# ИССЛЕДОВАНИЕ КОЭФФИЦИЕНТА ДИФФУЗИИ ПРОТОНОВ В РЬО<sub>2</sub>, ПРИГОТОВЛЕННОМ ИЗ ОКСИДОВ ПРОМЕЖУТОЧНОЙ ВАЛЕНТНОСТИ

© 2019 г. Л. Рахмани<sup>*a*</sup>, Р. Фитас<sup>*a*</sup>, А. Мессаи<sup>*b*</sup>, \*\*, А. И. Айеш<sup>*c*</sup>, \*

<sup>а</sup>Университет им. Ферхата Аббаса, Сетиф, 19000 Алжир <sup>b</sup>Университет им. аббатисы Лагрур, Кэнчела, 40000 Алжир <sup>c</sup>Kamapcкий Университет, Доха, Kamap \*e-mail: ayesh@qu.edu.qa \*\*e-mail: Messamel1@gmail.com Поступила в редакцию 29.03.2018 г. После доработки 28.07.2018 г. Принята к публикации 27.08.2018 г.

Оксиды свинца с промежуточной валентностью ( $Pb_{12}O_{19}$ ,  $Pb_{12}O_{17}$  и  $Pb_{3}O_{4}$ ) синтезированы из диоксида свинца, извлеченного из использованных аккумуляторов, путем его нагревания при различных температурах. Каждый из приготовленных промежуточных оксидов был обработан серной кислотой (1.28 г см<sup>-3</sup>). Результаты рентгенодифракционного анализа показали, что только образец, приготовленный из Pb<sub>12</sub>O<sub>19</sub>, имеет дифрактограмму, подобную дифрактограмме исходного PbO<sub>2</sub> и содержит фазы  $\alpha$ -PbO<sub>2</sub> и  $\beta$ -PbO<sub>2</sub>. Измерения коэффициента диффузии протона H<sup>+</sup> в различных образцах показали, что этот образец демонстрирует лучшее электрохимическое поведение, чем исходный PbO<sub>2</sub>. Кинетика процесса отражает механизм внедрения протонов в PbO<sub>2</sub>, другими словами, образец, приготовленный из Pb12O19, содержит большее количество структурной воды в форме гидроксила OH<sup>-</sup>. Эта вода дает вклад в механизм восстановления PbO<sub>2</sub>. К тому же величина коэффициента диффузии протона в образце, приготовленном из Pb<sub>12</sub>O<sub>19</sub>, значительно больше, чем в исходном PbO<sub>2</sub>, что подтверждает высказанную гипотезу. Приготовленные образцы охарактеризованы методами рентгенодифракционного анализа, термогравиметрического и дифференциального термогравиметрического анализа и восстановительной циклической вольтамперометрии. Настоящая работа - вклад в охрану окружающей среды, она предлагает способ утилизации отработанного диоксида свинца и уменьшения его вредного воздействия.

*Ключевые слова*: свинцово-кислотный аккумулятор, серная кислота, α-PbO<sub>2</sub>, β-PbO<sub>2</sub>, оксиды свинца с промежуточной валентностью, диоксид свинца, термический анализ, структурная вода

**DOI:** 10.1134/S0424857019070107

# введение

Диоксид свинца (PbO<sub>2</sub>) — ключевой элемент положительных пластин свинцово-кислотных аккумуляторов. Текстура и структура диоксида свинца оказывает большое влияние на электрохимические и электрические свойства аккумулятора. В положительных пластинах свинцово-кислотных аккумуляторов присутствуют две фазы PbO<sub>2</sub>:  $\alpha$ -PbO<sub>2</sub>, кристаллизующийся в орторомбической структуре, и  $\beta$ -PbO<sub>2</sub>, кристаллизующийся в тетрагональной структуре. К тому же, эти  $\alpha$ - и  $\beta$ -фазы PbO<sub>2</sub> не соответствуют стехиометрической формуле PbO<sub>2</sub> [1, 2]. Поэтому присутствие любой из этих разновидностей диоксида в различных пропорциях влияет на электрохимическое поведение положительной пластины. Надлежащее функционирование свинцового аккумулятора связано с отношением содержаний α-PbO<sub>2</sub> и β-PbO<sub>2</sub>, присутствующих в пластине.

Многочисленные авторы исследовали кристаллическую структуру  $\alpha$ -PbO<sub>2</sub> и  $\beta$ -PbO<sub>2</sub> методами рентгенофазового анализа [3–5] и дифракции нейтронов [6, 7]. В ряде работ [8–10] было обнаружено присутствие в решетке PbO<sub>2</sub> протонсодержащих частиц, но их структурное положение так и не было выявлено. В наших предшествующих работах [1, 2, 11–13] мы показали, что электрохимическая активность оксида PbO<sub>2</sub>, составляющего активную массу положительной пластины, зависит от наличия структурной воды на поверхности. Поэтому срок хранения свинцовокислотных аккумуляторов зависит от природы и количества этих водородсодержащих частиц. Активная масса — это система гель—кристалл (водородсодержащие частицы), в которой электрический ток переносят как электроны, так и (в гидратированных областях зоны геля) протоны [14–17]. Используя рентгеновскую фотоэлектронную спектроскопию, Павлов [14, 18] показал, что больше 30% поверхности PbO<sub>2</sub> находится в гидратированном состоянии.

