ИССЛЕДОВАНИЕ МАГНИТНЫХ И ЭЛЕКТРОХИМИЧЕСКИХ СВОЙСТВ НАНОКРИСТАЛЛОВ CoFe₂O₄, СИНТЕЗИРОВАННЫХ ЛЕГКИМ ГИДРОТЕРМАЛЬНЫМ МЕТОДОМ

© 2019 г. Х. Ли^а, Ф.-Б. Су^а, Л.-Ж. Ву^а, Т.-Л. Хан^а, Л.-К. Фан^а, Ж.-В. Дон^а, Ч.-Й. Чао^{а, *}

^аСюйчанский университет, Хэнань, 461000 КНР

*e-mail: chaochunying@zju.edu.cn Поступила в редакцию 06.10.2018 г. После доработки 14.01.2019 г. Принята к публикации 31.01.2019 г.

Магнитные наночастицы CoFe₂O₄@углерод синтезированы гидротермальным методом с использованием глюкозы в качестве источника углерода. Исследованы их магнитные и электрохимические свойства. Значения намагниченности насыщения M_s и остаточной намагниченности M_r наночастиц CoFe₂O₄@C меньше, чем для образцов чистого CoFe₂O₄. Это изменение магнитных свойств можно объяснить наличием слоя углерода, гасящего поверхностный магнитный момент за счет опрокидывания спина. Благодаря аморфной структуре и хорошей электронной проводимости углеродных оболочек, электрод "CoFe₂O₄@C 20 вес. %" имеет емкость 201 мА ч г⁻¹ при плотности тока 50 мА г⁻¹.

Ключевые слова: литий-ионный аккумулятор, смешанные оксиды металлов, гидротермальный, магнитные свойства, анодный материал

DOI: 10.1134/S0424857019080097

введение

Быстрое развитие портативной электроники и электромобилей все настойчивее требует разработки высокопроизводительных устройств для запасания энергии, таких как суперконденсаторы [1], аккумуляторы [2, 3] и топливные элементы [4]. Среди различных типов аккумуляторов литий-ионные аккумуляторы привлекают внимание благодаря большой плотности энергии и большой плотности мощности, а также хорошей циклируемости. Вышеприведенные характеристики есть следствие, главным образом, качества используемых материалов и процесса сборки аккумулятора. Материалы, отличающиеся большой емкостью и хорошей стабильностью, очень важны для разработки мощных литий-ионных аккумуляторов следующего поколения [5, 6]. Однако широко используемые графитовые аноды имеют удельную емкость, равную всего лишь 372 мA ч Γ^{-1} , что далеко не дотягивает до требуемой величины [7]. При разработке анодов для литий-ионных аккумуляторов, отличающихся высокой плотностью энергии и мощности, очень важно отвечать требованиям автомобильной промышленности. Заменить графит пытались, используя многие материалы, такие как металлы, неметаллы, оксиды металлов, смешанные оксиды металлов и их композиты [8–11]. Смешанные оксиды металлов, такие как CuFe₂O₄ [12], CuCo₂O₄ [13], NiCo₂O₄ [14], FeCo₂O₄ [15], привлекают большое внимание благодаря их широкой распространенности, дешевизне и высокой теоретической емкости. В частности, СоFe₂O₄ [16-19] с высокой теоретической емкостью 916 мА ч г⁻¹ широко исследуется в качестве одного из перспективных анодных материалов. К сожалению, подобно другим оксидам переходных металлов, его практическому применению в литий-ионных аккумуляторах все еще препятствует неспособность работать в широком диапазоне скоростей заряда-разряда и плохая циклируемость - следствие низкой ионной проводимости и большого изменения объема при внедрении Li⁺ и его экстракции.

Для того чтобы ответить на требования автомобильной промышленности, наиболее перспективная стратегия — это уменьшение размеров частиц до наномасштаба и создание композитов из частиц CoFe₂O₄, энкапсулированных в углеродную оболочку. Композит CoFe₂O₄/C в форме волокон, как анодный материал, был приготовлен [18] методом "золь—гель" с использованием электроспиннинга. Частицы CoFe₂O₄ были распределены в углеродной матрице, а композитные волокна – переплетены так, чтобы получилась 3D-сетка с ячейками размером от 200 до 300 нм. Внешний пористый углерод может дать достаточно пространства для изменения объема и повышает электрохимическую эффективность, обеспечивая хорошую обратимую емкость и способность заряда-разряда с высокой скоростью. Пытались улучшить работу CoFe₂O₄-анода и с помощью других проводящих добавок – углеродных нанотрубок и графена. В работе [20] сообщалось о получении композита СоFe₂O₄/графен в гидротермальном процессе "жидкость-твердый раствор". Наночастицы CoFe₂O₄ могут закрепляться на графеновых листках по механизму электростатической адсорбции. Эти композиты демонстрируют высокую удельную емкость 1102 мА ч г⁻¹ при плотности тока $0.2 \text{ A } \text{г}^{-1}$ после 100 циклов, а также хорошую циклируемость. Композит СоFe₂O₄/углеродные нанотрубки был синтезирован с использованием альгината со структурой клеточного контейнера в качестве прекурсора [21]. Он имел 3D-структуру, в которой было достаточно пространства для расширения, к тому же содержавшую короткие пути для ионного транспорта. Удельная емкость этого композита при оптимальном содержании углеродных нанотрубок (20 вес. %) составила 874 мА ч Γ^{-1} при плотности тока 1 А Γ^{-1} .

