УДК 630*116.14:502.5(203)

ОЦЕНКА СОСТАВА ДОЖДЕВЫХ ВЫПАДЕНИЙ В ХВОЙНЫХ ЛЕСАХ НА СЕВЕРНОМ ПРЕДЕЛЕ РАСПРОСТРАНЕНИЯ ПРИ АЭРОТЕХНОГЕННОМ ЗАГРЯЗНЕНИИ

© 2020 г. В. В. Ершов^{*a*, *}, Н. В. Лукина^{*b*}, М. А. Данилова^{*b*}, Л. Г. Исаева^{*a*}, Т. А. Сухарева^{*a*}, В. Э. Смирнов^{*b*}

> ^аИнститут проблем промышленной экологии Севера КНЦ РАН, Россия 184209 Апатиты, Академический городок, 14а ^bЦентр по проблемам экологии и продуктивности лесов РАН, Россия 117997 Москва, ул. Профсоюзная, 84/32, стр. 14 *e-mail: Slavo91@gmail.com Поступила в редакцию 28.06.2019 г. После доработки 06.11.2019 г. Принята к публикации 23.01.2020 г.

Данная работа посвящена оценке межбиогеоценотического и внутрибиогеоценотического варьирования, а также многолетней динамики состава атмосферных выпадений в форме дождя в хвойных лесах, подверженных воздействию крупнейшего в Северной Европе источника выбросов загрязняющих веществ в атмосферу – медно-никелевого комбината "Североникель" (Мурманская область). Исследовали распространенные в бореальной зоне ельники кустарничково-зеленомошные и сосняки кустарничково-лишайниковые на разных стадиях техногенной дигрессии. Химический состав дождевых вод характеризуется значительным внутри- и межбиогеоценотическим варьированием. На основе многолетних данных подтверждается, что содержание элементов в подкроновых пространствах существенно выше, чем в межкроновых, при этом в ельниках по сравнению с сосняками концентрации и выпаления элементов значимо выше. Это объясняется разной сорбирующей способностью крон деревьев и выщелачиванием из них элементов. Выпадения основных поллютантов с дождевыми водами превышали критические уровни уже в фоновых условиях, и в значительно большей степени в дефолиирующих лесах и техногенных редколесьях. Показано, что превышение критических уровней в дождевых водах выражено значительно ярче, чем в снеговых. Учет внутрибиогеоценотических и межбиогеоценотических различий в составе атмосферных выпадений позволяет провести более раннюю и точную диагностику превышения критических нагрузок на всех стадиях дигрессии. Многолетняя динамика выпадений элементов в дождевых водах сосновых и еловых лесов отличается высокой вариабельностью как под кронами, так и между крон деревьев. В фоновых условиях выявлено повышение концентраций никеля в период 2013-2017 гг., что объясняется возрастанием содержания поллютантов в аэрозолях, распространяющихся на значительные расстояния.

Ключевые слова: атмосферные выпадения, дождь, атмосферное загрязнение, многолетняя динамика, внутри- и межбиогеоценотическое варьирование, критические уровни **DOI:** 10.31857/S0367059720040058

Атмосферные выпадения в виде дождя играют важную роль в циклах элементов и функционировании лесных экосистем. Химический состав дождевых вод значительно изменяется после контакта с пологом леса, при этом взаимодействии происходят физико-химические реакции, приводящие к изменению кислотности вод и концентраций элементов, содержащихся в них [1–5]. Во многих работах отмечается влияние видового состава древесных растений на химический состав и количество атмосферных выпадений [6–8 и др.]. Показано, что в межкроновых пространствах лесов на северном пределе распространения атмосферные выпадения имеют преимущественно атмогенный характер (состав выпадений определяют атмосферные осадки), а в подкроновых пространствах преимущественно аутогенный (биогенный) [9].

В современный период на формирование состава атмосферных осадков большое влияние оказывает воздушное промышленное загрязнение [1, 10–13 и др.]. Кольский полуостров – наиболее индустриально развитый северный регион, на территории которого функционирует крупнейший в Северной Европе источник воздушного промышленного загрязнения – медно-никелевый комбинат "Североникель" (АО "Кольская ГМК"). В условиях

воздушного промышленного загрязнения бореальные леса выступают как трансформатор техногенных потоков [14]. Основными поллютантами. оказывающими негативное воздействие на лесные биогеоценозы, являются кислотообразующие соединения серы и тяжелые металлы (никель, медь, кобальт, свинец, кадмий, хром и др.). Общая характеристика состава атмосферных выпадений в северотаежных лесах Кольского полуострова, подверженных воздушному загрязнению и находящихся на различном удалении от источника загрязнения, описана во многих научных работах [12, 13, 15–17 и др.]. Однако для прогнозирования динамики биогеохимических циклов элементов и функционирования лесов необходимы оценки с учетом многолетних измерений состава и свойств атмосферных выпадений, сравнение уровня выпадений загрязняющих веществ с известным критическим уровнем в лесах и выявление наиболее информативных формаций хвойных лесов и отдельных элементов их мозаик для ранней диагностики загрязнения.

Цели настоящей работы — оценить состав дождевых выпадений в наиболее распространенных в бореальной зоне хвойных лесах на разных стадиях техногенной дигрессии, обусловленной влиянием крупнейшего в Северной Европе источника выбросов загрязняющих веществ в атмосферу — медноникелевого комбината "Североникель", с учетом внутри- и межбиогеоценотического варьирования на основе многолетних наблюдений, а также многолетнюю динамику состава дождевых выпадений.

В работе решали следующие научные вопросы:

1. В чем отличия состава дождевых выпадений в основных элементах мозаики хвойных лесов северо-запада России?

2. Какие элементы мозаики хвойных лесов позволяют проводить наиболее раннюю диагностику критических нагрузок?

 Каковы закономерности многолетней динамики состава дождевых выпадений в хвойных лесах, формирующихся в фоновых условиях и на разных стадиях техногенной дигрессии?

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследовали доминирующие в бореальной зоне ельники кустарничково-зеленомошные и сосняки лишайниково-кустарничковые в условиях различного уровня техногенного загрязнения. Объекты исследований, располагающиеся на расстоянии 100 км и более от источника выбросов, характеризуют леса на фоновых территориях, на расстоянии 28, 31 км – дефолиирующие леса, 7–10 км – техногенные редколесья [15, 18]. На всех мониторинговых площадках под кронами деревьев и в межкроновых пространствах установлены осадкоприемники не менее чем в трехкратной повторности.