Диоксид свинца может быть получен в лаборатории либо химическим, либо электрохимическим способом. Известно, что PbO<sub>2</sub>, полученный химическим способом, неактивен, в то время как PbO<sub>2</sub>, полученный электрохимическим способом, напротив, очень активен [11, 19-22]. Электрохимическая активность PbO<sub>2</sub> напрямую связана с существованием протонированных частиц в зоне геля. Это обстоятельство заставило многих авторов предложить различные формальные объяснения. Например, в работах [19, 23] была предложена модель, предполагающая существование оксида состава  $PbO_{2-\delta}mH_2O$ , где  $\delta$  обозначает недостаток кислорода, а *т* – количество воды. В работах [24, 25] предложена другая модель замещения в PbO<sub>2</sub>, предполагающая, что вся вода находится в форме ионов ОН-, связанных с лакунами ионов Pb<sup>4+</sup> или Pb<sup>2+</sup>. На основе это модели для PbO<sub>2</sub> была предложена следующая химическая формула:  $Pb_{1-y}^{4+}Pb_{y}^{2+}O_{2-2y}^{2-}OH_{2y}^{-}$ . Здесь у означает долю ионов Pb<sup>2+</sup>, замещенных ионами OH<sup>-</sup>.

Источник электрохимической активности связывают главным образом с существованием водородсодержащих частиц. Несколько авторов [26, 27], используя методы ядерного магнитного резонанса и неупругого [28, 29] и квазиупругого рассеяния нейтронов [30, 31], показали наличие, по крайней мере, двух конфигураций протонов в электрохимически активном  $PbO_2$  и только одну конфигурацию в химически приготовленном неактивном  $PbO_2$ . Эти водородсодержащие соединения в  $PbO_2$  были идентифицированы, как  $H_2O$  и группы  $OH^-$ .

В настоящей работе мы ставили своей целью сравнить значения коэффициентов диффузии протонов ( $D_{H+}$ ) в PbO<sub>2</sub>, регенерированном из оксидов свинца с промежуточной валентностью PbO<sub>X</sub>(1.33 < x < 2) после обработки серной кислотой. Эти новые оксиды вступают в спонтанные реакции, приводящие к образованию новых фаз PbO<sub>2</sub>, и таким образом демонстрируют неустойчивость оксидов в серной кислоте. Эти новые ак-

ЭЛЕКТРОХИМИЯ том 55 № 7 2019

Интенсивность, произв. ед.



**Рис.** 1. Рентгеновские дифрактограммы свежего PbO<sub>2</sub>, извлеченного из использованного аккумулятора (образец А).

тивные массы положительных пластин охарактеризованы методами рентгенофазового и термогравиметрического анализа. Дополнительно мы использовали метод вольтамперометрии для определения коэффициента диффузии H<sup>+</sup> в PbO<sub>2</sub>.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

#### Приготовление образцов

Свежий оксид РbO2 был взят из промышленных положительных пластин отработанных свинцово-кислотных аккумуляторов. Затем PbO<sub>2</sub> промывали водой и сушили при 105°С в течение 24 ч. Полученный порошок PbO<sub>2</sub> при необходимости промывали горячим насыщенным раствором ацетата аммония для удаления оставшихся сульфатов свинца и сушили на воздухе в течение ночи. Такой образец мы обозначили как образец А. Этот материал размалывали и просеивали сквозь сито с отверстиями диаметром 50 мкм. На рис. 1 представлены рентгеновские дифрактограммы образца. Анализ этих дифрактограмм проводили по методу Дебая-Шеррера [32]. Заметим, что экспериментальные дифракционные пики для этого образца в точности совпадают с пиками для  $\alpha$ -PbO<sub>2</sub> и  $\beta$ -PbO<sub>2</sub> согласно американской системе тестирования металлов (ASTM), соответственно, cards No 11-549 и 25-447, что подтверждает чистоту приготовленного образца.

Образец подвергли термогравиметрическому анализу, а затем дифференциальному термогравиметрическому анализу с помощью анализаторов для термобалансных испытаний (SETARAM, модели RT 3000 и PRT 540). Анализ проводили



**Рис. 2.** Термогравиметрическая кривая свежего PbO<sub>2</sub> (образец A).

при температурах от комнатной до 700°С при скорости нагрева 10°С/мин.

На термогравиметрической кривой (рис. 2) можно выявить три отчетливых температурных зоны. Первая зона между 20 и 230°С соответствует уменьшению веса за счет удаления воды. Вторая зона между 230 и 450°С с резким уменьшением веса соответствует потере кислорода, сопровождающейся появлением следующих один за другим оксидов с промежуточной валентностью свинца. Этим объясняется уменьшение отношения кислород : свинец в зависимости от температуры нагрева. Значения отношения О : Рь показаны на правой оси у на рисунке. Третья зона относится к разложению оксидов с образованием Рb<sub>3</sub>O<sub>4</sub> приблизительно при 480°С. Между первым и вторым переходами происходит образование оксидов с промежуточной валентностью PbO<sub>x</sub>  $(1.33 \le x \le 2).$ 

На кривой дифференциального термогравиметрического анализа (рис. 3) имеется несколько эндо- и экзотермических пиков: (1) широкий эндотермический пик и уплощение, связанные с поверхностной водой, (2) экзотермический пик от структурной воды (ему предшествует небольшое плечо); и (3) три пика от эндотермического перехода в области температур между 300 и 550°С, отвечающие образованию  $Pb_{12}O_{19}$ ,  $Pb_{12}O_{17}$  и  $Pb_3O_4$ . Температуры этих переходов находятся в хорошем согласии с результатами термогравиметрического анализа (рис. 2).

