УДК 544.6.018.42-16

ИОННАЯ ПРОВОДИМОСТЬ И КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ КОМПОЗИТОВ $LiNO_3 - KNO_3 + Al_2O_3^1$

© 2019 г. К. Ш. Рабаданов^{а,} *, М. М. Гафуров^а, З. Ю. Кубатаев^а, А. М. Амиров^а, М. А. Ахмедов^а, Н. С. Шабанов^а, М. Б. Атаев^а

^аДагестанский научный центр РАН, Аналитический центр коллективного пользования ул. М. Гаджиева, 45, Махачкала, Республика Дагестан, 367001 Россия

*e-mail: rksh83@mail.ru Поступила в редакцию 12.09.2018 г. После доработки 25.10.2018 г. Принята к публикации 22.01.2019 г.

Синтезированы композиционные твердые электролиты на основе эвтектической нитратной смеси 0.42LiNO₃-0.58KNO₃, допированной наноразмерным порошком оксида алюминия. Методом импедансной спектроскопии исследована проводимость полученных композитов. Гетерогенное допирование приводит к увеличению ионной проводимости и уменьшению энергии активации. Методом КР-спектроскопии показано, что допирование оксидом алюминия приводит к образованию аморфной фазы. При низких концентрациях нанопорошка аморфизация происходит за счет фазы нитрата лития.

Ключевые слова: нитраты щелочных металлов, эвтектика, электропроводность, композиционные электролиты, спектры комбинационного рассеяния, колебательная релаксация **DOI:** 10.1134/S0424857019060173

ВВЕДЕНИЕ

Одним из важнейших направлений ионики твердого тела является поиск новых твердотельных материалов с высокой проводимостью. В настоящее время синтезировано и исследовано много соединений, в которых ионный перенос осуществляется различными катионами и анионами. Однако большинство твердых электролитов обладают низкой проводимостью по сравнению с жидкими электролитами. Известно, что композитные твердые электролиты на основе солей щелочных металлов и порошков оксидов характеризуются более высокой электропроводностью по сравнению с проводимостью исходной соли [1-3]. Это обстоятельство открывает широкие технологические перспективы для синтеза новых композитных ионопроводящих систем с использованием ионных солей и оксидов различного состава, размера, условий получения и т.д. Также использование многокомпонентных эвтектических солевых систем позволяет получать относительно низкотемпературные электролиты, тем самым расширяя возможности использования композиционных электролитов.

В настоящей работе исследовалось влияние наноразмерного наполнителя Al₂O₃ на структурные и ионопроводяшие особенности эвтектической смеси LiNO₃-KNO₃ методами импедансной и колебательной спектроскопии. Исследование электропроводности композитов на основе нитратов шелочных металлов, допированных нанооксидом алюминия, показало, что это приводит к возрастанию проводимости. Композиты KNO₃-Na-NO₃-Al₂O₃, KNO₃-NaNO₃-LiNO₃-Al₂O₃ имеют высокую проводимость при температурах выше температуры плавления солевой фазы [4-6]. Однако, основываясь только на данных по ионной проводимости, трудно судить о механизмах переноса заряда и структурных особенностях многокомпонентных композитов. Очевидно, для этого необходим более детальный анализ микроструктуры, динамических взаимодействий ионов, молекул и наночастиц в них. Ранее было показано [7, 8], что параллельное исследование электропроводности и колебательных спектров позволяет выявить довольно интересные корреляции между спектральными данными и электропроводностью композиционных систем. Важной особенностью спектров конденсированных сред является их чувствительность к фазовым переходам и к структурным трансформациям, проявляющимся в существенных изменениях спектраль-

¹ Публикуется по докладу на XIV Международном Совещании "Фундаментальные проблемы ионики твердого тела". (Черноголовка, 9–13 сентября 2018 г.).