Осадкоприемники для дождевых вод представляют собой пластиковые трубы диаметром 14.5 см. Внутри трубы помещается полиэтиленовый пакет вместимостью до 3 л, закрепляемый специальным колпаком. Для предотвращения попадания частиц различного происхождения поверхность трубы перед закреплением колпаком покрывается съемной мелкоячеистой сеткой из синтетического материала. Образцы дождевых выпадений в период с мая по октябрь отбирали ежемесячно с 1999 г. по 2017 г. С использованием пластиковой мерной посуды замеряли объем дождевых вод, накопившихся в каждом осадкоприемнике за месячный период в подкроновых и межкроновых пространствах, в трехкратной повторности. Для анализа отбирали аликвотную часть пробы (не менее 250-300 мл).

В день отбора пробы транспортировали в лабораторию, где проводили смешивание трех проб с учетом элемента мозаики (межкроновые и подкроновые пространства). Смешивание проводили в соотношениях объемов, замеренных в полевых условиях. Каждую пробу аналитической партии фильтровали через бумажный фильтр "синяя лента" (диаметр пор 1-2.5 мкм). В лаборатории в каждой объединенной пробе измеряли pH, затем пробы замораживали и хранили в морозильной камере при -180°С до начала анализов. Кислотность (рН) вод определяли потенциометрически, катионы (Ca, Mg, K, Na, Cu, Ni) - методами атомно-абсорбционной спектрофотометрии, анионы минеральных кислот (сульфаты, нитраты, хлориды) - методом ионообменной хроматографии, аммоний - колориметрически, углерод - хроматометрией либо перманганатометрией в зависимости от концентрации. Кислотонейтрализующую способность рассчитывали как разность суммы основных катионов и анионов минеральных кислот (ммоль/л).

Для характеристики состава атмосферных выпадений в виде дождя использовали данные за период с 1999 г. по 2017 г. Согласно отчетности по площадке Мончегорск за 2012 г., компания "Норникель" в течение 8 лет соблюдает норматив предельно допустимых выбросов, что способствовало снижению выбросов основных поллютантов по площадке за период 1990–2011 гг.: SO₂ (тыс. т) – в 7.4 раза; Си и Ni (т/год) – до 7.8 раз (данные АО "Кольская ГМК").

Для меж- и внутрибиогеоценотического сравнения концентраций и выпадений элементов с дождем использовали *v*-критерий, расчет которого выполняли в среде статистического программирования R [19, 20]. При оценке связей в составе выпадений оценивали коэффициент корреляции Спирмена.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Внутрибиогеоценотическое варьирование концентраций элементов в выпадениях

На фоновой территории в составе выпадений в виде дождя в еловых лесах доминировал углерод (табл. 1). Из катионов в водах преобладали калий и аммоний, среди анионов – сульфаты и хлориды. Подтверждается, что концентрация всех элементов в подкроновых (ПК) водах значимо выше (p < 0.05), чем в межкроновых (MK) [15, 18], что свидетельствует о смыве и выщелачивании соединений элементов из растительных тканей. В водах ПК пространств наблюдаются тесные положительные связи между концентрациями основных катионов (Ca, K, Mg, Na), Ni, с одной стороны, и сульфатов и хлоридов, с другой (коэффициент корреляции r варьирует от 0.71 до 0.90, p < 0.05, n = 64). Концентрации углерода положительно связаны с концентрациями Ca, Mg и K (r == 0.53 - 0.59, p < 0.05, n = 64). В водах МК пространств положительные связи обнаруживаются между концентрациями Мg и K и концентрациями углерода (r = 0.58 - 0.71, p < 0.05, n = 62). Концентрации хлоридов положительно связаны с концентрациями натрия (r = 0.62, p < 0.05, n = 62). Выявленные связи свидетельствуют о сопряженной миграции катионов и анионов.

В дождевых водах дефолиирующих еловых лесов по сравнению с фоном наблюдается существенное увеличение концентраций поллютантов: Cu – до 20 раз, Ni – до 28 раз как в ПК, так и в МК пространствах, и сульфатов до 3 раз в ПК, что связано с высокими уровнями возлушного промышленного загрязнения. При этом концентрация углерода существенно снижается по сравнению с фоном, что обусловлено дефолиацией крон. Также наблюдается увеличение кислотности дождевых вод в ПК пространствах. Концентрации Ca, Mg и Na значимо выше в ПК пространстве по сравнению с фоном, тогда как в МК пространстве значимые различия по сравнению с фоном не наблюдаются. Увеличение концентраций Са, Мд и Na объясняется выщелачиванием этих элементов из крон деревьев в результате действия кислых осадков.

В условиях аэротехногенного загрязнения ткани древесных растений обедняются малоподвижными Са и Na, которые накапливаются в стареющей, часто поврежденной хвое [18], а также Mg – элементом средней подвижности. Концентрации всех элементов в водах ПК пространств значимо выше (при p < 0.05), чем в МК, как и в фоновых условиях, кислотность вод под кронами деревьев также значимо выше. Как и следовало ожидать, показатель pH тесно и отрицательно связан с концентрациями сульфатов и органического углерода (r=-0.62 и r=-0.51 соответственно, p < 0.05, n=70) в водах ПК пространств. Обнаруживаются значи-

ЭКОЛОГИЯ № 4 2020

мые положительные связи (r = 0.59-0.96, p < 0.05, n = 70) между концентрациями основных катионов (Ca, Mg, K, Na), Ni, Cu, с одной стороны, и концентрациями сульфатов и хлоридов, с другой, в водах под кронами деревьев. Между крон данные связи выявляются для концентраций сульфатов (r = 0.46-0.86, p < 0.05, n = 70), а для хлоридов положительные связи обнаружены с концентрациями Ca, Mg и K (r = 0.48-0.87, p < 0.05, n = 70). Все эти тесные связи свидетельствует о миграции основных катионов с анионами минеральных и органических кислот, что особенно ярко выражено в ПК пространствах.

Атмосферные выпадения в виде дождя в *mex*ногенных еловых редколесьях отличаются от фоновых резким увеличением концентраций загрязняющих веществ (см. табл. 1), входящих в состав выбросов: Cu – до 108 раз, Ni – до 140 раз как между крон, так и под кронами деревьев, и сульфатов до 7 раз в МК пространствах. При этом продолжает снижаться концентрация углерода из-за изреживания крон. Концентрации К в водах ПК и МК пространств значимо ниже, чем на фоновой территории. Это объясняется тем, что К относится к элементам, способным к ретранслокации внутри дерева, и накапливается в более молодых неповрежденных или менее поврежденных тканях, поэтому интенсивность его вымывания ниже [18]. В МК пространствах концентрации Са и Mg в дождевых водах выше, что может быть связанно с их высоким содержанием в промышленных выбросах и пылением с поверхностей, не покрытых растительностью (техногенные пустоши).