Свежий PbO<sub>2</sub> (образец А) был взят из промышленных положительных пластин отработанных свинцово-кислотных аккумуляторов. Оксиды с промежуточной валентностью были приготовлены нагреванием образцов свежего PbO<sub>2</sub> в течение до 8 ч при 330, 430 и 516°С (эти температуры взяты из кривой дифференциального термогравимет-



**Рис. 3.** Кривая дифференциального термогравиметрического анализа свежего PbO<sub>2</sub> (образец А). Показаны переходные температуры для оксидов с промежуточной валентностью свинца.

рического анализа (рис. 3)) для получения оксидов, соответственно,  $Pb_{12}O_{19}$ ,  $Pb_{12}O_{17}$  и  $Pb_3O_4$ , согласно следующим уравнениям реакций:

$$12\text{PbO}_{2} \xrightarrow{\text{HarpeBahue при 300°C}} \text{Pb}_{12}\text{O}_{19} + \left(\frac{5}{2}\right)\text{O}_{2},$$
$$12\text{PbO}_{2} \xrightarrow{\text{HarpeBahue при 430°C}} \text{Pb}_{12}\text{O}_{17} + \left(\frac{7}{2}\right)\text{O}_{2}.$$

Фазовый состав различных образцов определяли с помощью рентгенофазового анализа (рис. 4а). Этот рисунок также показывает, что нагревание образца при температуре до  $230^{\circ}$ С вызывает потерю воды при сохранении первоначальной структуры и уменьшает интенсивность линий. В табл. 1 суммированы составы различных образцов. Таблица показывает, что для полного превращения в оксиды  $Pb_{12}O_{19}$ ,  $Pb_{12}O_{17}$  и  $Pb_3O_4$  необходимо нагревание продолжительностью до 8 ч.

Оксиды с промежуточной валентностью смешивали в течение 1 ч. Порошки PbO<sub>2</sub>, полученные реакцией оксидов с промежуточной валентностью с серной кислотой (1.28 г см<sup>-3</sup>), промывали кипящим насыщенным раствором ацетата аммония, чтобы удалить следы PbSO<sub>4</sub>, фильтровали, промывали дистиллированной водой и сушили в течение ночи при 105°С. Эти образцы обозначим следующим образом: (А) свежий PbO<sub>2</sub>; (B), (C) и (D) – образцы, полученные после реакции с серной кислотой, т.е., соответственно, Pb<sub>12</sub>O<sub>19</sub>, Pb<sub>12</sub>O<sub>17</sub> и Pb<sub>3</sub>O<sub>4</sub>. Ниже приведены уравнения реакций оксидов с серной кислотой; образцы, полученные в результате их протекания, были идентифицированы методом рентгенофазового анализа (рис. 4б).



**Рис. 4.** (а) Рентгеновские дифрактограммы свежего  $PbO_2$  (образец A) и оксидов промежуточной валентности ( $Pb_{12}O_{19}$ ,  $Pb_{12}O_{17}$  и  $Pb_3O_4$ ); (б) рентгеновские дифрактограммы свежего  $PbO_2$  (образец A) и образцов, синтезированных из оксидов промежуточной валентности после реакции с серной кислотой (образцы B, C и D).

$$a_{1}Pb_{12}O_{19} + b_{1}H_{2}SO_{4} \rightarrow \underbrace{c_{1}PbO_{2}(HOBAR \ \varphia3a)}_{O6pa3eu \ B} + \underbrace{d_{1}PbSO_{4}}_{O6pa6otaH \ ropsyum pactbopom auterata anmohus} + e_{1}H_{2}O,$$

$$a_{2}Pb_{12}O_{17} + b_{2}H_{2}SO_{4} \rightarrow \underbrace{c_{2}PbO_{2}(HOBAR \ \varphia3a)}_{O6pa3eu \ C} + \underbrace{d_{2}PbSO_{4}}_{O6pa6otaH \ ropsyum pactbopom auterata anmohus} + e_{2}H_{2}O,$$

$$a_{3}Pb_{3}O_{4} + b_{3}H_{2}SO_{4} \rightarrow \underbrace{c_{3}PbO_{2}(HOBAR \ \varphia3a)}_{O6pa3eu \ D} + \underbrace{d_{3}PbSO_{4}}_{O6pa6otaH \ ropsyum pactbopom auterata anmohus} + e_{3}H_{2}O.$$

### Электрохимические исследования

Электрохимические измерения проводили в стандартной трехэлектродной ячейке. Рабочим электродом служил PbO<sub>2</sub>, а противоэлектродом — большой лист платиновой фольги. Потенциалы измеряли по отношению к Hg/Hg<sub>2</sub>SO<sub>4</sub>-электроду сравнения. Электролитом служил раствор серной кислоты (1.28 г см<sup>-3</sup>). Для определения значения коэффициента диффузии протонов в образцах

PbO<sub>2</sub>, образованных из оксидов с промежуточной валентностью, мы использовали метод восстановительной вольтамперометрии при различной скорости развертки потенциала. Потенциодина-мические циклические вольтамперограммы получали сканированием потенциала между 500 и 1400 мВ по отношению к Hg/Hg<sub>2</sub>SO<sub>4</sub>-электроду при скорости развертки потенциала 5, 25, 50 и 100 мB/с.