ных параметров. Поэтому исследования композитов в различных фазовых и агрегатных состояниях с привлечением спектроскопических методов, направленных на получение информации об их структуре, элементарных динамических процессах, позволят более детально выявить механизмы ионной проводимости.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения композиционной системы были использованы: нитрат лития ("ч. д. а.", "Экрос"), нитрат калия ("х. ч.", "Экрос"), нанокристаллический γ -Al₂O₃ (99%, "ABCR") со средним размером частиц 15—20 нм и величиной удельной поверхности 120 м²/г (БЭТ). Нитрат лития сушили в вакууме при помощи форвакуумного насоса при 150°C в течение не менее 24 ч.

В качестве солевой фазы композита была выбрана смесь эвтектического состава $0.42 \text{LiNO}_3 - 0.58 \text{KNO}_3$ (соотношения взяты в мольных долях). Для удаления адсорбированной воды порошок оксида алюминия предварительно прокаливали в течение 2 ч при температуре 500°С. Для приготовления композитов готовую эвтектическую смесь и оксид нагревали при 250°С, затем тщательно перемешивали в инертной атмосфере. После остывания полученный композит измельчали в агатовой ступке и запаивали в ампулы из пирекса. Все работы проводили в сухом перчаточном боксе.

Измерения электропроводности проводили по двухэлектродной схеме на импедансометре RLC Е7-20 в области частот 20 Гц-1 МГц. Значения проводимости рассчитывали из частотных зависимостей проводимости с помощью метода комплексного импеданса. Температуру системы измеряли термопарой хромель-алюмель и поддерживали с точностью ±1°С. Образцы для измерения электропроводности были получены путем прессования порошков между графитовыми обкладками. Полученные таким образом образцы представляли собой цилиндрические таблетки диаметром 13 мм и толщиной 2 мм. При измерении электропроводности учитывали сопротивление электродов и подводящих проводов. Все исследования проводили в атмосфере сухого аргона.

Для регистрации спектров комбинационного рассеяния (**KP**) использовали конфокальный КР-микроскоп Senterra ("Брукер", Германия). Технические характеристики конфокального КР-спектрометра-микроскопа SENTERRA-785: лазер 532 нм (мощность – до 20 мВт); спектральный диа-пазон – 50–1600 см⁻¹; разрешение – 2 см⁻¹; используемые объективы микроскопа – 10× и 50×; время на регистрацию одного спектра – до 10 мин.

Специально изготовленная ячейка обеспечивала проведение измерений КР-спектров в интервале температур от комнатной до 250°С.

Рис. 1. Зависимость логарифма удельной электропроводности от обратной температуры композитов в $(1 - x)[0.42LiNO_3 - 0.58KNO_3] + xAl_2O_3$, где (*I*) x = 0; (*2*) x = 0.5; (*3*) x = 0.7.

Разложение сложных контуров полос в экспериментальных спектрах на компоненты проводили путем подгонки расчетных кривых и исходного спектра с минимизацией абсолютной ошибки по методу Левенберга—Маркварта. При этом форма контуров индивидуальных полос аппроксимировали кривыми вида свертки функций Гаусса и Лоренца. Расхождение между расчетной и экспериментальной кривой составляла не более 5% в зависимости от отношения сигнал/шум исходного спектра. Все эти процедуры реализованы в программном пакете OPUS 6.0.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлены зависимости логарифма удельной электропроводности от обратной температуры композитов на основе 0.42LiNO₃— 0.58KNO₃ с различным содержанием наноразмерного оксида алюминия. Полученные экспериментальные данные хорошо описываются аррениусовыми зависимостями

$$\sigma = (A/T) \exp(-E_{akt}/kT).$$
(1)

Рассчитанные по температурным зависимостям энергии активации проводимости, $E_{\text{акт}}$, приведены в табл. 1.