Как и в фоновых условиях и дефолиирующих лесах, в дождевых водах ПК пространств редколесий концентрации всех элементов, как и кислотность, значимо (p < 0.05) выше, чем в водах МК пространств. В водах ПК и МК пространств обнаруживаются тесные положительные связи между концентрациями сульфатов, с одной стороны, и концентрациями основных катионов и тяжелых металлов, с другой (r варьирует от 0.4 до 0.95, p << 0.05, n = 69-70). Показатель актуальной кислотности значимо и отрицательно связан (r варьирует от -0.52 до -0.71, p < 0.05, n = 69) с концентрациями сульфатов в водах ПК пространств, тогда как в дождевых водах МК пространств значимых связей не обнаружено.

По сравнению с фоном показатель кислотонейтрализующей способности (ANC), как и концентрация углерода, существенно ниже в водах ПК пространств дефолиирующих лесов, а также в ПК и МК пространствах в техногенном редколесье, что объясняется снижением содержания органических кислот из-за изреживания крон и существенным возрастанием концентраций анионов минеральных кислот, особенно сульфатов, в связи с повышением уровня воздушного промыш-

ЕРШОВ и др.

Параметры	V-	Критер	ий	Сред	цнее значе о формаци	ение ии	Общее среднее	Общее стандартное	р					
	Φ	Д	Т	Φ	Д	Т	значение	отклонение	Φ	Д	Т			
Межкроновые пространства ($n = 69-76$)														
ANC, ммоль/л	5.34	1.29	-6.59	0.04	0.02	-0.04	0.01	0.07	0.00	0.20	0.00			
pН	8.23	-0.24	-7.96	5.26	4.65	4.10	4.67	0.76	0.00	0.81	0.00			
Ca	-4.75	-1.33	5.98	0.43	0.72	1.29	0.82	0.83	0.00	0.18	0.00			
Mg	-3.87	-1.18	4.98	0.10	0.15	0.25	0.17	0.18	0.00	0.24	0.00			
Κ	3.45	-0.68	-2.80	0.62	0.35	0.21	0.40	0.67	0.00	0.50	0.01			
Na	-2.24	1.03	1.20	0.45	0.60	0.60	0.55	0.47	0.03	0.30	0.23			
NH_4^+	0.15	-0.12	-0.03	0.42	0.40	0.41	0.41	0.64	0.88	0.90	0.98			
SO_4^{2-}	-6.80	-1.59	8.35	0.99	2.91	6.46	3.47	3.83	0.00	0.11	0.00			
Cl ⁻	-1.32	0.15	1.16	0.33	0.41	0.46	0.40	0.54	0.19	0.88	0.25			
NO_3^-	-2.73	-0.50	3.21	0.58	0.78	1.09	0.82	0.91	0.01	0.62	0.00			
Cu	-3.82	-3.55	7.27	0.00	0.01	0.08	0.03	0.07	0.00	0.00	0.00			
Ni	-4.68	-4.07	8.67	0.00	0.01	0.10	0.04	0.08	0.00	0.00	0.00			
С	2.12	-1.13	-0.98	6.00	4.44	4.51	4.98	5.03	0.03	0.26	0.33			
		1	п	одкронон	вые прост	ранства (n = 69 - 76)	1	I	I				
ANC, ммоль/л	11.05	-2.29	-8.70	0.71	0.19	-0.05	0.28	0.41	0.00	0.02	0.00			
pН	8.84	-3.48	-5.30	4.14	3.61	3.54	3.76	0.45	0.00	0.00	0.00			
Ca	-2.62	4.20	-1.56	3.78	6.05	4.15	4.65	3.46	0.01	0.00	0.12			
Mg	-0.54	2.01	-1.46	1.23	1.49	1.14	1.28	1.04	0.59	0.04	0.14			
Κ	8.81	-0.51	-8.25	10.88	6.26	2.51	6.51	5.22	0.00	0.61	0.00			
Na	-2.35	1.57	0.78	2.75	3.79	3.57	3.37	2.74	0.02	0.12	0.43			
NH_4^+	6.46	-0.37	-6.09	7.33	4.82	2.71	4.96	3.86	0.00	0.71	0.00			
SO_4^{2-}	-6.00	4.12	1.87	11.01	30.74	26.27	22.71	20.49	0.00	0.00	0.06			
Cl ⁻	0.83	-0.59	-0.24	0.97	0.80	0.84	0.87	1.25	0.40	0.55	0.81			
NO_3^-	-1.76	0.68	1.09	4.52	5.54	5.71	5.25	4.37	0.08	0.50	0.27			
Cu	-5.62	-2.79	8.29	0.01	0.24	1.08	0.46	0.81	0.00	0.01	0.00			
Ni	-6.14	-3.26	9.22	0.01	0.28	1.38	0.58	0.94	0.00	0.00	0.00			
С	8.67	-0.97	-7.67	84.36	50.14	26.56	53.53	37.06	0.00	0.33	0.00			

Таблица 1. Концентрация соединений элементов в дождевых выпадениях в еловых лесах за период 1999–2017 гг., мг/л

Примечание: Ф – фоновая территория, Д – дефолиирующие леса, Т – техногенное редколесье.

ленного загрязнения. Значимые внутрибиогеоценотические различия обнаруживаются на фоновой территории и в дефолиирующих лесах: ANC дождевых вод ПК пространств до 20 раз выше (p < 0.05), чем МК, что обусловлено высокой концентрацией органических кислот в кроновых водах.

Концентрации нитратов в еловых и сосновых лесах на всех стадиях дигрессии не имеет выраженных внутрибиогеоценотических различий, что можно объяснить выраженным дефицитом азота у хвойных древесных в бореальных лесах [15, 21, 22].

Межбиогеоценотическое варьирование концентраций элементов в атмосферных выпадениях в виде дождя

В дождевых водах сосновых лесов наблюдаются сходные внутрибиогеоценотические различия и закономерности изменений, вызванные техногенным загрязнением (табл. 2), но при этом отмечаются существенные различия в характеристиках состава вод, формирующихся в сосновых и еловых лесах.