СоFe2O4 - это хорошо известный магнитнотвердый материал с высокой коэрцитивной силой и умеренной намагниченностью [22, 23]. Тем не менее, основные исследования композитов СоFe₂O₄/С были сосредоточены на их электрохимических свойствах при их использовании в качестве электродов. Их магнитные свойства определяются состоянием распределения электронов; они могут быть также полезны и при электрохимическом применении, хотя бы и не непосредственно. В настоящей работе типичные нанокристаллы CoFe₂O₄@C были синтезированы гидротермальным методом с применением глюкозы в качестве источника углерода. Для более глубокого понимания прекрасных электрохимических свойств наночастиц CoFe₂O₄@C мы исследовали магнитные и электрохимические свойства Со Fe₂O₄. Насколько нам известно, очень мало работ посвящены детальному исследованию как магнитных, так и электрохимических свойств $CoFe_2O_4@C.$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы

Реактивы $FeCl_3 \cdot 6H_2O$ (99 вес. %), $CoCl_2 \cdot 6H_2O$ (99 вес. %), NaOH и NaBH₄ были приобретены у компании Sinopharm Chemical Reagent Company (КНР). Поливинилиденфторид (HSV 900) был любезно предоставлен компанией Arkema Ltd.

ЭЛЕКТРОХИМИЯ том 55 № 10 2019

Раствор электролита (1 M LiPF₆ в смеси этилкарбонат/диметилкарбонат/этилметилкарбонат в весовом отношении 1/1/1) был приобретен у компании Guotai Huarong Company (KHP).

Синтез наночастиц $CoFe_2O_4$

Типичный синтез нанокристаллов CoFe₂O₄@C проводили следующим образом: CoCl₂ · 6H₂O (6 мМ) и FeCl₃ · 6H₂O (12 мМ) добавляли в деионизованную воду (20 мл); затем к полученной суспензии прибавляли 1.5 мМ NaOH (10 мл). После перемешивания в течение 10 мин при комнатной температуре добавляли 10 мл раствора NaBH₄ (60 мМ), и эту смесь продолжали перемешивать в течение еще 10 мин. Затем к полученной смеси прибавляли глюкозу и перемешивали еще 30 мин до получения однородной суспензии. Ее переносили в автоклав из нержавеющей стали, выстланный тефлоном, объемом 50 мл. Гидротермальная реакция в автоклаве продолжалась 12 ч при 200°С. Свежеприготовленные образцы отфильтровывали и промывали деионизованной водой, после чего сушили при 60°С на воздухе в течение 24 ч. Полученные продукты прокаливали при 350°С в течение 2 ч в токе N₂ в муфельной печи, быстро поднимая температуру со скоростью 10°С мин⁻¹ для того, чтобы образовались нанокристаллы СоFe₂O₄@С. Массовая доля С в нанокристаллах СоFe₂O₄@С составляла 7-30 вес. %.

Снятие характеристик продукта

Рентгеновские дифрактограммы были получены на порошковом дифрактометре Thermo ARLXTRA с геометрией Брэгга–Брентано с излучением Cu K_{α} ($\lambda = 1.54056$ Å); его разрешение 0.82 Å. Исследования методами просвечивающей электронной микроскопии (ТЕМ) и просвечивающей электронной микроскопии высокого разрешения (HRTEM) записывали на просвечивающем электронном микроскопе FEI F20 (200 кВ). Термостойкость нанокристаллов CoFe₂O₄@C изучали методом термогравиметрического анализа на приборе NETZSCH TG 209 (KHP) в токе N_2 при скорости сканирования 10°С мин⁻¹. Магнитные свойства свежеприготовленного CoFe₂O₄ и их температурную зависимость изучали с помощью системы измерения магнитных свойств (Quantum Design) и магнетометра с вибрирующим образцом. Изотермы адсорбции и десорбции N₂ получали на автоматической газосорбционной системе Quantachrome Autosorb. Удельную площадь поверхности и распределение пор по размеру определяли методом БЭТ.

(a) (б) CoFe₂O₄ (JCPDS 22-1086) Интенсивность, произв. ед. 3 4% 100 ⁴⁰⁰ 511) 440 СоFe₂O₄@С 30 ма 96 10.0% СоБерО4@С 25 ма % 92 Bec, 17.7% СоБерО4@С 20 ма 20.3% 19.8% 88 СоFe₂O₄@С 7 мас. CoFe₂O₄ 84 СоFe2O4@С 7 мас. % СоFe2O4@С 20 мас. % CoFe₂O₄ СоFe2O4@С 25 мас. % 80 СоFe₂O₄@С 30 мас. % 10 20 30 40 50 60 70 80 100 200 300 400 500 600 700 800 900 20, град Температура, °С

Рис. 1. (а) Типичные рентгеновские дифрактограммы свежеприготовленных образцов: для чистого $CoFe_2O_4$, $CoFe_2O_4@C$ 7 вес. %, $CoFe_2O_4@C$ 20 вес. %, $CoFe_2O_4@C$ 25 вес. % и $CoFe_2O_4@C$ 30 вес. %. (б) Кривые термогравиметрического анализа тех же свежеприготовленных образцов.

