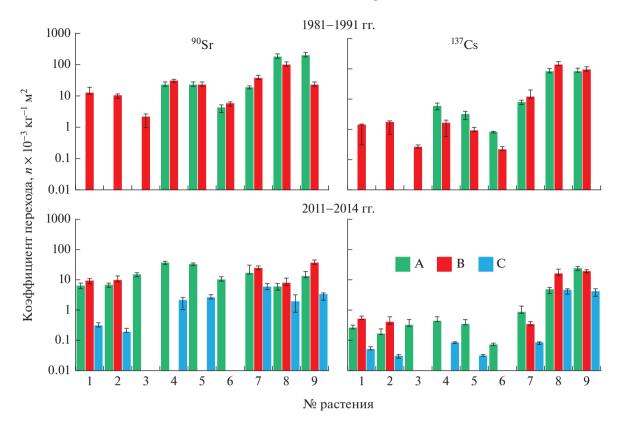
 12.8 ± 10.6

Таблица 3. Содержание радионуклидов в растениях наблюдаемой зоны БАЭС (а) и на контрольных участках (б), Бк/кг воздушно-сухого вещества

растений изменились незначительно, а для мхов и лишайников уменьшились от 6 до 30 раз. Накопление 137 Сs разными таксономическими группами растений снизилось в разной степени. В итоге на этапе 2011-2014 гг. мхи и лишайники накапливают в большей степени 137 Сs (КП 4.5-21.7), а высшие растения 90 Sr (КП 6.0-33.4).

б

Ранее мы обнаружили нелинейную связь концентрации радионуклидов в надземной массе растений с плотностью загрязнения почв [11, 20]. Сравнение КП растений разных таксономических групп, произрастающих в окрестностях БАЭС и на участке Восточно-Уральского радиоактивного следа, уровни загрязнения почв которого на 3—4 порядка величин выше [11], показало, что на территории головной части следа они ниже, чем в окрестностях БАЭС.


ОБСУЖДЕНИЕ

Обследованный район отличается гетерогенностью пространственного распределения радионуклидов. Сходный характер распределения складывается на территориях, загрязненных радиоактивными выпадениями из атмосферы разного генезиса [1, 2, 21]. Территория Свердловской области с 1953 г. (начало испытаний ядерного оружия) загрязнялась глобальными выпадениями [22], газоаэрозольными выбросами БАЭС и ИРМ. Свой вклад (0.3—7.8 кБк/м²) в загрязнение территории ¹³⁷Сѕ внесли аварийные выпадения Чернобыльской АЭС [3, 23]. Нельзя исключить многолетне-

го влияния комплекса радиохимических предприятий ПО "Маяк", расположенного в Челябинской области, а также Восточно-Уральского радиоактивного следа, проходящего через территорию Свердловской области [24]. Во всех источниках загрязнения присутствовали долгоживу- ${\rm mue}^{90}{\rm Sr}$ и ${}^{137}{\rm Cs}$, но их соотношение было разным. Не всегда можно привести точный состав выбросов, тем более что на разных предприятиях он изменялся с течением времени. Известно, что в современных штатных газоаэрозольных выбросах БАЭС величина отношения 137 Cs/ 90 Sr колеблется в пределах 0.5–2.5, ПО "Маяк" – 0.5–1.9, в глобальных выпадениях -1.6 [2, 4]. В аварийных выпадениях ЧАЭС она составляла 4.5, а ПО "Маяк" – 0.014 и 3.3 [1, 24]. В эти пределы укладываются средние значения для обследованной территории (2.9-3.1).

14.4-96.6

Средние значения параметров радиоактивного загрязнения, сформированного глобальными выпадениями в северном полушарии Земли, довольно условны, поскольку разные регионы по степени загрязнения различаются очень сильно. Повышенное содержание ¹³⁷Сs в почвах давно присуще Уральскому региону [3, 24]. Гетерогенность загрязнения почв, большое количество источников загрязнения, изменение состава и количества выбросов со временем, низкий уровень современных выпадений затрудняют оценку вклада БАЭС и ИРМ в загрязнение всей обследованной территории. Ранжирование территории по уровню загрязнения почв ¹³⁷Сs позволило оконтурить зону приземления факела выбросов. Определить

Рис. 4. Коэффициенты перехода радионуклидов в растения наблюдаемой зоны БАЭС (A), на контрольных участках (B) и на территории BУРСа (C). Использованы данные [3, 19, 23]. Сосна: 1 — хвоя, 2 — ветки, 3 — ствол; береза: 4 — листья, 5 — ветки, 6 — ствол; 7 — разнотравье; 8 — эпифитные лишайники; 9 — эпигейные мхи.