На *фоновой территории* концентрации всех элементов в осадках в виде дождя в еловых лесах,

как правило, значимо (p < 0.05) выше, чем в сосновых лесах, как под кронами, так и между крон деревьев. В ПК пространстве кислотность вод выше в еловых лесах, а в МК — в сосновых. Показатель ANC выше в еловых лесах, чем в сосновых, как под кронами, так и между крон деревьев, что объясняется более высокими концентрациями органического углерода.

В *дефолиирующих* еловых лесах концентрации элементов в дождевых водах значимо (p < 0.05) выше, чем в сосновых лесах, в ПК и МК пространствах, за исключением концентраций аммония и нитратов, а также углерода в ПК пространстве (p < 0.05). Показатель ANC (p < 0.05) ниже в дождевых водах ПК пространств еловых лесов по сравнению с сосновыми из-за высокой концентрации сульфатов. При аэротехногенном загрязнении это можно объяснить возрастанием потока кислотообразующих веществ под кронами ели, которая сорбирует большее количество веществ по сравнению с высокой и ажурной кроной сосны.

В *техногенном* еловом *редколесье* в дождевых водах ПК пространств концентрации элементов значимо (p < 0.05) выше, чем в сосновом редколесье, за исключением аммония и углерода, для нитратов различия не значимы. В МК пространствах содержание всех элементов в еловом редколесье также значимо выше, чем в сосновых лесах. Кислотность в выпадениях сосновых редколесий значимо ниже, а показатель ANC выше по сравнению с еловыми редколесьями, что объясняется при сопоставимых концентрациях органического углерода высокими концентрациями сульфатов в выпадениях еловых лесов.

Таким образом, техногенное загрязнение оказывает существенное воздействие на состав дождевых вод: в условиях загрязнения возрастают концентрации загрязняющих веществ, кальция и магния. Состав атмосферных выпадений в виде дождя характеризуется значительным внутри- и межбиогеоценотическим варьированием. Концентрации всех соединений элементов и ANC на всех стадиях дигрессии выше в подкроновых пространствах. При этом концентрации соединений элементов как в ПК, так МК на всех стадиях выше в дождевых водах еловых лесов. Кислотонейтрализующая способность в дождевых водах в фоновых условиях выше в еловых лесах, а в дефолиирующих лесах и техногенных редколесьях, напротив, ANC оказалась выше в сосновых лесах из-за более интенсивного потока кислотообразующих веществ в ельниках.

Выпадения соединений элементов с дождевыми водами

В сосновых и еловых лесах на всех стадиях дигрессии выпадения соединений элементов отли-

ЭКОЛОГИЯ № 4 2020

чаются четкими внутрибиогеоценотическими различиями: выпадения элементов с дождем в ПК пространствах существенно выше, чем в МК (табл. 3). При этом в МК пространствах количество атмосферных осадков в еловых и сосновых лесах на фоновой территории, а также в дефолиирующих еловых лесах до 2 раз выше, чем под кронами деревьев. В дефолиирующих сосновых лесах и на стадии елового и соснового техногенного редколесья различия в количестве осадков нивелируются, что связано с изреживанием крон деревьев из-за влияния загрязнения. Количество атмосферных осадков на фоновой территории и в дефолиирующих еловых лесах ниже по сравнению с сосняками как в ПК, так и в МК пространствах, а на стадии техногенного редколесья различия отсутствуют.

По сравнению с фоном в дефолиирующих лесах и на стадии техногенных редколесий выпадения сульфатов, меди и никеля значительно выше как в ПК, так и в МК пространствах. Исключение составляют выпадения сульфатов в еловых лесах в ПК пространствах и в МК пространствах сосновых лесов, где различия оказались незначимыми. Это можно объяснить как возрастанием концентраций элементов, так и отчасти увеличением объема выпадений, обусловленного изреживанием крон и повышением их пропускающей способности.

Хотя объем осадков, проникающих сквозь древесный полог, выше в сосновых лесах, выпадения элементов с дождевыми осадками в еловых лесах выше как под кронами, так и между крон деревьев, что можно объяснить более высокими концентрациями этих элементов в дождевых водах ельников.

Сравнение с критическим уровнем выпадений загрязняющих веществ

Большой интерес представляет сравнение выпадений загрязняющих веществ на наших объектах исследований с критическим уровнем выпадений в аналогичных условиях. Критический уровень общих атмосферных выпадений (дождь + снег) из атмосферы сульфатной серы (S-SO₄²⁻) в Центральной Лапландии составляет 0.3 г/м² в год [23]; уровень критических пределов для атмосферных выпадений Ni и Cu – 10 и 5 г/га в год [24].

Согласно ранее опубликованным нами данным [23], в снеговых выпадениях в еловых и сосновых лесах, формирующихся в **фоновых условиях**, как под кронами, так и между крон деревьев не отмечается превышения критических нагрузок основных поллютантов. В выпадениях в виде дождя в ПК пространствах еловых лесов в фоновых условиях превышения критических нагрузок наблюдаются только для никеля — до 4 раз и сульфатной серы — до 2 раз. В сосновых лесах в ПК

ЕРШОВ и др.