Электрохимические измерения

Для приготовления рабочих электродов смешивали приготовленный активный материал, ацетиленовую сажу и поливинилиденфторид в весовом отношении 8:1:1, и полученную кашицу наносили на медную фольгу. Нагрузка активным материалом составила приблизительно 1.0 мг см⁻². В качестве противоэлектрода и электрода сравнения использовался чистый металлический литий. Сепаратором служила мембрана из полипропилена (Cellgard 2500). Полуэлементы таблеточного типа CR2025 собирали в перчаточном боксе. Их электрохимическое поведение оценивали методом циклической вольтамперометрии, используя электрохимический комплекс Autolab PGSTAT302N (Швейцария). Циклические вольтамперограммы снимали в области потенциалов от 0.01 до 3.0 В при скорости развертки потенциала 0.2 мВ с⁻¹. Циклирование полуэлементов проводили при напряжении между 0.01 и 3.0 В при различных плотностях тока. Для шиклирования использовали электрохимический анализатор Neware BTS (КНР). Спектры электрохимического импеданса снимали при частотах от 0.1 МГц до 0.1 Гц, используя электрохимический комплекс Autolab PGSTAT302N.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Кристаллическую структуру свежеприготовленных образцов исследовали методом рентгеновской дифракции. Рентгеновские дифрактограммы (рис. 1а) демонстрируют различные кристаллические грани: (220), (311), (222), (400), (422), (511) и (440). Они показывают, что CoFe₂O₄ имеет кубическую структуру шпинели (JCPDS 22-1086). Не обнаружено пиков каких-нибудь примесей. Все это означает, что наночастицы СоFe₂O₄@С высокой степени чистоты хорошо закристаллизованы. Для определения содержания СоFe₂O₄ и углерода в образцах СоFe₂O₄@С мы использовали термогравиметрический анализ. Термогравиметрические кривые показаны на рис. 1б. В случае наночастиц чистого CoFe₂O₄ полная потеря веса при температуре 950°С составляет около 3.4%. Ее можно объяснить испарением воды, разложением или сгоранием органического вещества (метаборная кислота) и испарением кристаллизационной воды. По сравнению с наночастицами чистого CoFe2O4, полная потеря веса наночастиц CoFe₂O₄@C составляет 10.0, 17.7, 19.8 и 20.3% и объясняется сгоранием углерода. Все эти результаты подтверждают, что наночастицы СоFe₂O₄@С с различным содержанием углерода успешно синтезированы.

Для наблюдения морфологии и структуры наночастиц CoFe₂O₄@C мы использовали метод просвечивающей электронной микроскопии. Полученные TEM-микрофотографии представлены на рис. 2. Для образца CoFe₂O₄@C 20 вес. % видны наночастицы размером 5–10 нм (рис. 2а, большое увеличение).

Согласно HRTEM-микрофотографии (рис. 26), межплоскостное расстояние кристаллической решетки равняется 0.487 нм, что соответствует кристаллической грани (111) в CoFe₂O₄. В части 1 виден слой аморфного углерода между наночастицами CoFe₂O₄. Для образца CoFe₂O₄@C 25 вес. %, наночастицы CoFe₂O₄ показывают узкое распределение по размеру, средний размер частиц — около 10 нм. По сравнению с CoFe₂O₄@C 20 вес. %, на поверхности наночастиц CoFe₂O₄ находится большое количество аморфного углерода. Меж-

Рис. 2. ТЕМ- и HRTEM-микрофотографии свежеприготовленных наночастиц CoFe₂O₄@C; (a) и (б) CoFe₂O₄@C 20 вес. %, (в) и (г) CoFe₂O₄@C 25 вес. %.

плоскостное расстояние кристаллической решетки здесь равняется 0.254 нм, что соответствует среднему значению для кристаллической грани (311) в CoFe₂O₄ (рис. 2г). В части 2 наблюдается слой аморфного углерода большей площади, чем в части 1. Эти результаты подтверждают данные термогравиметрического анализа.

На рис. 3 показаны изотермы адсорбции-десорбции N₂, снятые для того, чтобы охарактеризовать удельную площадь поверхности CoFe₂O₄@Cэлектродов. Удельная площадь поверхности образцов CoFe₂O₄@C 20 вес. % и CoFe₂O₄@C 25 вес. % составляет, соответственно, 54.6 и 40.7 м² г⁻¹. Эти значения приближаются к соответствующему значению для нанопластинок CoFe₂O₄, описанных, например, в работе [17]. Эта изотерма с петлей гистерезиса принадлежит к типу IV, описывающему структуру мезопор [16]. Полученные результаты показывают, что синтезированные СоFe₂O₄@С-электроды обладают рыхлой структурой мезопор, которая не только облегчает доступность для жидкого электролита, но также и демпфирует изменение объема во время циклов заряда—разряда [17].

