КРАТКИЕ СООБЩЕНИЯ

УДК 541.136

ЭЛЕКТРОХИМИЧЕСКИЕ ПАРАМЕТРЫ СУПЕРКОНДЕНСАТОРОВ НА ВОДНОМ НЕЙТРАЛЬНОМ ЭЛЕКТРОЛИТЕ С РАЗНЫМИ ЭЛЕКТРОДНЫМИ МАТЕРИАЛАМИ

© 2019 г. А. Г. Бережная^{*a*, *}, В. В. Чернявина^{*a*}, А. Л. Синявин^{*a*}

^аЮжный федеральный университет, Ростов-на-Дону, Россия *e-mail: ber@sfedu.ru Поступила в редакцию 17.08.2018 г. После доработки 12.12.2018 г.

Принята к публикации 30.01.2019 г.

В качестве электродных материалов для суперконденсаторов на водным растворе сульфата натрия исследованы активированный уголь Norit Supra DLS 30, углеродные ткани Л-03 и Т-040. Установлено, что при использовании ткани Т-040 реализуются большие значения удельной емкости по сравнению с углеродной лентой Л-03. Снижение емкости при циклировании конденсаторов с электродными материалами из обеих тканей практически одинаковое. Введение бензотриазола в электролит или в состав электродного материала увеличивает рабочее напряжение и удельные характеристики суперконденсатора.

Ключевые слова: суперконденсатор, активированный уголь, углеродная ткань, водный нейтральный электролит, бензотриазол, удельная емкость, удельная энергия

DOI: 10.1134/S0424857019080048

введение

Электрохимические конденсаторы на водном электролите по сравнению с системами на апротонном растворителе имеют такие преимущества, как низкое внутреннее сопротивление, пожаробезопасность, экологичность и меньшая стоимость производства.

Емкость устройства пропорциональна удельной поверхности используемого электродного материала, поэтому для создания суперконденсаторов (**СК**) применяют преимущественно углеродные порошки и ткани с удельной поверхностью 200–2000 м²/г. Это обеспечивает получение хороших энергетических характеристик суперконденсаторов [1–3].

На емкость углеродного материала влияет размер ионов электролита и их распределение на границе раздела электрод/электролит. Основным параметром, определяющим среднее расстояние между носителями двух знаков, является сумма собственных радиусов ионов. Электрохимические характеристики суперконденсаторов, такие как удельная мощность и энергия, определяются не только удельной емкостью, но и зависят от рабочей области потенциалов [4, 5]. Расширение рабочего окна напряжений, особенно для суперконденсаторов на водной основе, является важной задачей. Целью данной работы являлось сопоставление электрохимических характеристик суперконденсаторов с электродными материалами из углеродной ткани T-040, Л-03 и активированного угля Norit DLS SUPRA 30, расширение рабочей области напряжений и снижение коррозии токоотвода введением органических веществ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

При изготовлении макетов СК использовали углеродные ткани Т-040, Л-03 (г. Светлогорск, Беларусь) и активированный уголь (АУ) марки Norit DLS Supra 30 (Нидерланды). Рабочим электролитом служил водный 1 М раствор сульфата натрия (марка "х. ч."). Для получения электродов на просечную никелевую сетку наносили композицию, состоящую из порошка углеродного материала Norit DLS Supra 30 (80 мас. %) и суспензии фторопласта Ф-ЧД (20 мас. %), сушили при температуре 40°С до постоянного веса и прокатывали до толщины 0.2 мм. Слои углеродной ткани закрепляли на коллекторе. Электроды разделяли ионопроводящим сепаратором, пропитывали электролитом, помещали в полиэтиленовый корпус и герметизировали контактной сваркой. Токоотводом служила никелевая сетка. Изготовленные макеты помещали в специальные прижим-

Рис. 1. Циклические вольтфарадные кривые суперконденсаторов с электродами из тканей Л-03 и Т-040 при скоростях развертки потенциала 5 и 10 мВ/с.

ные устройства и проводили электрохимические измерения.