	цдотт	<i>v</i> -Кри	терий		Среднее значение				Общее среднее		Общее стандартное		р	
Параметры					πο φομ		мации		значение		откло	нение		
	ел	Ъ	CO	сна	ел	њ	coc	сна	МК	ПК	МК	ПК	MK	ПК
	MK	ПК	MK	ПК	MK	ПК	MK	ПК						
Фоновые леса $(n = 65 - 75)$														
pH	1.15	-2.64	-1.15	2.64	5.26	4.14	5.13	4.36	5.20	4.24	0.68	0.49	0.25	0.01
AINC,	2.54	5.82	-2.54	-5.82	0.04	0.71	0.02	0.41	0.03	0.57	0.06	0.31	0.01	0.00
Са	1.57	4.36	-1.57	-4.36	0.43	3.78	0.34	2.42	0.39	3.14	0.32	1.83	0.12	0.00
Mg	1.34	4.59	-1.34	-4.59	0.10	1.23	0.08	0.68	0.09	0.97	0.09	0.70	0.12	0.00
ĸ	3.19	8.48	-3.19	-8.48	0.62	10.88	0.19	2.76	0.42	7.05	0.79	5.66	0.00	0.00
Na	0.17	4.20	-0.17	-4.20	0.45	2.75	0.44	1.67	0.44	2.24	0.38	1.52	0.86	0.00
NH_4^+	1.36	5.17	-1.36	-5.17	0.42	7.33	0.28	3.96	0.35	5.73	0.62	3.84	0.17	0.00
SO_4^{2-}	-1.10	6.37	1.10	-6.37	0.99	11.01	1.21	3.14	1.10	7.30	1.18	7.30	0.27	0.00
NO_3^-	0.73	6.05	-0.73	-6.05	0.33	0.97	0.27	0.20	0.30	0.61	0.54	0.76	0.47	0.00
Cl ⁻	1.07	4.56	-1.07	-4.56	0.58	4.52	0.50	2.30	0.54	3.47	0.46	2.88	0.29	0.00
Cu	-1.55	3.80	1.55	-3.80	0.003	0.015	0.005	0.008	0.004	0.01	0.01	0.01	0.12	0.00
Ni	-0.96	1.54	0.96	-1.54	0.002	0.006	0.003	0.004	0.002	0.01	0.004	0.01	0.34	0.12
C	1.42	6.97	-1.42	-6.97	6.00 Пофо	84.36	4.58	44.27	5.33	65.33	5.86	33.85	0.15	0.00
nH	1 15	_115	$ _{-0.02}$	0.02	дефо. 465	3 61	цие лес 4 55	a(n - 7)	4 60	3.61	0.57	0.27	0.25	0.98
ANC,	0.42	-0.42	-3.89	3.89	0.02	0.19	0.01	0.34	0.01	0.27	0.04	0.24	0.68	0.00
ммоль/л	0.12	0.12	0.07	0.05	0.02	6.15	0.01	0.51	0.01	0.27	0.01	0.21	0.00	0.00
Ca Ma	1.45	-1.45	3.36	-3.36	0.72	6.05	0.57	3.92	0.64	4.96	0.64	3.87	0.15	0.00
NIg V	1.42	-1.42	2.08	-2.08	0.15	1.49	0.12	1.02	0.15	1.23	0.15	1.07	0.10	0.01
Na Na	2.09	-2.09 -1.69	2 75	-0.84 -2.75	0.33	0.20 3.79	0.24	2.37	0.30	4.27	0.33	3.47 2.77	0.04	0.00
NH_4^+	-0.94	0.94	-1.87	1.87	0.40	4.82	0.49	6.05	0.45	5.46	0.57	4.01	0.35	0.06
SO_4^{2-}	0.56	-0.56	4.35	-4.35	2.91	30.74	2.68	16.03	2.79	23.24	2.45	20.77	0.57	0.00
NO ₃	0.70	-0.70	3.86	-3.86	0.41	0.80	0.36	0.27	0.39	0.53	0.41	0.84	0.49	0.00
Cl ⁻	1.36	-1.36	2.44	-2.44	0.78	5.54	0.61	3.79	0.69	4.63	0.77	4.36	0.17	0.01
Cu	0.50	-0.50	3.36	-3.36	0.01	0.24	0.01	0.11	0.01	0.18	0.01	0.23	0.62	0.00
Ni	0.56	-0.56	3.90	-3.90	0.01	0.28	0.01	0.14	0.01	0.21	0.01	0.22	0.58	0.00
C	-0.15	0.15	-1.11	1.11	4.44	50.14	4.50	55.76	4.47	52.99	2.29	31.30	0.88	0.27
nН	_2 60	_2 07	2.60	2 07	1 exhor 4 10	енное р 3 54	едколес 4 28	сье ($n = 3.65$	/0-/6) 4 19	3 50	0.43	0.32	0.01	0.04
ANC.	-2.00	-2.07	2.00	2.07	4.10	5.54	7.20	5.05	ч.17	5.57	0.45	0.52	0.01	0.04
ммоль/л	-2.86	-3.68	2.86	3.68	-0.04	-0.05	-0.01	0.07	-0.02	0.01	0.06	0.20	0.00	0.00
Ca	3.02	2.96	-3.02	-2.96	1.29	4.15	0.87	3.10	1.08	3.62	0.84	2.18	0.00	0.00
Mg	3.35	3.30	-3.35	-3.30	0.25	1.14	0.16	0.75	0.20	0.95	0.18	0.73	0.00	0.00
Κ	0.47	4.65	-0.47	-4.65	0.21	2.51	0.20	1.28	0.20	1.90	0.18	1.62	0.64	0.00
Na	1.33	1.89	-1.33	-1.89	0.60	3.57	0.52	2.75	0.56	3.15	0.40	2.66	0.18	0.06
NH_4^+	0.38	-0.74	-0.38	0.74	0.41	2.71	0.38	3.01	0.39	2.87	0.50	2.46	0.71	0.46
SO_4^{2-}	3.68	3.65	-3.68	-3.65	6.46	26.27	4.11	16.94	5.29	21.61	3.93	15.74	0.00	0.00
NO_3^-	0.98	1.76	-0.98	-1.76	0.46	0.84	0.40	0.44	0.43	0.64	0.42	1.39	0.33	0.08
Cl ⁻	2.72	2.72	-2.72	-2.72	1.09	5.71	0.70	3.89	0.90	4.79	0.88	4.06	0.01	0.01
Cu	2.18	3.34	-2.18	-3.34	0.08	1.08	0.04	0.56	0.06	0.82	0.10	0.94	0.03	0.00
N1	3.80	4.85	-3.80	-4.85	0.10	1.38	0.04	0.58	0.07	0.99	0.09	1.00	0.00	0.00
C	1.61	-0.68	-1.61	0.68	4.51	26.56	3.86	28.34	4.18	27.45	2.43	15.84	0.11	0.49

Таблица 2. Межбиогеоценотическое и внутрибиогеоценотическое варьирование концентраций элементов в дождевых выпадениях хвойных лесов за период 1999–2017 гг., мг/л

Примечание: ПК – под кронами, МК – между крон.