На рис. 4а показаны петли гистерезиса намагниченности при комнатной температуре чистого $CoFe_2O_4$, $CoFe_2O_4@C$ 7 вес. % и $CoFe_2O_4@C$ 20 вес. %. Все эти образцы демонстрируют гисте-

ЭЛЕКТРОХИМИЯ том 55 № 10 2019

резис намагниченности при комнатной температуре. В табл. 1 даны соответствующие значения намагниченности насыщения (*M*_s), остаточной намагниченности (M_r) и коэрцитивного поля (H_c) для чистого CoFe₂O₄, CoFe₂O₄@C 7 вес. % и СоFe₂O₄@C 20 вес. %. Значения M_{s} (3.70 эме/г) [эме = электромагнитная единица] и M_r (2.89 эме/г) для наночастиц чистого CoFe₂O₄ больше, чем для образцов CoFe₂O₄@C. А значение H_c для наночастиц чистого CoFe₂O₄ меньше, чем для образцов CoFe₂O₄@C. При увеличении содержания углерода значения $M_{\rm s}, M_{\rm r}$ и $H_{\rm c}$ для образцов CoFe₂O₄@C 7 вес. % и CoFe₂O₄@C 20 вес. % почти одинаковы. К тому же при использовании аморфного углерода в качестве источника углерода значение $M_{\rm s}$ меньше, чем для других компози-

Таблица 1. Значения намагниченности насыщения (M_s) , остаточной намагниченности (M_r) и коэрцитивного поля (H_c) для чистого CoFe₂O₄, CoFe₂O₄@C 7 вес. % и CoFe₂O₄@C 20 вес. %

Образец	$M_{\rm s}$, эме/г	$M_{\rm r}$, эме/г	<i>H</i> _c , кЭ
CoFe ₂ O ₄	3.70	2.89	11.18
СоFe ₂ O ₄ @С 7 вес. %	2.03	1.35	12.08
СоFe ₂ O ₄ @С 20 вес. %	1.89	1.12	13.14

Рис. 3. Изотермы адсорбции–десорбции азота для электродов (а) CoFe₂O₄@C 20 вес. %, (б) CoFe₂O₄@C 25 вес. %.

тов на основе углерода, таких как углеродные нанотрубки/CoFe₂O₄ (29.6 эме/г) [24], многостенные углеродные нанотрубки/CoFe₂O₄ (23 эме/г) [25], электроспряденное C/CoFe₂O₄-нановолокно (42.8 эме/г) [21]. Это можно объяснить меньшим размером зерна и поверхностными дефектами CoFe₂O₄, присутствием аморфного углерода и внутренними напряжениями между наночастицами CoFe₂O₄ и аморфным углеродом [26, 27].

На рис. 4б показана температурная зависимость намагниченности в условиях охлаждения полем, измеренная при 500 Э для чистого СоFe₂O₄, CoFe₂O₄@C 7 вес. % и CoFe₂O₄@C 20 вес. %. для наночастиц чистого CoFe₂O₄ температура блокирования ($T_{\rm B}$) выше ~300 K, что соответствует тепловому переходу от блокированного ферромагнитного состояния к суперпарамагнитному состоянию [28, 29]. Было показано в условиях охлаждения полем, что магнитный момент непрерывно уменьшается вплоть до 400 К. Из рис. 4в видно, что обратная магнитная восприимчивость непрерывно увеличивается вплоть до 400 К. Более того, обратная магнитная восприимчивость CoFe₂O₄@C выше, чем чистого CoFe₂O₄. Обратная магнитная восприимчивость увеличивается с ростом содержания углерода. Существенное различие в магнитных параметрах между образцами чистого CoFe₂O₄ и CoFe₂O₄@C вызвано, главным образом, слоем аморфного углерода, который гасит поверхностный магнитный момент, опрокидывая спин, и содержанием $CoFe_2O_4$ [29, 30]. Это может быть важно, хотя и в неявном виде, для электрохимического поведения CoFe₂O₄@C, в случае применения его в качестве анодного материала.

На рис. 5а, 5б показаны циклические вольтамперограммы электродов из чистого CoFe₂O₄ и СоFe₂O₄@С 20 вес. % для первых трех циклов в интервале напряжений от 0.01 до 3.0 В, снятые при скорости развертки потенциала 0.2 мВ с⁻¹. На первом цикле широкий пик тока в области от 0.3 до 0.7 В для чистого CoFe₂O₄ соответствует восстановлению Fe³⁺ и Co²⁺ до их металлического состояния, сопровождаемому образованием слоя твердого электролита на границе раздела (SEI) в результате разложения жидкого электролита [17, 21]. При последующей анодной развертке потенциала наблюдается широкий пик тока в области от 1.3 до 1.6 В, который отвечает окислению металлических Со и Fe до их оксидов. В последуюших циклах не наблюдается острых окислительно-восстановительных пиков тока ни на катодных, ни на анодных сканах, что говорит о слабой обратимости реакций на электроде из чистого СоFe₂O₄. Подобно кривой первого цикла для электрода из чистого CoFe₂O₄, электрод из композита СоFe₂O₄@С 20 вес. % демонстрирует широкие пики в области 0.3-0.5 В на катодном скане и 1.4-1.6 В на анодном скане. В последующих циклах катодные пики тока сдвигаются к 0.7 и 1.4 В. Явственное различие между первым и последующими циклами вызвано, главным образом, устойчивостью пленки SEI, образованной в первом цикле. Начиная со второго цикла, окислительно-восстановительные пики тока остаются почти неизменными, указывая на хорошую обратимость композитов CoFe₂O₄@C [17, 31, 32].