Смесь нитратов лития и калия обладает низкой электропроводностью. При температуре 130°С происходит фазовый переход. К сожалению, в связи с неконтролируемым изменением геометрии образца дальнейшее исследование удельной электропроводности для солевой смеси становится невозможным. Допирование эвтекти-

$x(Al_2O_3),$	Участок І			Участок III			Участок II		
МОЛЬ	Δ <i>T</i> , K	<i>Е</i> _{акт} , кДж/моль	$E_{\rm akt}$, эВ	Δ <i>T</i> , K	<i>Е</i> _{акт} , кДж/моль	$E_{\rm akt}$, эВ	Δ <i>T</i> , K	<i>Е</i> _{акт} , кДж/моль	$E_{\rm akt}$, эВ
0		42.37	0.44		_	_	_	—	_
0.5	333-373	33.03	0.34	383-403	100.48	1.04	413-473	39.80	0.41
0.7		12.13	0.17				383-473	44.43	0.46

Таблица 1. Энергия активации в зависимости от интервала температур ($50-200^{\circ}$ C) в системе (1 - x)[0.42LiNO₃-0.58KNO₃] + xAl₂O₃

ческой смеси частицами Al₂O₃ приводит к заметному увеличению проводимости. Значения проводимости хорошо воспроизводятся в циклах нагрев-охлаждение. При повышении температуры в системе $[0.42 \text{LiNO}_3 - 0.58 \text{KNO}_3] + 0.5 \text{Al}_2 \text{O}_3$ наблюдается значительное увеличение проводимости, обусловленное переходом солевой фазы в расплавленное состояние (участок II). Этот участок кривой характеризует проводимость системы оксидная матрица-солевой расплав. При таких концентрациях открывается возможность сочетания механических и электрических свойств компонентов. Можно также отметить, что в данной системе в области температуры плавления наблюдается еще один участок (III), при котором ход температурной зависимости заметно отличается от остальных участков. При более высоких концентрациях оксида (x = 0.7) характер кривой существенно меняется (рис. 1, кривая 3) и на кривых излом, присущий фазовому переходу, не зафиксирован, а проводимость композита такого состава существенно затруднена.

Физико-химические свойства системы во многом определяются строением и характером поведения нитрат-иона. Для более полной интерпретации эффектов влияния нанооксида алюминия на структуру и ионопроводящие свойства были исследованы спектры КРС композита.

Нитрат-ион в свободном состоянии имеет точечную группу симметрии D_{3h} и его внутримолекулярное колебательное представление имеет следующий вид:

$$\Gamma(D_{3h}) = A'_1 + A''_2 + 2E', \qquad (2)$$

где $v_1(A'_1)$ – симметричное валентное колебание (~1050 см⁻¹), $v_2(A''_2)$ – внеплоскостное деформационное колебание (~820 см⁻¹), $v_3(E)$ – дважды вырожденное асимметричное валентное колебание (~1300 см⁻¹), $v_4(E)$ – дважды вырожденное деформационное колебание (~720 см⁻¹) и A'_1 и E' активны в KP, а A''_2 и E' активны в инфракрасном (ИК) поглощении [9].

Из зарегистрированных нами спектров КР следует, что трансформации в композитах при допировании оксидом алюминия наиболее четче

наблюдаются в области полносимметричного колебания $v_1(A'_1)$ (рис. 2). Также эта колебательная полоса наиболее интенсивная и не перекрывается контурами других колебательных мод, что упрощает интерпретацию изменений ее формы при изменении температуры и концентрации наполнителя.

По спектру КР для бинарной системы видно, что в твердом состоянии она представляет собой смесь индивидуальных солей KNO₃ и LiNO₃. Контур колебательной полосы, соответствующий колебаниям NO₃ в подрешетке KNO₃ солевой смеси, при комнатной температуре состоит из двух компонент, которые могут быть приписаны колебаниям упорядоченных (1050 см⁻¹) и разупорядоченных анионов (1047 см⁻¹) [10]. Это же колебание для подсистемы LiNO₃ в спектре КР регистрируется в виде симметричной полосы $(\sim 1070 \text{ см}^{-1})$. Допирование оксилом алюминия эвтектической смеси приводит к заметному усложнению спектра. Разделение колебательного контура на индивидуальные полосы показало, что помимо колебаний, присущих индивидуальным солям, обнаруживается дополнительная компонента с максимумом при 1060 см⁻¹, интенсивность которой возрастает по мере увеличения температуры и концентрации Al₂O₃. Ранее нами было показано, что данная полоса может отнесена к аморфной фазе нитрата лития [11].