Для изготовления электродов методом намазки использовали AУ Norit DLS SUPRA 30 (массовая доля от 88 до 90%), бензотриазол (0-2%) и поливинилиденфторид (PVDF, 10%). После добавления к указанным компонентам N-метилпирролидона смесь перемешивали в ультразвуковой ванне в течение 10 мин. Полученную пасту равномерным слоем наносили на обезжиренную этанолом никелевую фольгу. Электроды помещали в сушильный шкаф, нагревали до 60°С, выдерживали при данной температуре в течение часа, затем охлаждали и взвешивали. Операцию повторяли несколько раз до получения постоянного веса, по которому определяли массу нанесенного материала. Для дальнейших исследований выбирали электроды с приблизительно одинаковой массой.

Циклические вольтамперограммы и гальваностатические заряд-разрядные кривые снимали на потенциостате "Р-30Ј" (ООО "Элинс", Россия) по двух- и трехэлектродной схеме с хлоридсеребряным электродом сравнения, относительно которого в работе приведены потенциалы. Импедансные измерения проводили на импедансметре "Z-Pack-2" (ООО "Элинс", Россия) в двухэлектродной ячейке при потенциале 0 В в интервале частот от 15 мГц до 500 кГц. Циклирование макетов проводили на циклере NEWARE (Китай). Удельную поверхность углеродных материалов определяли БЭТ Micromeritics по методу Chemisorb 2750.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Используемые в качестве электродов углеродные материалы отличаются по характеристикам. Удельная поверхность S_{va} , определенная по методу БЭТ, для углеродной ткани T-040, ленты Л-03 и активированного угля Norit DLS SUPRA 30 соответственно составляет 1130, 425 и 1700 м²/г. Существенное отличие S_{yg} предполагает и разницу в электрохимических характеристиках устройств на основе этих углеродных материалов. На рис. 1 представлены вольтфарадные кривые электродов с углеродными материалами на основе T-040 и Л-03.

Близкие к двойнослойной форме кривые реализуются только при низких скоростях развертки потенциала v (2-10 мB/c). При увеличении v наблюдается искажение формы кривых, что может быть связано с ростом диффузионных ограничений ионного переноса в микро- (менее 2 нм) и мезопористой (2-50 нм) области. С увеличением скорости развертки от 2 до 50 мВ/с удельная емкость электродов СК снижается. Наибольшее значение средней удельной емкости реализуется при v = 2 мB/c и составляет 53 и 28 Φ/Γ в случае применения Т-040 и Л-03 соответственно. Углеродная ткань Т-040 обладает большей емкостью по сравнению с лентой Л-03, что согласуется с ее большей удельной поверхностью S_{va}. Однако углеродная ткань Т-040 имеет несколько меньшую удельную емкость по сравнению с емкостью активированного углеродного волокна (72.5 Φ/Γ), полученную в щелочных средах [6].

При использовании в качестве электродного материала активированного угля Norit DLS Supra 30 $(S_{\rm vn} = 1700 \text{ м}^2/\Gamma)$ прямоугольная форма циклических вольт-фарадных кривых сохраняется до v == 100 мВ/с. Значение удельной емкости электрода, полученного каландрированием, при скорости 2 мВ/с составляет 76 Ф/г. Удельные характеристики материала зависят как от способа получения электрода (каландрирование и метод намазки), так и от толщины. С учетом этого можно считать, что значения Суд находятся в соответствии с удельными характеристиками намазных электродных материалов на основе АУ марки Norit. paнее полученных в сходных условиях в нейтральных средах: 94 Φ/Γ [7] и 80–100 Φ/Γ [8], но уступают характеристикам для кислых 104 Ф/г [9], 90-160 Ф/г [10], 390 Ф/г [11] и шелочных сред $105 - 120 \Phi/\Gamma$ [8].