вклад двух предприятий в загрязнение этого сектора с высокой точностью не представляется возможным. Однако источником повышения плотности загрязнения почв ¹³⁷Cs на 2.7 кБк по сравнению с контролем можно считать БАЭС и ИРМ.

Изучение поступления радионуклидов в надземную массу растений разной таксономической принадлежности показало, что накопление ⁹⁰Sr и ¹³⁷Сѕ подчиняется тем же закономерностям, что и на других территориях, загрязненных выпадениями из атмосферы. Так, повышенное накопление радионуклидов листьями и хвоей по сравнению со стволами древесных растений, а также мхами и лишайниками по сравнению с высшими растениями наблюдалось и в других исследованиях [10, 17, 19]. Эти различия объясняются морфофизиологическими характеристиками растений и зависят от свойств радионуклидов. У разных видов растений КП радионуклидов характеризуются высокой вариабельностью и снижаются с течением времени. Полученные данные находятся в соответствии с наблюдаемой пространственной гетерогенностью загрязнения почв и изменением интенсивности радиоактивных выпадений из атмосферы [2, 10, 19]. Снижению КП высших сосудистых растений способствует и вертикальная миграция

за пределы корнеобитаемого слоя почв. Для ¹³⁷Cs большое значение имеет увеличение прочности его закрепления почвами с течением времени [3].

На территориях, прилегающих к БАЭС, уровень загрязнения почв которых сравним с фоновым, КП растений разных таксономических групп выше, чем в зоне выбросов Кыштымской аварии 1957 г. на ПО "Маяк". Аналогичные данные имеются и для других территорий [11, 26]. Это не может быть следствием разной подвижности радионуклидов в почвах. Например, на территории ВУРСа содержание подвижных форм радионуклидов выше, чем в зоне БАЭС [20, 27]. Возможно, этот феномен обусловлен диспропорциональностью между уровнем выпадений и плотностью загрязнения почв. Так, плотности загрязнения почв ⁹⁰Sr в головной части ВУРСа и зоне влияния БАЭС и ИРМ различаются на 4, а ¹³⁷Cs — на 3 порядка величин. Уровень выпадений из атмосферы различается в меньшей степени: в зоне влияния БАЭС ежегодно выпадает 2.5- $3.3~\rm{ \ \, K/m^2}$ $^{90}\rm{ \ \, Sr}$ и $1.0-1.1~\rm{ \ \, K/m^2}$ $^{137}\rm{ \ \, Cs},$ а в зоне ПО "Маяк" - 5–49 $\rm{ \ \, K/m^2}$ и 9–107 $\rm{ \ \, K/m^2}$ соответственно [4, 5]. Вклад атмосферных выпадений в загрязнение почвенного покрова составляет менее 0.1%. Однако по сравнению с содержанием радионуклидов в растительном покрове головной части ВУРСа атмосферные выпадения не превышают 0.2%, а на территории, прилежащей к БАЭС, могут достигать 38.0% [11].

Это предположение подтверждается прямым определением (по ¹³⁴Cs в 2011 г.) вклада аварийных выпадений АЭС Фукусима в загрязнение растений Среднего Урала ¹³⁷Cs: для растений разной таксономической принадлежности он составил 1.9—26.6% от суммарного содержания радионуклида в надземной массе растений [10]. С выпадениями АЭС Фукусима в почвы окрестностей БАЭС поступило около 1—3 Бк/м² ¹³⁷Cs [27], что сопоставимо с количеством радионуклида, выпадающим здесь ежегодно.

ЗАКЛЮЧЕНИЕ

В зоне наблюдения БАЭС плотность загрязнения автоморфных почв ^{239,240}Ри поддерживается на уровне глобального фона, а ⁹⁰Sr и ¹³⁷Cs — на уровне регионального фона, сложившегося за счет выпадений из атмосферы радионуклидов различного генезиса. За 35-летний период функционирования энергоблока с реактором БН-600 запасы радионуклидов в почвах наблюдаемой зоны изменились незначительно, но фронт радиоактивного загрязнения сместился в глубь профиля почв.

Впервые оконтурена территория приземления факела газоаэрозольных выбросов БАЭС и ИРМ. Она представляет собой сектор 180° , ограниченный радиусами 3-6 км и азимутальными направлениями от С до ЮВ. Вклад двух предприятий в ее загрязнение 137 Cs составляет не менее 2.7 кБк/м^2 .