Таблица 1. Составы различных образцов оксидов свинца, приготовленных нагреванием при различных температурах с различной продолжительностью

| <i>T</i> , °C | Продолжительность нагрева                                                          |                                                                              |                                                                       |  |  |
|---------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
|               | 4 ч                                                                                | 6 ч                                                                          | 8ч                                                                    |  |  |
| 330           | 55.14% Pb <sub>12</sub> O <sub>19</sub> ;<br>44.86% α-PbO <sub>2</sub>             | 74.2% Pb <sub>12</sub> O <sub>19</sub> ;<br>25.8% α-PbO <sub>2</sub>         | 99.11% Рb <sub>12</sub> O <sub>19</sub> ;<br>0.89% α-РbO <sub>2</sub> |  |  |
| 430           | 64.66% Pb <sub>12</sub> O <sub>17</sub> ;<br>35.34% Pb <sub>3</sub> O <sub>4</sub> | 80% Pb <sub>12</sub> O <sub>17</sub> ;<br>20% Pb <sub>3</sub> O <sub>4</sub> | 100% Pb <sub>12</sub> O <sub>17</sub>                                 |  |  |
| 516           | 71.88% Pb <sub>3</sub> O <sub>4</sub> ;<br>28.12% PbO                              | 94.92% Pb <sub>3</sub> O <sub>4</sub> ;<br>5.08% PbO                         | 100% Pb <sub>3</sub> O <sub>4</sub>                                   |  |  |

ЭЛЕКТРОХИМИЯ том 55 № 7 2019



**Рис. 5.** Вольтамперограммы, снятые при различных скоростях развертки потенциала, (a) образца A (свежий PbO<sub>2</sub>), (б) образца B, синтезированного из оксида  $Pb_{12}O_{19}$ , (в) образца C, синтезированного из оксида  $Pb_{12}O_{17}$ , и (г) образца D, синтезированного из оксида  $Pb_{3}O_{4}$ .

# РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 4а показаны рентгеновские дифрактограммы свежего PbO<sub>2</sub> (образец А) и оксидов с промежуточной валентностью, полученных нагреванием (Pb<sub>12</sub>O<sub>19</sub>, Pb<sub>12</sub>O<sub>17</sub> и Pb<sub>3</sub>O<sub>4</sub>). Свежий оксид представляет собой фазу β-PbO<sub>2</sub> с небольшой примесью α-фазы. Еще отметим, что, с одной стороны, Pb<sub>12</sub>O<sub>19</sub> сохраняет почти ту же структуру, что и свежий PbO2, и дает дифрактограмму близкую к β-PbO<sub>2</sub> с увеличенным содержанием α-PbO<sub>2</sub>. С другой стороны, оксиды с промежуточной валентностью, а именно Pb<sub>12</sub>O<sub>17</sub> и Pb<sub>3</sub>O<sub>4</sub>, демонстрируют дифрактограммы, совершенно не похожие на дифрактограмму свежего PbO<sub>2</sub>. Это означает, что температура прогрева играет важную роль в процессе приготовления оксидов с промежуточной валентностью. В свете вышесказанного мы предлагаем следующий механизм термического разложения массы PbO<sub>2</sub>:

$$PbO_2 \rightarrow Pb_{12}O_{19} \rightarrow Pb_{12}O_{17} \rightarrow Pb_3O_4.$$

На рис. 4б показаны рентгеновские дифрактограммы порошков PbO<sub>2</sub>, синтезированных по реакции оксидов промежуточной валентности с серной кислотой, в сравнении с дифрактограммой свежего диоксида свинца. Отсюда можно заключить, что образец В (PbO<sub>2</sub>, приготовленный из Pb<sub>12</sub>O<sub>19</sub>) имеет дифрактограмму, подобную дифрактограмме образца А (свежий PbO<sub>2</sub>). Этот рисунок показывает, что образен В демонстрирует те же особенности дифрактограммы, что и образец А, с пиками как α-, так и β-фаз PbO<sub>2</sub>. Дополнительно, наблюдается новый пик при  $2\theta = 26.8^{\circ}$ , который, вероятно, связан с присутствием кристаллов PbSO<sub>4</sub>. Средний размер кристаллов в образцах А и В был определен с помощью уравнения Шеррера по полной ширине на половине высоты (ПШПВ) дифракционной линии [110]. У образца В средний размер кристаллов равняется 14.85 нм, а у образца А – 22.30 нм. Соответственно, образец В имеет более аморфный характер, чем свежий PbO<sub>2</sub>. Дифрактограммы других образцов (С и D) отличаются от дифрактограммы референтного образца. Это можно объяснить тем, что эти оксиды были приготовлены, соответственно, из Pb<sub>12</sub>O<sub>17</sub> и Pb<sub>3</sub>O<sub>4</sub>, синтезированных из свежего оксида РbO<sub>2</sub> при высокой температуре. Эти образцы уже потеряли некоторое количество своего кислорода в дополнение к структурной воде, и эту потерю трудно восполнить из водного раствора при обработке с помощью H<sub>2</sub>SO<sub>4</sub>.