Суперконденсаторы должны обеспечивать минимальное падение энергии при увеличении мощности. Эффективность суперконденсаторов определяется максимальным значением удельной энергии при фиксированной мощности. Значения удельной энергии и удельной мощности рассчитаны по формулам:

$$E_{yg} = \frac{1}{2} C_{yg} U^2,$$
 (1)

$$P_{\rm yx} = \frac{E_{\rm yx}}{\Delta t},\tag{2}$$

<i>I</i> , мА	Л-03				T-040			
	$C_{3}, \Phi/г$	$C_{\rm p}, \Phi/г$	$E_{\rm yd},{ m Bt}$ ч/кг	$P_{\rm yd},{ m Bt/kf}$	$C_{3}, \Phi/\Gamma$	$C_{\rm p}, \Phi/г$	$E_{\rm yd},{ m Bt}$ ч/кг	$P_{\rm yg},{ m Bt/kf}$
5	41.4	32.7	6.6	19.5	120.0	52.8	10.5	24.9
10	31.1	30.0	6.0	39.0	72.6	54.6	10.8	49.8
20	27.3	26.4	5.4	77.7	61.5	53.7	10.8	99.3
30	24.3	24.0	4.8	117.3	56.7	52.2	10.5	149.4

Таблица 1. Зависимость удельных характеристик электродов от тока заряда/разряда и типа углеродной ткани, *U* = 1.2 В

где U – изменение напряжения при разряде (B), а Δt – время разряда (c).

В табл. 1 представлены энергетические характеристики электродов из тканей Л-03 и Т-040, полученные из гальваностатических измерений.

Отличие значений зарядной и разрядной емкости с активным материалом из ткани Т-040 при токах меньше 20 мА свидетельствует о не емкостном поведении и диффузионных ограничениях при разряде устройства. При токе 30 мА значения удельной емкости близки, в процессе заряда еще vспевают протекать фаралеевские процессы, хотя их вклад уже незначителен. При больших токах заряда-разряда уменьшается время накопления и отдачи энергии. Существенного изменения удельной энергии при увеличении мощности не происходит, что свидетельствует о преимуществе Т-040 в сравнении с материалом Л-03. Для устройств с углеродной лентой Л-03 при увеличении тока заряда-разряда наблюдается значительное уменьшение удельной энергии с ростом удельной мощности, что не способствует надежной работе устройства.

Макеты, изготовленные из углеродной ткани T-040, характеризуются большими значениями удельной емкости, энергии и мощности. Это связано с более развитой площадью поверхности материала и меньшими значениями внутреннего электрического сопротивления, рис. 2.

Симметричные гальваностатические зарядразрядные кривые макетов СК, изготовленных на основе Л-03 и Т-040, наблюдаются при напряжении 1.2 В и токах выше 20 и 30 мА соответственно. В связи с этим, циклирование приготовленных устройств проводили при токе 50 мА. Снижение удельных характеристик при увеличении числа циклов определяется типом углеродного материала. Так, после 450 циклов емкость электродного материала из тканей Л-03, Т-040 и активированного угля падает на 12, 14 и 19% соответственно. Следовательно, по дисперсии емкости углеродная ткань Т-040 показывает лучшие характеристики по сравнению с активированным углем Norit DLS SUPRA 30.

ЭЛЕКТРОХИМИЯ том 55 № 8 2019

Недостатком конденсатора на водном электролите является низкое рабочее напряжение (1–1.2 В). Повышение напряжения приводит к газовыделению. Расширение рабочего напряжения до 2 В позволило бы увеличить энергию СК в 2–2.5 раза.

Интервал рабочего напряжения СК на водной основе можно варьировать введением в раствор органических веществ, меняющих перенапряжение выделения водорода или кислорода. Среди исследованных добавок лучшие результаты были получены с электролитами, содержащими 0.04-0.08 М бензотриазола (БТА). Известно, что БТА является ингибитором коррозии ряда металлов и образует их поверхности защитную пленку [12, 13]. В данном случае БТА образует защитную пленку не только на поверхности металлического токоотвода, но и на поверхности углеродного материала. Адсорбция БТА может также увеличивать гидрофильность углеродного материала. Все это ведет к повышению перенапряжения выделения водорода, снижению скорости данного процесса, увеличению рабочего напряжения на макете конденсатора до 1.9-2.0 В и доступности электролита, а также росту емкости на 15-17%. В свою очередь растет удельная энергия и мощность устройства. Максимальное допустимое на-

Рис. 2. Спектры импеданса для устройств с электродными материалами на основе T-040 и Л-03.