Пара-	<i>v</i> -Критерий				Среднее по фор	значени мации	1e	Общее среднее значение		Общее стандартное отклонение		р		
метры	ель		сосна		ель		сосна		MK	пк	MV	пи	MK	пк
	MK	ПК	MK	ПК	MK	ПК	MK	ПК	WIK	ш	IVIIX	ш	IVIK	ш
Фоновые леса ($n = 42-75$)														
Объем, мм	-1.52	-2.14	1.52	2.14	33.89	18.99	39.24	25.89	36.39	22.24	20.89	19.03	0.13	0.03
Ca	1.40	3.55	-1.40	-3.55	26.87	164.29	21.65	114.45	24.32	140.62	21.71	82.60	0.16	0.00
Mg	1.07	4.30	-1.07	-4.30	5.97	52.16	4.91	31.85	5.46	42.52	5.76	27.81	0.28	0.00
K	2.59	8.51	-2.59	-8.51	39.33	472.85	12.38	130.17	26.54	311.30	61.16	237.85	0.01	0.00
Na	0.18	3.78	-0.18	-3.78	28.23	118.64	27.52	//.20	27.89	98.96	23.47	64.64	0.86	0.00
NH_4^+	1.33	4.15	-1.33	-4.15	24.35	338.70	17.65	192.03	21.20	269.06	29.41	208.07	0.19	0.00
SO_4^{2-}	-1.02	6.37	1.02	-6.37	63.49	465.35	74.96	153.46	68.90	318.32	66.12	289.35	0.31	0.00
Cl-	1.30	4.38	-1.30	-4.38	36.08	188.00	30.20	104.20	33.33	148.50	26.62	112.89	0.19	0.00
NO_3^-	0.80	6.81	-0.80	-6.81	19.25	41.02	16.51	8.32	17.94	25.73	20.17	28.25	0.43	0.00
Cu	-1.43	1.74	1.43	-1.74	0.22	0.62	0.34	0.47	0.28	0.55	0.50	0.51	0.15	0.08
Ni	-0.90	0.08	0.90	-0.08	0.12	0.25	0.16	0.25	0.14	0.25	0.26	0.37	0.37	0.94
С	1.14	5.62	-1.14	-5.62	401.66	3857.91	302.32	2175.04	354.49	3058.85	513.18	1762.92	0.25	0.00
					Деф	олиирую	щие лео	$\operatorname{ca}(n=5)$	0-77)					
Объем, мм	-0.54	-3.61	0.54	3.61	31.87	17.83	33.75	34.15	32.81	26.15	21.59	27.81	0.59	0.00
Ca	1.62	0.98	-1.62	-0.98	36.26	232.46	29.99	209.52	33.11	220.68	23.86	143.52	0.10	0.33
NIg V	1.00	0.49 6.29	-1.00	-0.49	10.05	20.07 245 24	0.14	52.80 125.06	0./0	54.25 194.40	4.00	35.12 114.05	0.10	0.62
N Na	2.95	0.38	-2.95	-0.38	19.05	243.24	24 43	123.90	13.38	134.40	10.21	105 43	0.00	0.00
INa	1.97	2.02	1.01	-0.08	22.24	100 41	29.21	221 41	27.57	2(7.14	19.90	207.02	0.05	0.49
NH_4	-1.01	-3.92	1.01	5.92	22.34	198.41	20.31	331.41	23.40	207.14	55.70	207.02	0.51	0.00
SO_4^{2-}	0.46	3.31	-0.46	-3.31	143.07	1182.08	136.48	822.82	139.75	997.66	87.25	663.86	0.64	0.00
CI-	1.93	0.86	-1.93	-0.86	38.57	205.64	31.49	185.01	34.98	194.91	22.61	145.54	0.05	0.39
NO_3^-	0.85	4.03	-0.85	-4.03	21.45	27.53	18.90	12.27	20.18	19.69	18.55	22.86	0.40	0.00
Cu	-0.28	2.34	0.28	-2.34	0.30	8.83	0.32	5.83	0.31	7.29	0.38	7.82	0.78	0.02
N1	0.33	3.29	-0.33	-3.29	0.37	10.88	0.34	7.00	0.35	8.89	0.54	7.11	0.74	0.00
C	0.32	-4.13	-0.32	4.13	270.28 Tevuc	2049.55	261.75	30//.10	266.04 70 76)	2573.53	164.76	1529.08	0.75	0.00
Объем мм	-0.03	0.15	0.03	-0.15	31.93	30 23	32 04	29.68	31.98	29.95	25.15	23 13	0.98	0.88
Са	4.54	5.23	-4.54	-5.23	78.18	256.82	46.01	155.15	61.99	205.99	43.50	119.82	0.00	0.00
Mg	4.78	5.63	-4.78	-5.63	15.52	68.92	8.09	36.13	11.78	52.63	9.55	35.75	0.00	0.00
ĸ	1.75	6.24	-1.75	-6.24	12.80	152.80	10.40	62.92	11.55	108.16	8.31	88.44	0.08	0.00
Na	3.09	3.69	-3.09	-3.69	38.22	237.04	26.35	126.93	32.25	182.35	23.25	182.22	0.00	0.00
NH_4^+	0.22	1.61	-0.22	-1.61	23.23	173.04	22.15	141.63	22.68	157.02	30.34	118.84	0.83	0.11
SO_{4}^{2-}	5.34	6.33	-5.34	-6.33	399.32	1594.03	220.52	814.26	309.92	1204.14	206.37	758.85	0.00	0.00
Cl ⁻	3.28	4.84	-3.28	-4.84	69.92	351.69	38.98	185.00	54.45	267.78	58.09	208.62	0.00	0.00
NO ₃	2.40	2.36	-2.40	-2.36	28.35	42.50	20.37	19.77	24.36	31.14	20.47	57.87	0.02	0.02
Cu	4.65	4.58	-4.65	-4.58	4.53	63.05	1.08	26.07	2.83	45.19	4.51	48.91	0.00	0.00
Ni	4.79	6.48	-4.79	-6.48	6.10	81.69	2.13	26.59	4.10	55.27	5.06	51.36	0.00	0.00
С	3.18	2.43	-3.18	-2.43	301.81	1717.46	216.92	1410.04	258.51	1563.75	162.67	770.66	0.00	0.02

Таблица 3. Межбиогеоценотические и внутрибиогеоценотические среднемесячные выпадения элементов с дождем в хвойных лесах на разных стадиях дигрессии (1999–2017 гг.), мг/м²

Примечание: ПК – под кронами, МК – между крон.

ЭКОЛОГИЯ № 4 2020

Рис. 1. Многолетняя динамика концентраций никеля в дожде на фоновой территории: а – сосняк, между крон; б – сосняк, под кронами; в – ельник, между крон; г – ельник, под кронами.