Рисунок 5в демонстрирует способность электродов из композитов $CoFe_2O_4@C$ 7 вес. % и $CoFe_2O_4@C$ 20 вес. % работать при различных скоростях заряда—разряда. В целом, у композита $CoFe_2O_4@C$ 20 вес. % самая хорошая разрядная емкость при всех плотностях тока. С ростом плотности тока от 50 до 100, 200 и 500 мА г⁻¹ электрод

Рис. 4. (а) Петли гистерезиса намагниченности при комнатной температуре, (б) температурная зависимость намагниченности в условиях охлаждения полем, измеренная при 500 Э, (в) температурная зависимость обратной магнитной восприимчивости, измеренная при 500 Э и частоте 15.2 Гц для чистого $CoFe_2O_4@C 7$ вес. % и $CoFe_2O_4@C 7$ вес. % и $CoFe_2O_4@C 7$ вес. %.

из CoFe₂O₄@C 20 вес. % демонстрирует емкости, соответственно, 1019, 453, 310 и 201 мА ч г⁻¹. Если вернуть плотность тока назад к 50 мА г⁻¹, то емкость возвращается к 302 мАч г⁻¹. Это означает, что структура электрода из CoFe₂O₄@C 20 вес. % поддерживается постоянной даже после того, как он подвергается циклированию при больших токах заряда–разряда. Это явление связано главным образом с аморфной структурой и хорошей электронной проводимостью углеродных оболочек, которые представляют собой совершенные барьеры, защищающие находящиеся внутри активные материалы (CoFe₂O₄) и поддерживающие высокую емкость [33–35].

Далее, на рис. 5г представлена циклируемость электродов из композитов $CoFe_2O_4@C~7$ вес. % и $CoFe_2O_4@C~20$ вес. % при плотности тока 50 мА г⁻¹. обратимая емкость электрода из $CoFe_2O_4@C$ 20 вес. % после 100 циклов равна 353 мА ч г⁻¹. У электрода из $CoFe_2O_4@C~7$ вес. % емкость ниже, но он так же стабилен, как и электрод из

ЭЛЕКТРОХИМИЯ том 55 № 10 2019

СоFe₂O₄@С 20 вес. %. Эти результаты показывают, что создание углеродного покрытия помогает улучшить циклируемость электродов. Однако оказалось, что обратимая емкость наших электродов ниже, чем в других работах [18, 19, 36–39]. Этот результат может быть следствием высокого содержания углеродной компоненты в электродах из CoFe₂O₄@C; определение оптимального отношения CoFe₂O₄/C требует более глубокого изучения в будущей работе.

На рис. ба показаны типичные циклические вольтамперограммы электрода из $CoFe_2O_4@C$ 20 вес. %, снятые при различных скоростях развертки потенциала. Площадь под кривыми представляет собой полный запасенный заряд, который можно разделить на три составляющих: фарадеевский вклад от процесса внедрения Li⁺, фарадеевский вклад от псевдоемкости и нефарадеевский вклад от заряжения двойного слоя [40]. Две последние емкостные компоненты можно выделить, анализируя циклические вольтамперограммы, снятые при различных скоростях разЛИ и др.

Рис. 5. Циклические вольтамперограммы электродов из чистого $CoFe_2O_4$ (a) и $CoFe_2O_4@C$ 20 вес. % (б) для трех первых циклов, снятые при скорости развертки потенциала 0.2 мВ с⁻¹ в интервале напряжений между 0.01 и 3 В. (в) Циклируемость электродов из $CoFe_2O_4@C$ при различных плотностях тока и (г) при плотности тока 50 мА г⁻¹.

вертки потенциала (v), с использованием следующих уравнений: скоростях развертки потенциала, с помощью следующего уравнения [40-42]:

$$i(\mathbf{V}) = k_1 v + k_2 v^{1/2}.$$
 (3)

$$i(V)/v^{1/2} = k_1 v^{1/2} + k_2.$$
 (4)

В уравнении (3) $k_1 v$ и $k_2 v^{1/2}$ отвечают соответственно вкладам емкостного процесса и фарадеевского процесса внедрения. Значения k_1 и k_2 были получены из наклона прямой и отрезка, отсекаемого ею на оси *y*, с использованием уравнения (4). Основываясь на вышеприведенном анализе, мы демонстрируем на рис. 6в вклады от двух типов запасания энергии при различных скоростях развертки потенциала. С ростом скорости развертки потенциала от 0.2 до 1.0 мВ с⁻¹ доля емкости, контролируемой фарадеевским процессом внедрения, сокращается с 81.0 до 65.6%, в то время как доля емкости электрода "емкостного" происхождения выросла с 29.0 до 34.4%. Таким образом,

 $i = av^{b},$ lg i = lg a + b lg v,(1)
(2)

где *а* и *b* — подгоночные параметры, которые можно найти путем линейного фитинга зависимостей lg*i* от lg*v*. Теоретически, при *b* = 0.5 ток можно считать относящимся к фарадеевскому процессу внедрения, а при *b* = 1.0 ток имеет емкостную природу. Как показано на рис. 6б, значения *b*, вычисленные при скоростях развертки потенциала 0.2—0.8 и 1.0—5.0 мВ с⁻¹, равны соответственно 0.29 и 0.45. Это означает, что при скорости развертки потенциала 0.2—5.0 мВ с⁻¹ ток и вызваны главным образом фарадеевским процессом.