Накопление радионуклидов растениями, произрастающими в зоне влияния БАЭС, определяется свойствами радионуклидов, таксономической принадлежностью растений и снижается с течением времени. Полученные результаты позволяют предположить, что временной тренд вызван уменьшением атмосферных выпадений, а также вертикальной миграцией радионуклидов и увеличением прочности закрепления ¹³⁷Сs в почвах. Относительное снижение КП радионуклидов в растения с возрастанием уровня загрязнения почв соответствует снижению вклада атмосферных выпадений в радиоактивное загрязнение территорий.

Работа выполнена в рамках государственного задания Института экологии растений и животных УрО РАН при частичной финансовой поддержке Российского фонда фундаментальных исследований (грант № 19-05-00469).

СПИСОК ЛИТЕРАТУРЫ

- 1. Радиационная обстановка на территории СССР в 1989 г. / Под ред. Махонько К.П. Ежегодник. Обнинск: НПО "Тайфун", 1990. 108 с.
- 2. Атлас Восточно-Уральского и Карачаевского радиоактивных следов, включая прогноз до 2047 года /Под ред. Израэля Ю.А. М.: ИГКЭ Росгидромета и РАН, Фонд "Инфосфера" НИА Природа, 2013. 140 с.
- 3. *Трапезников А.В., Молчанова И.В., Караваева Е.Н., Трапезникова В.Н.* Миграция радионуклидов в пресноводных и наземных экосистемах. Екатеринбург: Изд-во Уральского ун-та, 2007. Т. 2. 399 с.
- 4. Радиационная обстановка на территории России и сопредельных государств в 2014 году/Под ред. Шершакова В.М., Булгакова В.Г., Крышева И.И. и др. Ежегодник. Обнинск: ФГБУ "НПО Тайфун", Росгидромет, 2015. 350 с.
- Sources and effects of ionizing radiation: Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly with scientific annexes. V. 1. Sources. New York: United Nations, 2008. 463 p.
- 6. Радиационная обстановка на территории России и сопредельных государств в 2005 году / Под ред. Вакуловского С.М.. Ежегодник. Обнинск: НПО "Тайфун", 2006. 273 с.
- 7. *Djingova R., Kuleff I.* Concentration of caesium-137, cobalt-60 and potassium-40 in some wild and edible plants around the nuclear power plant in Bulgaria // J. of Environmental Radioactivity. 2002. V. 59. P. 61–73.
- Дветнова О.Б., Якубовская П.М., Щеглов А.И. Радиоэкологическая характеристика почвенно-растительного покрова и водных объектов в зоне влияния Нововоронежской атомной электростанции // Вестн. МГУ. Сер. 17. Почвоведение. 2016. № 1. С. 26–31.
- 9. *Молчанова И.В., Кайгородова С.Ю., Михайловская Л.Н.* и др. Состав, свойства и уровень радионуклидного загрязнения почвенного покрова 15-км зоны Белоярской АЭС//Журн. СФУ. Биология. 2016. Т. 9. № 3. С. 321—337.
- 10. *Михайловская Л.Н., Молчанова И.В., Нифонтова М.Г.* Радионуклиды глобальных выпадений в растениях наземных экосистем Уральского региона // Экология. 2015. № 1. С. 9—15. [*Mikhailovskaya L.N., Molchanova I.V., Nifontova M.G.* Global fallout radionuclides in plants of terrestrial ecosystems of the Ural region // Russ. J. of Ecology. 2015. V. 46. № 1. P. 7—13.] https://doi.org/10.1134/S1067413615010129
- 11. *Mikhailovskaya L.N., Pozolotina V.N., Antonova E.V.* Accumulation of ⁹⁰Sr by plants of different taxonomic groups from the soils at the East Ural Radioactive Trace // Behavior of Strontium in Plants and the Environment. Eds. *Gupta D.K. and Walther C.* Cham: Springer International Publishing AG, 2018. P. 61–73. https://doi.org/10.1007/978-3-319-66574-0 5
- 12. *Молчанова И.В., Караваева Е.Н., Чеботина М.Я., Куликов Н.В.* Распределение ⁹⁰Sr и ¹³⁷Cs по компонентам болотно-речной экосистемы // Экология, 1982. № 2. С. 42–47. [*Molchanova I.V., Karavaeva E.N., Chebotina M.Y., Kulikov N.V.* The distribution of 90Sr and 137Cs over components of the Swamp-