Дальнейшее увеличение концентрации наполнителя приводит к полной аморфизации фазы нитрата лития. Помимо этого, как было показано в работе [12], в которой исследовались композиты $KNO_3-Al_2O_3$, в системе может образоваться высокотемпературная фаза $KNO_3 -$ фаза III (тригональная R3m), которая является наноразмерной и достаточно стабильной.

На рис. 3 представлены температурно-фазовые зависимости частот и полуширин компонент $v_1(A'_1)$ нитрат-иона композита. С ростом температуры наблюдается сдвиг максимума полосы компоненты LiNO₃ в сторону меньших волновых чисел и скачкообразное уменьшение при температуре фазового перехода. Предельное содержание оксида алюминия приводит к заметному измене-

Рис. 2. Спектры комбинационного рассеяния композитов $(1 - x)[0.42\text{LiNO}_3 - 0.58\text{KNO}_3] + x\text{Al}_2\text{O}_3$, при различных температурах и концентрациях: (a) x = 0; (б) x = 0.5; (в) x = 0.7, в области колебания $v_1(A'_1)$ нитрат-иона и результаты их разложения на компоненты: (1) 1047; (2) 1052; (3) 1070 см⁻¹.

Puc. 3. Температурно-фазовая зависимость частот v_1 (a) и полуширин δ (б) компонент полносимметричного валентного колебания $v_1(A'_1)$ нитрат-иона в спектрах KP композита $(1 - x)[0.42\text{LiNO}_3 - 0.58\text{KNO}_3] + x\text{Al}_2\text{O}_3$, где $\gamma - 1070$; $\gamma' - 1048$; $\gamma'' - 1050$ см⁻¹; $\gamma^{\text{amop}\Phi}$ – аморфная фаза ($\gamma = 1, 2, 3$).

ЭЛЕКТРОХИМИЯ том 55 № 6 2019

$x(Al_2O_3)$	<i>T</i> , °C	ν, см ^{−1}	δ , см ⁻¹	$M_2, { m cm}^{-2}$	τ _ν , пс	τ _c , пс	δ_h , см $^{-1}$	δ_i , см ⁻¹
0	25	1048.5	4	56.56	2.59	0.15	3.13	1.69
		1050.3	3.08	1.7	3.97	_	0	3.08
		1069.6	5.18	88.8	2.2	0.11	3.59	2.86
	115	1045.6	8.31	274.168	1.37	0.071	7.29713	2.93
		1052.9	4.32	3.36	3.3	_	0	4.32
		1066.97	7.64	190.5	1.59	0.073	5.15	4.33
	200	1054.89	17.95	820.10	0.73	0.04	12.53	7.24
	25	1051.85	7	217.55	1.52	0.086	7.05	0.45
		1053.3	2.84	1.45	4.1	_	0	2.84
		1061	11.78	68.6302	1.3	0.099	1.85	10.28
		1069.46	6.57	168.32	1.705	0.089	5.6	2.56
0.5	115	1052.5	7.5	260.33	1.4	0.082	8.1	0
		1053.3	3.32	1.99	3.85	_	_	3.32
		1060.26	11.6	82.9	1.31	0.086	2.11	9.9
		1068.88	7.13	187.2	1.62	0.08	5.59	3.35
	200	1055.32	18.6	1000.3	0.68	0.037	14	6.7
0.7	25	1053.6	14.7	999.38	0.74	0.041	15.46	0
		1060.27	17.31	238.3	0.87	0.096	7.93	10.3
	115	1053.6	16.97	1123.87	0.69	0.036	15.2	4.1
		1057.8	18.14	375.122	0.8	0.069	9.3	9.7
	200	1053.93	19.4	1136.47	0.65	0.035	14.9	6.5