На рис. 5 даны вольтамперограммы для различных образцов, снятые при скорости развертки потенциала от 5 до 100 мВ/с. Из рисунка видно,



**Рис. 6.** (а) Зависимость  $I_{\text{peak}}$  от  $V^{1/2}$  для образцов А, В, С и D. (б) Зависимость  $E_{\text{peak}}$  от  $\lg V$  для образцов А, В, С и D.

что (1) плотность тока в катодном пике увеличивается с ростом скорости развертки потенциала, и (2) потенциал катодного пика тока сдвигается к катодным (менее положительным) значениям потенциала.

### Механизмы переноса электрона

Анализ различных пиков тока на вольтамперограммах, снятых при разной скорости развертки потенциала, может дать информацию о природе замедленной стадии электрохимического процесса. Это, во-первых, изменение плотности тока в пике ( $I_{\text{peak}}$ ) в зависимости от корня квадратного из скорости развертки потенциала ( $I_{\text{peak}} = f(V^{1/2})$ ); во-вторых, изменение потенциала пика ( $E_{\text{peak}}$ ) с логарифмом скорости развертки потенциала ( $E_{\text{peak}} = f(\lg V)$ ).

На рис. ба показано изменение  $I_{\text{peak}}$  в зависимости от  $V^{1/2}$  для различных образцов. Видно, что  $I_{\text{peak}}$  растет с  $V^{1/2}$  по линейному закону. Изменение  $E_{\text{peak}}$  в зависимости от lgV для различных образцов дано на рис. бб. Мы видим, что кривые вогнуты книзу. Это согласуется с заключением о достаточно быстром или квазиобратимом электрохимическом процессе, для которого зависимость  $I_{\text{peak}} = f(V^{1/2})$  линейна; здесь пиковый ток имеет диффузионную природу [33].

# Определение коэффициента диффузии

Для процесса, контролируемого диффузией, общее выражение для пикового тока в квазиобратимой системе таково [33]:

$$I_{\text{peak}} = \left[ \left( 2.69 \times 10^5 \right) n^{3/2} A D_{\text{H}^+}^{1/2} c_{\text{H}^+} K(\Lambda, \alpha) \right] V^{1/2}.$$
 (1)

Здесь  $I_{\text{peak}}$  зависит от  $V^{1/2}$  по линейному закону с углом наклона (2.69 × 10<sup>5</sup>) $n^{3/2}AD_{\text{H}^+}^{1/2}c_{\text{H}^+}K(\Lambda,\alpha); n -$ 

ЭЛЕКТРОХИМИЯ том 55 № 7 2019

число переносимых электронов, A – площадь поверхности электрода (см<sup>2</sup>),  $c_{\rm H^+}$  – концентрация иона H<sup>+</sup> (М). Константа  $K(\Lambda,\alpha)$  зависит главным образом от размерного параметра  $\Lambda$  и коэффициента переноса катодного процесса  $\alpha$ . Эта константа введена в работе [33], ее величина меняется в пределах от 0.6 до 1.0. В табл. 2 дана сводка уравнений зависимости  $I_{\rm peak}$  от  $V^{1/2}$  и значения соответствующих наклонов.

На рис. 7 даны зависимости коэффициента диффузии иона H<sup>+</sup> от величины константы  $K(\Lambda, \alpha)$  для образцов A, B, C и D. Этот рисунок показывает, что, во-первых, значение коэффициента диффузии иона H<sup>+</sup> уменьшается, когда величина  $K(\Lambda, \alpha)$  растет, в частности, для образцов A и B; во-вторых, для образца C коэффициент диффузии иона H<sup>+</sup> почти не зависит от величины



**Рис. 7.** Изменение коэффициента диффузии  $D_{\text{H}^+}$  в зависимости от константы  $K(\Lambda, \alpha)$  для образцов A, B, C и D.

**Таблица 2.** Уравнения зависимости  $I_{\text{peak}}$  от  $V^{1/2}$  для различных образцов (полученных в результате реакции оксидов промежуточной валентности с серной кислотой)

| Образец | Уравнение                                | Наклон,<br>А/(В с <sup>-1</sup> ) <sup>1/2</sup> |
|---------|------------------------------------------|--------------------------------------------------|
| А       | $I_{\rm peak} = 1.1547 V^{1/2} + 0.0905$ | 1.15                                             |
| В       | $I_{\rm peak} = 1.573 V^{1/2} + 0.1211$  | 1.57                                             |
| С       | $I_{\rm peak} = 0.280 V^{1/2} + 0.0316$  | 0.28                                             |
| D       | $I_{\rm peak} = 0.718 V^{1/2} + 0.0635$  | 0.72                                             |