пространствах также превышен критический уровень выпадений Си до 2 раз. В МК пространствах еловых и сосновых лесов превышений критических нагрузок не наблюдается. В сосновых и еловых лесах уровни выпадения меди, никеля и сульфатной серы существенно выше в дожде по сравнению со снегом, поскольку доля дождевых выпадений этих элементов и соединений в атмосферных выпадениях составляет в ПК пространствах ельника до 88%, сосняка – до 90%, в МК пространствах ельника – до 75%, сосняка – до 81%. Превышение критических нагрузок выпадений поллютантов наблюдается в основном в ПК пространствах и более выражено в еловых лесах.

В снеговых водах сосновых и еловых *дефолиирующих лесов* ранее нами отмечалось превышение критических уровней выпадений Си и Ni в ПК пространствах до 2.5 раз, а в МК пространствах – до 1.3 раз [26]. В дождевых водах под кронами еловых лесов наблюдается превышение критического уровня, выраженное значительно ярче, чем в снеговых: превышение выпадений Ni – до 40 раз, Cu – 73 раза и сульфатной серы – 4.5 раза, в сосновых лесах Ni – 30 раз, Cu – 50 раз, сульфатной серы – 3 раза. В сосновых и еловых лесах в МК пространствах превышение критического уровня наблюдаются только в выпадениях Cu – до 2 раз.

В снеговых водах под кронами в еловых *редколесьях* превышение критического уровня выпаде-

ний Ni и Cu составляет более 60 раз, в сосновых лесах – около 30 раз [26]. В МК ельников превышение критических значений снеговых выпадений Ni и Cu составляет более 20 раз, в сосняках – до 17 раз. Выпадения Ni, Cu с дождевыми водами в ПК пространствах еловых лесов существенно превышали критический уровень: в 300 и 500 раз – для Ni и Cu соответственно, для сульфатной серы – в 7 раз, а в сосновых лесах выпадения Ni и Cu превышали критический уровень почти в 90 и более чем в 200 раз соответственно, сульфатной серы в 3 раза. В МК пространствах еловых редколесий выпадения Ni, Cu и сульфатной серы превышали уровень критических нагрузок в 20, 40 и 2 раза соответственно, а в сосновых редколесьях – в 8 и 7 раз для выпадений Cu и Ni.

Многолетняя динамика ANC, pH, концентраций Ni, Си и сульфатов с дождем

Многолетняя динамика атмосферных выпадений соединений элементов с дождем за период с 1999 г. по 2017 г. на **фоновой территории** в сосновых и еловых лесах отличается высокой вариабельностью. Увеличение концентраций Ni отмечается как в ПК, так и в МК пространствах с 2013 г. по 2017 г. (рис. 1), а Cu (с 0.003 до 0.01 мг/л) с 2007 г. по 2015 г., однако значимых трендов в многолетней динамике содержания Cu не обнаружено. Не выявлено значимых трендов и в многолетней динамике ANC и pH.

В *дефолиирующих* еловых и сосновых лесах многолетняя динамика выпадений соединений элементов, как и на фоновой территории, демонстрирует высокую вариабельность, но значимых трендов в концентрациях элементов также не обнаружено. Кислотонейтрализующая способность в дожде дефолиирующих сосновых и еловых лесов в ПК пространствах варьирует от — 0.002 до 0.2 ммоль/л, а в последние годы составляет 0.5—0.6 ммоль/л. Между крон значения ANC варьируют от 0.05 до —0.01 ммоль/л и приближаются в последние годы к фоновым значениям 0.04—0.02 ммоль/л. Однако значимые многолетние тренды для ANC не выявлены.

В *техногенных* еловых и сосновых *редколесьях* многолетняя динамика атмосферных выпадений в виде дождя также носит изменчивый характер. Значимых многолетних трендов в концентрациях элементов как под кронами, так и между крон в сосновых и еловых редколесьях не обнаружено. Кислотонейтрализующая способность в дожде под кронами в еловых лесах не имеет отчетливых тенденций, а в МК пространствах наблюдается снижение с 2005 г. по 2012 г. (варьирует от -0.03 до -0.1 ммоль/л, $R^2 = 0.43$). В сосновых лесах по-казатель ANC возрастает и постепенно приближается к фоновым значениям как в ПК (от -0.1 до 0.1 ммоль/л), так и в МК пространствах (от -0.05 до -0.01 ммоль/л).

Таким образом, статистически значимые тренды многолетних изменений состава атмосферных выпадений не отмечены, однако выявлено выраженное возрастание концентраций никеля в дождевых выпадениях сосновых и еловых лесов в фоновых условиях. Это объясняется повышением уровня содержания поллютантов в аэрозолях, распространяющихся на значительные расстояния, и свидетельствует о возрастании техногенных нагрузок.

ЗАКЛЮЧЕНИЕ

Нами впервые дана оценка состава дождевых выпадений в хвойных лесах в условиях аэротехногенного загрязнения на основе многолетних (15— 18 лет) данных, выявлены элементы мозаики хвойных лесов, которые позволяют проводить наиболее раннюю диагностику критических нагрузок.

Дождевые воды на всех стадиях дигрессии в хвойных лесах Кольского полуострова характеризуются выраженной пространственной изменчивостью на внутри- (подкроновые и межкроновые пространства) и межбиогеоценотическом (еловые и сосновые леса) уровнях. Высокие концентрации и выпадения элементов в подкроновых пространствах еловых и сосновых лесов по срав-

ЭКОЛОГИЯ № 4 2020

нению с межкроновыми объясняются их смывом и выщелачиванием из крон деревьев. Более высокие концентрации и выпадения элементов в еловых лесах по сравнению с сосновыми обусловлены большей поверхностью и более выраженными барьерными функциями крон ели.

Воздушное промышленное загрязнение оказывает существенное влияние на формирование состава дождевых вод, которое выражается в повышении концентраций тяжелых металлов и кислотообразующих веществ и выщелачивании элементов питания (Са и Mg) из древесного полога. Повышение кислотности дождевых выпадений в дефолиирующих лесах и техногенных редколесьях по сравнению с фоновой территорией наиболее ярко выражено под кронами деревьев.

Выпадения основных поллютантов с дождевыми водами превышали годовые критические уровни уже в фоновых условиях и, особенно, в дефолиирующих лесах и техногенных редколесьях. Превышение критических уровней в дождевых водах выражено значительно ярче, чем в снеговых. Учет внутрибиогеоценотических и межбиогеоценотических различий в составе атмосферных выпадений позволяет провести более раннюю и точную диагностику превышения критических нагрузок на всех стадиях дигрессии. Данные об атмосферных выпадениях под кронами еловых лесов являются более информативными для выявления превышений уровня критических нагрузок как в фоновых условиях, так и на стадиях выраженной техногенной дигрессии.