Таблица 2. Спектральные и релаксационные характеристики колебания $v_1(A'_1)$ нитрат-иона в композитах

нию значений частот. Как известно, основной причиной смещения частот колебаний является изменение энергии межчастичных взаимодействий и колебательный — ангармонизм, вызванный изменением энергии внуримолекулярного взаимодействия [13]. Следовательно, допирование нанооксидом алюминия приводит к существенному изменению, в первую очередь, фазы нитрата лития.

При больших концентрациях оксида алюминия исчезают характерные для фазового перехода скачкообразные изменения спектральных характеристик (рис. 3), наблюдаются только незначительные изломы, характерные для аморфных систем [7].

Известно, что форма и ширина линий в спектрах КР чувствительны к колебательно-релаксационным процессам, протекающим в пикосекундных временных интервалах [14]. Основной вклад в контуры полос вносят процессы колебательной и ориентационной релаксации. Колебательная полоса $v_1(A'_1)$ является сильно поляризованной, не чувствительной к реориентационным движениям нитрат-иона, и, следовательно, его форма обусловлена процессами колебательной релаксации [15]. Существуют различные механизмы колебательной релаксации, среди которых колебательная дефазировка, резонансный перенос и энергетическая релаксация (снижение заселенности).

Колебательная дефазировка считается универсальной причиной уширения колебательных линий, а потому ее теория разработана наиболее детально. Движущей силой дефазировки являются зависящие от времени межчастичные взаимодействия, модулирующие колебательную частоту $\Delta \omega = f(t)$ и приводящие к сбою фазы колебаний.

Для количественной оценки особенностей релаксационных характеристик различных типов нитрат-ионов в композиционной системе мы провели соответствующие расчеты на основе анализа формы контуров компонент колебательной полосы $v_1(A'_1)$ в спектрах КР с использованием аппарата временных корреляционных функций (ВКФ) [16–18].

Рассчитанные из наших экспериментальных данных значения времен колебательной релаксации моды $v_1(A'_i) \tau_v$, второго спектрального момента (M_2), времени модуляции τ_c , вклады однородного δ_h и неоднородного уширения δ_i компонент спектра КР систематизированы в табл. 2.

Для обоснованных выводов о характере межчастичных взаимодействий в жидкости наряду со временем дефазировки особенно важно анализировать времена модуляции и вторые спектральные моменты колебательных линий — те параметры, которые входят в модели, описывающие явления дефазировки. Время модуляции определяет продолжительность возмущений в жидкости и является особенно чувствительным к изменениям во взаимодействиях между рассматриваемой частицей и ее окружением. Если время модуляции мало, то система характеризуется подвижным окружением со слабым, неспецифичным взаимодействием (однородное уширение). При медленной модуляции ($\tau_c \rightarrow \infty$) для системы характерна жесткая квазирешетка; сильные, специфические, направленные взаимодействия (неоднородное уширение).

Второй спектральный момент возрастает, если столкновения между частицами среды быстрые и сильные и возмущения затрагивают отталкивательную ветвь потенциала межчастичных взаимодействий. Уменьшение второго спектрального момента означает доминирование сил притяжения в результате образования (кратковременной) связи между частицами [19].

Из таблицы видно, что допирование наночастицами Al_2O_3 приводит к заметному изменению молекулярно-релаксационных характеристик для всех фаз, определенных в исследуемом композите. Примечательно отметить, что параметры колебательной релаксации (второй спектральный момент M_2 , скорость дефазировки $1/\tau_c$) для аморфной фазы несколько ниже, чем для фазы LiNO₃ и разупорядоченной фазы KNO₃. Это говорит о том, что при низких температурах на поверхности оксида, где локализована аморфная фаза, анионная решетка "заморожена". В то же время скорости релаксации для фазы LiNO₃ и разупорядоченной фазы KNO₃ с ростом концентрации увеличиваются.