 $K(\Lambda, \alpha)$ ; и, в-третьих, при малых значениях  $K(\Lambda, \alpha)$ для образцов А, В и С наблюдается большая разница величин  $D_{\mu^+}$ . С ростом  $K(\Lambda, \alpha)$  эта разница постепенно уменьшается. В табл. 3 приведены значения коэффициента диффузии иона H<sup>+</sup> как функция константы  $K(\Lambda, \alpha)$ . Здесь следует отметить, что оценочные значения  $D_{{}_{\mathrm{H}^+}}$  из табл. 3 близки к найденным в работе [34] (где была слелана оценка коэффициента диффузии H<sup>+</sup> в PbO<sub>2</sub> электрохимическим методом для различных значений рН и концентраций Pb<sup>2+</sup>; эта величина менялась в пределах от  $0.4 \times 10^{-7}$  до  $4.9 \times 10^{-7}$  см<sup>2</sup> с<sup>-1</sup>). Следует отметить, что в работе [35] приводились значения  $D_{\mu^+}$  для  $\alpha$ - и  $\beta$ -PbO<sub>2</sub>, равные, соответственно, 9.6 ×  $10^{-10}$  и 2.2 ×  $10^{-9}$  см<sup>2</sup> с<sup>-1</sup>; в работе [36] приведены значения, соответственно, 5 × 10<sup>-13</sup> и  $10^{-14}$  см<sup>2</sup> с<sup>-1</sup>. Таблица показывает, что у образца В самое высокое значение  $D_{\mathrm{H}^+}$  по сравнению с другими образцами независимо от величины  $K(\Lambda, \alpha)$ . Например, при  $K(\Lambda, \alpha) = 0.6$  значение  $D_{\mu^+}$ 



**Рис. 8.** Влияние скорости развертки потенциала на емкость образцов А, В, С и D.

**Таблица 3.** Значения коэффициента диффузии  $D_{\text{H}^+}$  в зависимости от величины константы  $K(\Lambda, \alpha)$ 

| $K(\Lambda, \alpha)$ | $D_{\rm H^+} \times 10^{+7},  {\rm cm}^2  {\rm c}^{-1}$ |      |      |      |  |
|----------------------|---------------------------------------------------------|------|------|------|--|
| (,)                  | А                                                       | В    | С    | D    |  |
| 0.6                  | 1.14                                                    | 2.12 | 0.07 | 0.44 |  |
| 0.7                  | 0.84                                                    | 1.56 | 0.05 | 0.33 |  |
| 0.8                  | 0.64                                                    | 1.19 | 0.04 | 0.25 |  |
| 0.9                  | 0.51                                                    | 0.94 | 0.03 | 0.2  |  |
| 1.0                  | 0.41                                                    | 0.76 | 0.02 | 0.16 |  |

для образца В выше, чем для образца А, на  $0.98 \times 10^{-7}$  см<sup>2</sup> с<sup>-1</sup>, что составляет рост на ~86%. Это можно объяснить присутствием воды, физически адсорбированной на группах ОН. Согласно работам [1, 2, 12, 13], отсутствие физически адсорбированной воды оказывает большое влияние на кинетику переноса заряда. Очевидно, такая вода совершенно отсутствует в кристаллической структуре образца С, чем и объясняется очень низкое значение коэффициента диффузии H<sup>+</sup> в его структуре и его почти полная независимость от *K*( $\Lambda, \alpha$ ).

Общая потеря электрохимической активности PbO<sub>2</sub> связана главным образом с отсутствием групп OH<sup>-</sup>, как это следует из кривой термогравиметрического анализа (рис. 2). С целью лучше осветить такое поведение PbO2, связанное с водой, мы исследовали влияние скорости развертки потенциала на емкость, определяемую из вольтамперограмм (рис. 5). Эту емкость вычисляли интегрированием площади под вольтамперограммой для каждой использованной скорости развертки потенциала (5, 25, 50 и 100 мВ/с). Влияние скорости развертки потенциала на емкость образцов А, В, С и D показано на рис. 8. Рисунок ясно показывает разницу в значениях емкостей образцов А, В и D. Для образца С емкость почти не зависит от скорости развертки потенциала, в особенности при ее больших значениях (при небольших скоростях развертки потенциала это различие для образца С несколько больше). Поэтому можно заключить, что отсутствие гидроксильных групп ОН- оказывает большое влияние на емкость образца С. К тому же описанные выше результаты указывают на то, что емкостное поведение частиц PbO<sub>2</sub>, синтезированных на основе оксида Pb<sub>12</sub>O<sub>19</sub>, превосходит поведение PbO<sub>2</sub>, извлеченного из активной массы положительных пластин использованных аккумуляторов. Другими словами, кинетика восстановления в случае частиц  $PbO_2$  в оксидах  $Pb_3O_4$  и  $Pb_{12}O_{17}$  самая медленная.

Поскольку эта кинетика представляет механизм внедрения протонов в  $PbO_2$ , это означает, что образец  $Pb_{12}O_{19}$  содержит наибольшее количество структурной воды в форме гидроксильных групп  $OH^-$ . Это количество дает большой вклад в механизм восстановления в случае  $PbO_2$ , полученного из  $Pb_{12}O_{19}$ , по сравнению с  $PbO_2$  из активной массы, полученной из  $Pb_3O_4$  и  $Pb_{12}O_{17}$ . И значения емкости наибольшие при низких скоростях развертки потенциала. Такое поведение можно объяснить тем, что низкие значения скорости развертки потенциала лучше подходят для процесса в твердой фазе, на что указывают сравнительно низкие значения коэффициента диффузии, представленные на рис. 7.

#### ЗАКЛЮЧЕНИЕ

Исследование рентгеновских дифракционных спектров различных оксидов свинца показало, что оксиды с промежуточной валентностью  $Pb_{12}O_{19}$ ,  $Pb_{12}O_{17}$  и  $Pb_3O_4$  неустойчивы. Для превращения этих оксидов с промежуточной валентностью в более устойчивые формы была использована реакция с  $H_2SO_4$ . В частности,  $Pb_{12}O_{19}$  был преобразован в  $PbO_2$  после удаления сульфатов. Оценка коэффициента диффузии протона  $H^+$  ( $D_{H^+}$ ) для  $PbO_2$  методом вольтамперометрии показала, что величина  $D_{H^+}$  для  $PbO_2$ , синтезированного из оксида  $Pb_{12}O_{19}$ , гораздо больше, чем для  $PbO_2$ , извлеченного из пластин отработанного аккумулятора.