Многолетняя динамика выпадений элементов в дождевых водах сосновых и еловых лесов отличается высокой вариабельностью как под кронами, так и между крон деревьев, однако многолетние тренды в условиях высокого уровня загрязнения не выражены.

В фоновых условиях выявлено повышение концентраций никеля в 2013–2017 гг., что объясняется возрастанием содержания поллютантов в аэрозолях, распространяющихся на значительные расстояния.

Исследование выполнено за счет средств государственного задания "Динамика восстановления биоразнообразия и функций наземных экосистем Субарктики в условиях комбинированного действия природных и антропогенных факторов" (АААА-А18-118021490070-5) и государственного задания "Методические подходы к оценке структурной организации и функционирования лесных экосистем" (АААА-А18-118052400130-7), а также при финансовой поддержке РФФИ (грант № 18-35-00170 мол_а и частично грант № 18-05-60142/18).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Никонов В.В., Лукина Н.В., Безель В.С.* и др. Рассеянные элементы в бореальных лесах / Отв. ред. Исаев А.С. М.: Наука, 2004. 409 с.
- Шильцова Г.В. Роль сосновых биогеоценозов заповедника "Кивач" в формировании кислотности и состава природных вод // Труды Карельского научного центра РАН. Петрозаводск, 2006. Вып. 10. С. 173–179.
- 3. *Gandois L., Tipping E., Dumat C., Probst A.* Canopy influence on trace metal atmospheric inputs on forest ecosystems: Speciation in throughfall // Atmospheric Environment. 2010. V. 44. Issue 6. P. 824–833.
- 4. Мартынюк А.А., Дороничева Е.В., Рыкова Т.В. Изменение химического состава природных осадков под пологом сосновых насаждений в условиях техногенного загрязнения среды // Лісовий журнал. 2011. № 1. С. 8–11.
- 5. *De Vries W., Dobbertin M.H., Solberg S.* et al. Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: an overview // Plant and Soil. 2014. (First Online).
- Herrmann M., Pust J., Pott R. The chemical composition of throughfall beneath oak, birch and pine canopies in Northwest Germany // Plant Ecology. 2006. V. 184. P. 273–285.
- Kowalska A., Astel A., Boczoń A., Polkowska Ż. Atmospheric deposition in coniferous and deciduous tree stands in Poland // Atmospheric Environment. 2016. V. 133. P. 145–155.
- 8. *Арчегова И.Б., Кузнецова Е.Г.* Влияние древесных растений на химический состав атмосферных осадков в процессе восстановления среднетаежных лесов // Лесоведение. 2011. № 3. С. 34–43.
- 9. Лукина Н.В., Полянская Л.М., Орлова М.А. Питательный режим почв северотаежных лесов. М.: Наука, 2008. 342 с.
- Fischer R., Mues V., Ulrich E. et al. Monitoring of atmospheric deposition in European forests and an overview on its implication on forest condition // Applied Geochemistry. 2007. V. 22. Issue 6. P. 1129–1139.
- 11. *Pascaud A., Sauvage S., Coddeville P.* et al. Contrasted spatial and long-term trends in precipitation chemistry and deposition fluxes at rural stations in France // Atmospheric Environment. 2016. V. 146. P. 28–43.
- Даувальтер В.А., Даувальтер М.В., Салтан Н.В., Семенова Е.Н. Влияние выбросов горно-металлургического комбината на химический состав атмосферных выпадений (Мончегорский полигон) // Геоэкология. Сер. Инженерная геология, гидрогеология, геокриология. 2009. № 3. С. 228–240.

- Kashulina G., Caritat P., Reimann C. Snow and rain chemistry around the "Severonikel" industrial complex, NW Russia: Current status and retrospective analysis // Atmospheric Environment. 2014. V. 89. P. 672–682.
- 14. Цветков В.Ф., Цветков И.В. Промышленное загрязнение окружающей среды и лес. Архангельск: ИПЦ САФУ, 2012. 312 с.
- 15. Лукина Н.В., Никонов В.В. Биогеохимические циклы в лесах Севера в условиях аэротехногенного загрязнения. Ч. 1. Апатиты: Изд. КНЦ РАН, 1996. 216 с.
- Кислотные осадки и лесные почвы / Под ред. Никонова В.В. и Копцик Г.Н. Апатиты: Изд-во Кольского науч. центра РАН, 1999. 320 с.
- Lukina N.V., Nikonov V.V. Degradational succession of forest ecosystems in the surroundings of Cu-Ni smelter in the Kola Peninsula // Proceedings of 28th Annual Meeting. May, 2003. Sudbury, Ontario [CDROM].
- Лукина Н.В., Никонов В.В. Питательный режим лесов северной тайги. Апатиты: Изд-во Кольского науч. центра РАН, 1998. 316 с.
- Husson F., Le S., Pages J. Exploratory multivariate analysis by example using R. 2nd ed. Chapman & Hall/CRC, 2017. 248 p.
- 20. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2017. URL: http://www.R-project.org.
- Helmisaari H.S., Mälkönen E. Acidity and nutrient content of throughfall and soil leachate in three *Pinus* sylvestris stands // Scandinavian Journal of Forest Research. 1989. V. 4. Issue 1–4. P. 13–28.
- Gundersen P., Sevel L., Christiansen J. R. et al. Do indicators of nitrogen retention and leaching differ between coniferous and broadleaved forests in Denmark? // Forest Ecology and Management. 2009. V. 258. P. 1137–1146
- Korhola A., Weckstrom J., Nyman M. Predicting the long-term acidification trends in small subarctic lakes using diatoms // J. of Applied Ecology. 1999. V. 36. P. 1021–1034.
- 24. *Reinds G.J., Groenenberg J.E., Vrieset W.* Critical Loads of copper, nickel, zinc, arsenic, chromium and selenium for terrestrial ecosystems at a European scale. Wageningen, Alterra, 2006. 46 p.
- 25. Ершов В.В., Лукина Н.В., Орлова М.А. и др. Оценка динамики состава почвенных вод северотаежных лесов при снижении аэротехногенного загрязнения выбросами медно-никелевого комбината // Сибирский экологич. журн. 2019. №1. С. 119–132.
- 26. Ershov V.V., Lukina N.V., Orlova M.A., Zukert N.V. Dynamics of snowmelt water composition in conifer forests exposed to airborne industrial pollution // Rus. J. of Ecology. 2016. V. 47. № 1. P. 46–52.