Вклад емкости в измеряемый ток может быть количественно выделен путем анализа циклических вольтамперограмм, снятых при различных

ЭЛЕКТРОХИМИЯ том 55 № 10 2019

Рис. 6. Электрохимические свойства электрода из CoFe₂O₄@C 20 вес. %: (а) циклические вольтамперограммы, снятые при различных скоростяхи развертки потенциала между 0.2 и 1.0 мВ с⁻¹. (б) Фитинг значения *b* для пиковых токов. (в) Доля вкладов в емкость при различных скоростях развертки потенциала. (г) Годографы, снятые до и после записи циклических вольтамперограмм.

электрод из композита CoFe₂O₄@C 20 вес. % показал наилучшую циклируемость при высоких скоростях заряда—разряда.

Далее, причины улучшения электрохимических характеристик электрода из композита $CoFe_2O_4@C~20$ вес. % были исследованы методом спектроскопии электрохимического импеданса. На рис. бг показаны годографы этого электрода в высокочастотной области до и после снятия циклических вольтамперограмм при различных скоростях развертки потенциала. Импеданс до снятия циклических вольтамперограмм намного больше, чем после их снятия, что, возможно, объясняется образованием пленки SEI в ходе заряда и разряда [43].

ЗАКЛЮЧЕНИЕ

Типичные нанокристаллы CoFe₂O₄@C синтезированы гидротермальным методом с использованием глюкозы в качестве источника углерода.

ЭЛЕКТРОХИМИЯ том 55 № 10 2019

Исследованы их магнитные и электрохимические свойства с целью выяснить факторы, влияющие на их электрохимическое поведение. Значения M_s (1.89 эме/г) и M_r (1.12 эме/г) наночастиц СоFe₂O₄@С меньше, чем для образцов чистого СоFe₂O. Это изменение магнитных свойств можно объяснить наличием слоя углерода, гасящего поверхностный магнитный момент за счет опрокидывания спина. Благодаря аморфной структуре и хорошей электронной проводимости углеродных оболочек, электрод CoFe₂O₄@C 20 вес. % демонстрирует хорошую циклируемость и высокую обратимую емкость: до 353 мА ч г⁻¹ после 100 циклов при плотности тока 50 мА г⁻¹.

ФИНАНСИРОВАНИЕ РАБОТЫ

Настоящая работа поддержана Национальным фондом естественных наук КНР (проекты № 51502258 и 51503176), Научно-технологическим проектом провинции Хэнань (проект № 182102210503) и Отделени-

ем ключевых проектов в области образования, наук и технологиии провинции Хэнань (проекты № 16А430007 и 18В150027).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы подтверждают отсутствие конфликта интересов.

ЭТИЧЕСКИЕ АСПЕКТЫ

Эта статья не содержит результатов исследований, проведенных авторами на людях или животных.

СПИСОК ЛИТЕРАТУРЫ

- Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., Freunberger, Stefan A., Favier, F., and Fontaine, O., Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors, *Nat. Mater*, 2016, vol. 16, p. 446.
- Christudas Dargily, N., Thimmappa, R., Manzoor Bhat, Z., Devendrachari, M.C., Kottaichamy, A.R., Gautam, M., Shafi, S.P., and Thotiyl, M.O., A Rechargeable Hydrogen Battery, *J. Phys. Chem. Lett.*, 2018, vol. 9, p. 2492.
- Thimmappa, R., Paswan, B., Gaikwad, P., Devendrachari, M.C., Makri Nimbegondi Kotresh, H., Rani Mohan, R., Pattayil Alias, J., and Thotiyl, M.O., Chemically Chargeable Photo Battery, *J. Phys. Chem. C*, 2015, vol. 119, p. 14010.
- Bhat, Z.M., Thimmappa, R., Devendrachari, M.C., Shafi, S.P., Aralekallu, S., Kottaichamy, A.R., Gautam, M., and Thotiyl, M.O., A Direct Alcohol Fuel Cell Driven by an Outer Sphere Positive Electrode, *J. Phys. Chem. Lett.*, 2017, vol. 8, p. 3523.
- Xu, J., Ma, J., Fan, Q., Guo, S., and Dou, S., Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O₂, S, Se, Te, I₂, Br₂) Batteries, *Adv. Mater*, 2017, vol. 29, p. 1606454.
- Sun, C., Liu, J., Gong, Y., Wilkinson, D.P., and Zhang, J., Recent advances in all-solid-state rechargeable lithium batteries, *Nano Energy*, 2017, vol. 33, p. 363.
- 7. Zhang, Y., Jiao, Y., Liao, M., Wang, B., and Peng, H., Carbon nanomaterials for flexible lithium ion batteries, *Carbon*, 2017, vol. 124, p. 79.
- 8. Wei, Q., Xiong, F., Tan, S., Huang, L., Lan, E.H., Dunn, B., and Mai, L., Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage, *Adv. Mater*, 2017, vol. 29, p. 1602300.
- 9. Cong, L., Xie, H., and Li, J., Hierarchical Structures Based on Two-Dimensional Nanomaterials for Rechargeable Lithium Batteries, *Adv. Energy Mater.*, 2017, vol. 7, p. 1601906.
- Sun, Y., Liu, N., and Cui, Y., Promises and challenges of nanomaterials for lithium-based rechargeable batteries, *Nature Energy*, 2016, vol. 1, p. 16071.
- Sheng, T., Xu, Y.F., Jiang, Y.X., Huang, L., Tian, N., Zhou, Z.Y., Broadwell, I., and Sun, S.G., Structure Design and Performance Tuning of Nanomaterials for