Большое значение  $D_{H^+}$  в структуре PbO<sub>2</sub> делает возможным восстановление Pb<sup>4+</sup> до Pb<sup>2+</sup>. Поскольку механизм внедрения протона в PbO<sub>2</sub> предполагает восстановительную кинетику, это указывает на то, что образец PbO<sub>2</sub>, синтезированный из оксида Pb<sub>12</sub>O<sub>19</sub>, содержит большое количество структурной воды в форме гидроксила ОН-. Эта вода служит переносчиком протонов из электролита и в ходе процесса восстановления внедряется в глубину материала. Это создает дефицит Рb<sup>4+</sup> в структуре РbO<sub>2</sub>, который заполняется протонированными частицами, присутствующими в форме гидроксильных групп. Этим объясняется большое содержание  $OH^-$  в образце  $PbO_2$ , синтезированном из оксида Pb<sub>12</sub>O<sub>19</sub>, по сравнению с исходным PbO<sub>2</sub>.

Гидратация оксида со стехиометрией  $Pb_{12}O_{19}$  дает диоксид свинца, содержащий структурную воду. Количество этой воды дает больший вклад в механизм восстановления  $PbO_2$ , полученного из  $Pb_{12}O_{19}$ , по сравнению с другими формами оксидов свинца. Это подтверждается величинами емкости, полученными интегрированием площади

ЭЛЕКТРОХИМИЯ том 55 № 7 2019

под вольтамперограммами, снятыми при различной скорости развертки потенциала, которые указывают на превосходство емкостного поведения частиц  $PbO_2$ , синтезированных на основе оксида  $Pb_{12}O_{19}$ , над другими формами  $PbO_2$ . Таким образом, мы утверждаем, что на диффузию влияет количество воды, присутствующей в  $PbO_2$ , так что утилизация диоксида свинца с помощью оксидов с промежуточной валентностью вполне возможна. Диоксид свинца, извлеченный из использованных аккумуляторов, может быть утилизирован, что снижает риск воздействия его утилизации на грунтовые воды.

### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- Fitas, R., Zerroual, L., Chelali, N., and Djellouli, B., Role of hydration water in the reduction process of PbO<sub>2</sub> in lead/acid cells, *J. Power Sources*, 1997, vol. 64, p. 57.
- Lin Wei, Xuhui Mao, An Lin, and Fuxing Gan, PbO<sub>2</sub>– SnO<sub>2</sub> composite anode with interconnected structure for the electrochemical incineration of phenol, *Russ. J. Electrochem.*, 2011, vol. 47, p. 1394.
- 3. Brosset, A., *Arkiv Kemi. Mineral, Band, Geol.*, 1945, vol. A20, p. 11.
- 4. Pascal, P., *Nouveau Traité Chimie Minérale*, vol. VIII, Paris: Masson, 1960, p. 618.
- 5. Wyckoff, R.W.G., *The Structure of Crystals*, vol. 1, New York: Interscience, 1963.
- Antonio, P.D. and Santoro, A., Powder neutron diffraction study of chemically prepared β-lead dioxide, *Acta Crystallogr.*, 1980, vol. B36, p. 2394.
- 7. Santoro, A., Antonio, P.D., and Caulder, S.M., A Neutron Powder Diffraction Study of  $\alpha$  and  $\beta$ -PbO<sub>2</sub> in the Positive Electrode Material of Lead Acid Batteries, *J. Electrochem. Soc.*, 1983, vol. 13, p. 1451.
- Gavarri, J.R., Garnier, P., and Boher, P., Proton motions in battery lead dioxides, *J. Solid State Chem.*, 1988, vol. 75, p. 251.
- 9. Hill, R.J., The crystal structures of lead dioxides from the positive plate of the lead/acid battery, *Mater. Res. Bull.*, 1982, vol. 17, p. 769.
- Moseley, P.T., Hutchison, J.L., and Bourke, M.A.M., The Defect Structure of Lead Dioxide, *J. Electrochem. Soc.*, 1982, vol. 129, p. 876.
- 11. Fitas, R., Zerroual, L., Chelali, N., and Djellouli, B., Thermal degradation of  $\alpha$ - and  $\beta$ -PbO<sub>2</sub> and its relationship to capacity loss, *J. Power Sources*, 2000, vol. 85, p. 56.
- 12. Fitas, R., Zerroual, L., Chelali, N., and Djellouli, B., Heat treatment of  $\alpha$ - and  $\beta$ -battery lead dioxide and its relationship to capacity loss, *J. Power Sources*, 1996, vol. 58, p. 225.