ЗАКЛЮЧЕНИЕ

На основании исследования электропроводности и спектров комбинационного рассеяния композитов $(1 - x)[0.42 \text{LiNO}_3 - 0.58 \text{KNO}_3] + x \text{Al}_2 \text{O}_3$ показано, что введение гетерогенной добавки приводит к изменению структуры солевой системы. Допирование наноразмерным оксидом алюминия приводит к резкому увеличению ионной проводимости композита и уменьшению энергии активации. Показано, что наличие нанопорошка оксида алюминия в композите приводит к появлению в системе аморфной фазы за счет разрушения фазы нитрата лития. Характер изменений релаксационных параметров колебания v₁ нитратиона аморфной фазы свидетельствует о "замороженности" анионной подрешетки.

Работа выполнена на оборудовании Аналитического центра коллективного пользования ДНЦ РАН.

ЭЛЕКТРОХИМИЯ том 55 № 6 2019

СПИСОК ЛИТЕРАТУРЫ

- 1. Liang, C.C., Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes, *J. Electro-chem. Soc.*, 1973, vol. 120, p. 1289.
- 2. Poulsen, F.W., Andersen, N.H., Kindl, B., and Schoonman, J., Properties of LiI-alumina composite electrolytes, *Solid State Ionics*, 1983, no. 9/10, p. 119.
- Улихин, А.С., Уваров, Н.Ф. Электрохимические свойства композиционных твердых электролитов LiClO₄-MgO. Электрохимия. 2009. Т. 45. С. 755. [Ulihin, A.S. and Uvarov, N.F., Electrochemical properties of composition solid electrolytes LiClO₄-MgO, *Russ. J. Electrochem.*, 2009, vol. 45, p. 707].
- Uvarov, N.F., Hairetdinov, E.F., and Skobelev, I.V., Composite solid electrolytes MeNO₃-Al₂O₃ (Me = Li, Na, K), *Solid State Ionics*, 1996, vol. 86–88, p. 577.
- Chen, L., Cros, C., Castagnet, R., and Hagenmuller, P., Electrical conductivity enhancement in an eutectic system containing dispersed second phase particles, *Solid State Ionics*, 1988, vol. 31, p. 209.
- 6. Liu, W., Zhu, S., Wang, D., et al., New solid electrolyte materials of nitrate-ceramic composites. Property and application in intermediate temperature fuel cells, *Extended Abstracts: Tenth International Conference on Solid State Ionics, Singapore*, 1995, p. 102.
- Рабаданов, К.Ш., Гафуров, М.М., Алиев, А.Р., Амиров, А.М., Какагасанов, М.Г. Спектры комбинационного рассеяния света и молекулярно-релаксационные свойства гетерофазных стекол и расплавов К,Ca/CH₃COO, Li,K,Cs/CH₃COO. *Журн. прикл. спектр.* 2018. Т. 85. С. 69. [Rabadanov, K.Sh, Gafurov, M.M., Aliev, A.R., Amirov, A.M., and Kakagasanov, M.G., The raman spectra and molecular relaxation properties of heterophase glasses and the melts of K,Ca/CH₃COO, Li,K,Cs/CH₃COO, *J. Appl. Spectroscopy*, 2018, vol. 85, p. 70].
- Косов, Ю.В., Присяжный, В.Д., Гафуров, М.М., Яремчук, Г.Г. Спектры комбинационного рассеяния и электропроводность гетерофазных расплавов и стекол систем K,Ca/NO₃ и K,Mg/NO₃. *Укр. хим. журн.* 1989. Т. 55. С. 19. [Kosov, Yu.V., Prisyazhnyy, V.D., Gafurov, M.M., and Yaremchuk, G.G., Raman spectra and electrical conductivity of heterophase melts and glass systems K.Ca/NO₃ and K,Mg/NO₃, *Ukr. khim. zhurnal.* (in Russian), 1989, vol. 55, p. 19.]
- Накамото, К. ИК-спектры и спектры КР неорганических и координационных соединений. Пер. с англ. М.: Мир, 1991. 536 с. [Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, 1991, 536 p.]
- Brooker, M.Y., Raman spectroscopic investigations of structural aspects of the different phases of lithium sodium and potassium nitrate, *J. Phys. and Chem. Solids*, 1978, vol. 39, p. 657.
- 11. Гафуров, М.М., Рабаданов, К.Ш., Атаев, М.Б. и др. Структурно-динамические свойства нанокомпозитов LiNO₃ + Al₂O₃. ϕTT . 2015. Т. 57. № 10. C. 2011. [Gafurov, M.M., Rabadanov, K.S., Ataev, M.B., Amirov, A.M., Kubataev, Z.Y., and Kakagasanov, M.G., Structural and dynamic properties of LiNO₃ + Al₂O₃