- River Ecosystem // Sov. J. of Ecology. 1982. № 2. P. 42–47.]
- 13. Бахур А.Е., Гулынин А.В., Стародубов А.В. Методика измерений удельной активности естественных и техногенных радионуклидов ²²⁶Ra, ²²⁸Ra, ²²⁴Ra, ⁴⁰K, ¹³⁷Cs, ¹³⁴Cs, ⁶⁰Co, ²⁴¹Am, ¹⁵²Eu в твердых сыпучих пробах гамма-спектрометрическим методом с использованием полупроводниковых детекторов. ФР.1.40.2013.15401 2013. М.: ФГУП ВИМС, 2013. 17 с.
- 14. *Цветаева Н.Е., Филин И.В., Иванова Л.А.* и др. Использование моноизооктилметилфосфоновой кислоты и миомфата трехвалентного железа для определения содержания радионуклидов в водных сбросах // Атом. энергия. 1984. Т 2. Вып. 57. С. 114—117. [*Tsvetaeva N.E., Filin V.M., Ivanova L.A.* et al. Use of monoisooctylmethylphosphonic acid and its trivalent iron salt in determining radionuclides in effluents // Sov. Atom. Energy. 1984. V. 57. P. 548—552.]
- Chen Q., Aarkrog A., Nielsen S. et al. Determination of plutonium in environmental samples by controlled valence in aniion exchange // J. of Radioanalytical and Nuclear Chemistry. 1993. V. 172. P. 281–288.
- Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2010. 472 p.
- 17. *Malikova I.N., Strakhovenko V.D., Shcherbov B.L.* Distribution of radionuclides in moss-lichen cover and needles on the same grounds of landscape-climatic zones of Siberia // J. of Environmental Radioactivity. 2019. V. 198. P. 64–78. https://doi.org/10.1016/j.jenvrad.2018.12.013
- 18. *Mikhailovskaya L.N., Molchanova I.V., Pozolotina V.N.* et al. Radioactive contamination of the soil- plant cover at certain locations of Primorsky Krai, Sakhalin Island and Kamchatka Peninsula: Assessment of the Fukushima fallout // J. of Environmental Radioactivity. 2017. V. 172. P. 1–9.
 - https://doi.org/10.1016/j.jenvrad.2017.02.006

- 19. *Нифонтова М.Г.* Лихено- и бриоиндикация радиоактивного загрязнения среды: Автореф. ... докт. биол. наук. Пермь, 2003. 50 с.
- 20. Karavaeva Ye., Molchanova I., Mikhaylovskaya L. Peculiarities of the technogenical radionuclides transfer from soils into plants in the radioactive contaminated areas // Radioprotection. 2009. V. 44. № 5. P. 371–375. https://doi.org/10.1051/radiopro/20095071
- 21. *Mikhailovskaya L.N., Modorov M.V., Pozolotina V.N.* et al. Heterogeneity of soil contamination by ⁹⁰Sr and its absorption by herbaceous plants in the East Urals Radioactive Trace area // Sci. of the Total Environmen. 2019. V. 651. Part 2. P. 2345–2353. https://doi.org/10.1016/j.scitotenv.2018.10.119
- Атомная наука и техника в СССР / Под ред. Морозова И.Д. М.: Атомиздат, 1977. 348 с.
- 23. *Karavaeva Ye.N., Kulikov N.V., Molchanova I.V.* et al. Accumulation and distribution of long-living radionuclides in the forest ecosystems of the Kyshtym accident zone // Sci. of the Total Environmen. 1994. V. 157. P. 147–151.
- Aarkrog A., Dahlgaard H., Nielsen S.P. et al. Radioactivity inventories from the Kyshtym and Karachay accidents: estimates based on soil samples collected in the South Urals (1990–1995) // Sci. of the Total Environmen. 1997. V. 201. P. 137–154.
- 25. *Beresford N.A.*, *Wright S.M.* Non-linearity in radiocaesium soil to plant transfer: Fact or fiction? // Radioprotection. 2005. V. 40 P. 67–72.
- 26. Тарасов О.В., Федорова О.В., Тананаев И.Г., Сергиенко В.И. Формы состояния и миграция радионуклидов в почвах Восточно-Уральского радиоактивного следа // Вестник ДВО РАН. 2016. № 1(185). С. 47—52.
- 27. Молчанова И.В., Михайловская Л.Н., Позолотина В.Н. и др. Вклад аварийных выпадений АЭС "Фукусима" в загрязнение почвенно-растительного покрова Приморского края и Уральского региона // Радиоактивность и радиоактивные элементы в среде обитания человека: Тр. IV междунар. конф. Томск, 2013. С. 371—374.