Electrochemical Energy Conversion and Storage, *Acc. Chem. Res.*, 2016, vol. 49, p. 2569.

- Ding, Y., Yang, Y., and Shao, H., Synthesis and characterization of nanostructured CuFe₂O₄ anode material for lithium ion battery, *Solid State Ionics*, 2012, vol. 217, p. 27.
- Sharma, Y., Sharma, N., Rao, G.V.S., and Chowdari, B.V.R., Lithium recycling behaviour of nanophase-CuCo₂O₄ as anode for lithium-ion batteries, *J. Power Sources*, 2007, vol. 173, p. 495.
- Nuli, Y., Zhang, P., Guo, Z., Liu, H., and Yang, J., NiCo₂O₄/C Nanocomposite as a Highly Reversible Anode Material for Lithium-Ion Batteries, *Electrochem. Solid-State Lett.*, 2008, vol. 11, p. A64.
- Sharma, Y., Sharma, N., Subbarao, G., and Chowdari, B., Studies on spinel cobaltites, FeCo₂O₄ and MgCo₂O₄ as anodes for Li-ion batteries, *Solid State Ionics*, 2008, vol. 179, p. 587.
- Zhang, X., Li, D., Zhu, G., Lu, T., and Pan, L., Porous CoFe₂O₄ nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries, *J. Colloid Interface Sci.*, 2017, vol. 499, p. 145.
- Wang, Z., Fei, P., Xiong, H., Qin, C., Zhao, W., and Liu, X., CoFe₂O₄ nanoplates synthesized by dealloying method as high performance Li-ion battery anodes, *Electrochim. Acta*, 2017, vol. 252, p. 295.
- Wu, L., Xiao, Q., Li, Z., Lei, G., Zhang, P., and Wang, L., CoFe₂O₄/C composite fibers as anode materials for lithium-ion batteries with stable and high electrochemical performance, *Solid State Ionics*, 2012, vol. 215, p. 24.
- Li, Z.H., Zhao, T.P., Zhan, X.Y., Gao, D.S., Xiao, Q.Z., and Lei, G.T., High capacity three-dimensional ordered macroporous CoFe₂O₄ as anode material for lithium ion batteries, *Electrochim. Acta*, 2010, vol. 55, p. 4594.
- Zhu, Y., Lv, X., Zhang, L., Guo, X., Liu, D., Chen, J., and Ji, J., Liquid-Solid-Solution Assembly of CoFe₂O₄/Graphene Nanocomposite as a High-Performance Lithium-Ion Battery Anode, *Electrochim. Acta*, 2016, vol. 215, p. 247.
- Sun, X., Zhu, X., Yang, X., Sun, J., Xia, Y., and Yang, D., CoFe₂O₄/carbon nanotube aerogels as high performance anodes for lithium ion batteries, *Green Energy Environment*, 2017, vol. 2, p. 160.
- 22. Maaz, K., Mumtaz, A., Hasanain, S.K., and Ceylan, A., Synthesis and magnetic properties of cobalt ferrite (CoFe₂O₄) nanoparticles prepared by wet chemical route, *J. Magnetism Magnetic Mater.*, 2007, vol. 308, p. 289.
- Nabiyouni, G., Sharifi, S., Ghanbari, D., and Salavati-Niasari, M., A Simple Precipitation Method for Synthesis CoFe₂O₄ Nanoparticles, *J. Nanostructures*, 2014, vol. 4, p. 317.
- 24. Jiang, W., Liu, Y., Li, F., Chu, J., and Chen, K., Superparamagnetic cobalt-ferrite-modified carbon nanotubes using a facile method, *Mater. Sci. Eng.: B*, 2010, vol. 166, p. 132.
- 25. Gonzalez-Sandoval, M.P., Beesley, A.M., Miki-Yoshida, M., Fuentes-Cobas, L., and Matutes-Aquino, J.A., Comparative study of the microstructural and

ЭЛЕКТРОХИМИЯ том 55 № 10 2019

magnetic properties of spinel ferrites obtained by coprecipitation, J. Alloy Compd., 2004, vol. 369, p. 190.