nanocomposites, *Phys. Solid State*, 2015, vol. 57, no. 10, p. 2066.]

- 12. Атаев, М.Б., Гафуров, М.М., Эмиров, Р.М., Рабаданов, К.Ш., Амиров, А.М. Исследование фазового состава и структуры нанокомпозитов (1 - x)KNO₃ + $+ xAl_2O_3$ методом рентгеновской дифракции. ФТТ. 2016. Т. 58. С. 2336. [Ataev, M.B., Gafurov, M.M., Rabadanov, K.S., Amirov, A.M., and Emirov, R.M., Phase composition and the structure of (1 - x)KNO₃ + $+ xAl_2O_3$ nanocomposites by X-ray diffraction, *Physics* of the Solid State, 2016, vol. 58, p. 2423.]
- Гаджиев, А.З., Кириллов, С.А. К вопросу о температурной зависимости частот линий в молекулярных спектрах. *Журн. прикл. спектроскопии.* 1974. Т. 21. С. 929. [Gadzhiev, A.Z and Kirillov, S.A., On temperature dependence of line frequencies in molecular spectra, *J. Appl. Spectroscopy* (in Russian), 1974, vol. 21, p. 929.]
- Погорелов, В.Е., Лизенгевич, А.И., Кондиленко, И.И., Буян, Г.П. Колебательная релаксация в конденсированных средах. *УФН*. 1979. Т. 127. С. 683. [Pogorelov, V.E, Lizengevich, AI, Kondilenko, II, and Buyan, G.P., Vibrational relaxation in condensed me-

dia Uspekhi Fizicheskih Nauk (in Russian), 1979, vol. 22, p. 270.]

- 15. Wang, C.H., Spectroscopy of condensed media. Dynamics of molecular interactions. Orlando: Academic, 1985.
- 16. Rothschild, W.G., *Dynamics of Molecular Liquids*; New York: Wiley, 1984.
- 17. Oxtoby, D.W., Vibrational relaxation in liquids, *Annu. Rev. Chem. Phys.*, 1981, vol. 32, p. 77.
- Kato, T. and Takenaka, T., Raman spectral studies of the dynamics of ions in molten LiNO₃-RbNO₃ mixtures. II. Vibrational dephasing: Roles of fluctuations of coordination number and concentration, *Molec. Physics*, 1982, vol. 46, p. 257.
- Рабаданов, К.Ш., Гафуров, М.М., Алиев, А.Р., Ахмедов, И.Р., Какагасанов, М.Г., Кириллов, С.А. Колебательная дефазировка перхлорат-иона в расплаве LiClO₄. *Расплавы*. 2011. № 3. С. 67. [Rabadanov, K.S., Gafurov, M.M., Aliev, A.R., Akhmedov, I.R., Kakagasanov, M.G., and Kirillov, S.A., Vibrational dephasing of the perchlorate ion in an LiClO₄ melt, *Russ. metallurgy (Metally)*, 2011, vol. 8, p. 760.]