- Fitas, R., Zerroual, L., Chelali, N., and Djellouli, B., Mechanism of the reduction of α- and β-PbO<sub>2</sub>electrodes using an all-solid-state system, *Solid State Ionics*, 2000, vol. 127, p. 49.
- Pavlov, D., The Lead-Acid Battery Lead Dioxide Active Mass: A Gel-Crystal System with Proton and Electron Conductivity, *J. Electrochem. Soc.*, 1992, vol. 139(11), p. 3075.
- Chahmana, N., Matrakova, M., Zerroual, L., and Pavlov, D., Influence of some metal ions on the structure and properties of doped β-PbO<sub>2</sub>, *J. Power Sources*, 2009, vol. 191, p. 51.
- Chahmana, N., Zerroual, L., and Matrakova, M., Physicochemical and electrochemical study of lead acid battery positive active mass (PAM) modified by the addition of bismuth, *Bulg. Chem. Commun.*, 2016, vol. 48, no. 2, p. 285.
- Foudia, M., Matracova, M., and Zerroual, L., Effect of a mineral additive on the electrical performances of the positive plate of lead acid battery, *J. Power Sources*, 2015, vol. 279, p. 146.
- Pavlov, D., Hydration and Amorphization of Active Mass PbO<sub>2</sub> Particles and Their Influence on the Electrical Properties of the Lead-Acid Battery Positive Plate, *J. Electrochem. Soc.*, 1989, vol. 136(11), p. 3189.
- Pohl, J.P. and Shendler, W., The electronic conductivity of compact lead dioxide samples with various stoichiometric compositions, *J. Power Sources*, 1981, vol. 6, p. 245.
- Foudia, M., Zerroual, L., and Matracova, M., PbSO<sub>4</sub> as a precursor for positive active material electrodes, *J. Power Sources*, 2012, vol. 207, p. 51.
- Noufel, K., Bouzid, A., Chellali, N., and Zerroual, L., Electrochemical performance of γMnO<sub>2</sub> prepared from the active mass of used batteries, *Russ. J. Appl. Chem.*, 2015, vol. 88(10), p. 1711.
- Dilmi, O. and Benaicha, M., Electrodeposition and characterization of red selenium thin film—effect of the substrate on the nucleation mechanism, *Russ. J. Electrochem.*, 2017. vol. 53(2), p. 140.
- Pohl, J.P. and Rickert, H., Elektrochemische Untersuchungen zur Permeation und Löslichkeit von Wasserstoff in Bleidioxid, J. Phys. Chem., 1978, vol. 112, p. 117.
- Rüetschi, P. and GIovanoli, R., On the presence of OH<sup>-</sup> ions, Pb<sup>2+</sup> ions and cation vacancies in PbO<sub>2</sub>, *J. Power Sources*, 1991, vol. 13, p. 81.

- Rüetschi, P., Influence of Crystal Structure and Interparticle Contact on the Capacity of PbO<sub>2</sub> Electrodes, *J. Electrochem. Soc.*, 1992, vol. 139(5), p. 1347.
- Caulder, S.M., Murday, J.S., and Simon, A.C., ChemInform Abstract: the hydrogen loss concept of battery failure, the PbO<sub>2</sub> electrode, *J. Electrochem.Soc.*, 1973, vol. 120, p. 1515.
- 27. Hill, R.J. and Jessel, A.M., The Electrochemical Activity of PbO<sub>2</sub>: A Nuclear Magnetic Resonance Study of Hydrogen in Battery and Chemically Prepared Material, *J. Electrochem. Soc.*, 1987, vol. 134, p. 1326.
- 28. Samoro, A., D'Amonio, P., and Caulder, S.M., A Neutron Powder Diffraction Study of  $\alpha$  and  $\beta$ -PbO<sub>2</sub> in the Positive Electrode Material of Lead-Acid Batteries, *J. Electrochem. Soc.*, 1983, vol. 130, p. 1451.
- 29. Moseley, P.T., Hutchison, J.L., Wright, C.J., Bourke, M.A.M., Hill, R.I., and Rainey, V.S., Inelastic Neutron Scattering and Transmission Electron Microscope Studies of Lead Dioxide, *J. Electrochem. Soc.*, 1983, vol. 130, p. 829.
- 30. Boiler, P., Gamier, P., and Gavarri, J.R., Mise en evidence et localisation des protons dans les bioxydes de plomb  $PbO_2\alpha$  et  $\beta$  chimiques et électrochimiques, *J. Solid State Chem.*, 1984, vol. 52, p. 146.
- Gavani, J.R., Gamier, P., Boher, P., Dianoux, A.J., Chedeville, G., and Jacq, B., Proton motions in battery lead dioxides, *J. Solid State Chem.*, 1988, vol. 75, p. 251.
- Scherrer, P., Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, *Gttinger Nachrichten*, 1918, vol. 2, p. 98.
- Matsuda, H. and Ayabe, Y., The theory of the cathoderay polarography of Randles-Sevcik, *Z. Elektrochem. Angew. Phys. Chem.* 1955, vol. 59, p. 494.
- 34. Münzberg, R. and Pohl, J.P., 15th International Power Sources Symposium, 1986.
- Chelali, N. and Guitton, J., Electrochemical behavior of α- and β-PbO<sub>2</sub>. Part I: Proton diffusion from "all solid-state" protonic electrolyte, *Solid State Ionics*, 1994, vol. 73, p. 227.
- 36. Chelali, N., Zerroual, L., Hammouche, A., Kahoul, A., and Guitton, J., Electrochemical behaviour of  $\alpha$ - and  $\beta$ -PbO<sub>2</sub>: Part II: lithium diffusion from non-aqueous electrolyte, *Solid State Ionics*, 1996, vol. 91, p. 289.