- Rajendran, M., Pullar, R.C., Bhattacharya, A.K., Das, D., Chintalapudi, S.N., and Majumdar, C. K., Magnetic properties of nanocrystalline CoFe₂O₄ powders prepared at room temperature: variation with crystallite size, *J. Magnetism Magnetic Mater.*, 2001, vol. 232, p. 71.
- Meng, Y., Chen, D., and Jiao, X., Synthesis and Characterization of CoFe₂O₄ Hollow Spheres, *European J. Inorg. Chem.*, 2008, vol. 2008, p. 4019.
- Nilmoung, S., Kidkhunthod, P., Pinitsoontorn, S., Rujirawat, S., Yimnirun, R., and Maensiri, S., Fabrication, structure, and magnetic properties of electrospun carbon/cobalt ferrite (C/CoFe₂O₄) composite nanofibers, *Appl. Phys. A*, 2015, vol. 119, p. 141.
- 29. Varma, P.C.R., Manna, R.S., Banerjee, D., Varma, M.R., Suresh, K.G., and Nigam, A.K., Magnetic properties of CoFe₂O₄ synthesized by solid state, citrate precursor and polymerized complex methods: A comparative study, *J. Alloy Compd.*, 2008, vol. 453, p. 298.
- García-Otero, J., Porto, M., Rivas, J., and Bunde, A., Influence of Dipolar Interaction on Magnetic Properties of Ultrafine Ferromagnetic Particles, *Phys. Rev. Lett.*, 2000, vol. 84, p. 167.
- Wang, J., Yang, G., Wang, L., Yan, W., and Wei, W., C@CoFe₂O₄ fiber-in-tube mesoporous nanostructure: Formation mechanism and high electrochemical performance as an anode for lithium-ion batteries, *J. Alloy Compd.*, 2017, vol. 693, p. 110.
- Zhao, S., Guo, J., Jiang, F., Su, Q., and Du, G., Porous CoFe₂O₄ nanowire arrays on carbon cloth as binderfree anodes for flexible lithium-ion batteries, *Mater. Res. Bull.*, 2016, vol. 79, p. 22.
- 33. Zhang, W.-M., Wu, X.-L., Hu, J.-S., Guo, Y.-G., and Wan, L.-J., Carbon Coated Fe₃O₄ Nanospindles as a Superior Anode Material for Lithium-Ion Batteries, *Adv. Functional Mater.*, 2008, vol. 18, p. 3941.
- 34. Zhu, T., Chen, J.S., and Lou, X.W., Glucose-Assisted One-Pot Synthesis of FeOOH Nanorods and Their Transformation to Fe₃O₄@Carbon Nanorods for Application in Lithium Ion Batteries, *J. Phys. Chem. C*, 2011, vol. 115, p. 9814.

- 35. Zhang, M., Yang, X., Kan, X., Wang, X., Ma, L., and Jia, M., Carbon-encapsulated CoFe₂O₄/graphene nanocomposite as high performance anode for lithium ion batteries, *Electrochim. Acta*, 2013, vol. 112, p. 727.
- 36. Qi, W., Li, P., Wu, Y., Zeng, H., Hou, L., Kuang, C., Yao, P., and Zhou, S., Facile synthesis of CoFe₂O₄ nanoparticles anchored on graphene sheets for enhanced performance of lithium ion battery, *Progr. Natural Sci.: Mater. Int.*, 2016, vol. 26, p. 498.
- 37. Wang, B., Li, S., Liu, J., Yu, M., Li, B., and Wu, X., An efficient route to a hierarchical CoFe₂O₄@graphene hybrid films with superior cycling stability and rate capability for lithium storage, *Electrochim. Acta*, 2014, vol. 146, p. 679.
- Ren, S., Zhao, X., Chen, R., and Fichtner, M., A facile synthesis of encapsulated CoFe₂O₄ into carbon nanofibres and its application as conversion anodes for lithium ion batteries, *J. Power Sources*, 2014, vol. 260, p. 205.
- 39. Xia, H., Zhu, D., Fu, Y., and Wang, X., CoFe₂O₄graphene nanocomposite as a high-capacity anode material for lithium-ion batteries, *Electrochim. Acta*, 2012, vol. 83, p. 166.
- Brezesinski, T., Wang, J., Polleux, J., Dunn, B., and Tolbert, S. H., Templated Nanocrystal-Based Porous TiO₂ Films for Next-Generation Electrochemical Capacitors, *J. Amer. Chem. Soc.*, 2009, vol. 131, p. 1802.
- Wang, J., Polleux, J., Lim, J., and Dunn, B., Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO₂ (Anatase) Nanoparticles, *J. Phys. Chem. C*, 2007, vol. 111, p. 14925.
- 42. Liu, T.C., Pell, W.G., Conway, B.E., and Roberson, S.L., Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors: Comparison with Ruthenium Oxide, *J. Electrochem. Soc.*, 1998, vol. 145, p. 1882.
- 43. Wu, L., Li, H., Xie, X., Chai, K., Han, P., Zhang, C., and Yang, C., Study on the effect of liquid nitrogen coldquenching on electrochemical characteristic of TiO₂ complex flakes with edged-curled derived from MAX as anode for lithium ion batteries, *J. Alloy Compd.*, 2019, vol. 780, p. 482.