<i>С</i> _{БТА} , М	UB	$C, \Phi/\Gamma$		ΔU , B		
	О, Б	Norit DLS Supra 30	T-040	Norit DLS Supra 30	T-040	
0.00	1.6	69.2	50.7	0.11	0.12	
0.01	1.7	75.2	54.3	0.14	0.15	
0.02	1.8	76.8	55.2	0.15	0.17	
0.04	1.9	80.0	63.3	0.23	0.25	
0.08	2.0	81.2	57.9	0.29	0.32	

Таблица 2. Зависимость U, C и ΔU от концентрации БТА, электролит – 1 М Na₂SO₄

Таблица 3. Зависимость удельной разрядной емкости от тока разряда, состава электрода и раствора

Содержание БТА в электроде или	Значения С _{уд} (Ф/г) для тока разряда <i>I</i> , мА						
растворе*, М	2	4	5	8	10		
0	104	85	79	52	50		
$0 + 0.04^{*}$	120	112	98	81	80		
1	100	89	86	79	75		

пряжение заряда (U), удельная емкость (C), а также поляризация (ΔU) при разряде током 100 мА в зависимости от углеродного материала и концентрации БТА представлены в табл. 2.

Повышение допустимого напряжения заряда при увеличении концентрации БТА ведет и к росту поляризации. Однако разрядное напряжение при этом не уменьшается. Замена в макете углеродной массы на ткань Т-040 ведет к уменьшению удельной емкости, практически не меняет

Рис. 3. Циклические вольтамперограммы, снятые на чистых угольных электродах (1, 3) и угольных электродах с 1% БТА (2, 4) при скорости развертки потенциала в 1 М Na₂SO₄ без (1, 2) и при наличии БТА в растворе (3, 4), C (БТА) = 0.04 М.

величины допустимого напряжения и поляризации при разряде.

Дополнительные измерения проведены на намазных электродах по трехэлектродной схеме с хлоридсеребряным электродом сравнения. На рис. 3 представлены циклические вольтамперограммы, полученные на электродных материалах на основе AУ Norit DLS Supra 30 без БТА (1), при его наличии в материале (2), в растворе (3) и одновременно в материале и растворе (4).

Как видно из представленных данных, большие значения токов наблюдаются при наличии БТА или только в электродном материале (кривая 2), или при его присутствии и в материале и в растворе одновременно (кривая 4). Следует отметить, что при повышении скорости сканирования потенциала разница в токах электродов 1, 2 и 4 уменьшается.

Заряд-разрядные кривые для рассматриваемых электродов при малых токах не симметричны. Это связано с параллельным протеканием реакций, обусловленных наличием поверхностных фунциональных групп. На кривых разряда реализуется падение напряжения, что свидетельствует о наличии диффузионных ограничений в порах. Рассчитанные по формуле (3) зарядные и разрядные емкости электродов при малых токах $i \leq 4$ мА несколько отличаются, а при больших значениях тока практически равны.

$$C_{\rm yg} = \frac{i\Delta\tau}{\Delta Em},\tag{3}$$

где *i* — ток заряда—разряда, $\Delta \tau$ — время заряда или разряда, *m* — масса электрода, ΔE — интервал потенциалов, в котором производится заряд или разряд.

Удельные емкости разряда исследованных электродов представлены в табл. 3.

Лучшими емкостными характеристиками при больших токах заряда/разряда обладают электроды, имеющие в составе материала (1%) или в растворе (0.04 M) БТА.

Известно, что максимальные плотность тока и удельная мощность суперконденсаторов ограничены его внутренним электрическим сопротивле-

Рис. 4. Спектры импеданса для чистого угольного электрода (1, 3) и электрода, содержащего 1% БТА в 1 М растворе сульфата натрия без БТА (1, 2) и при его наличии (3), C (БТА) = 0.04 М.

нием, которое складывается из сопротивления электролита, сопротивления углеродный материал/токоотвод и сопротивления материала электрода [14].

Электрическое сопротивление электродного материала зависит от его состава, массового и контактного сопротивления между частицами. Контактное сопротивление между углеродными частицами определяется размерами, морфологией, природой и степенью функцианализации поверхности [15].

Увеличение емкости электродов при наличии бензотриазола в электроде свидетельствует о том, что БТА уменьшает контактное сопротивление между частицами угля и возможно, сопротивление углерод/токотвод. Бензотриазол не влияет на размер и морфологию угольных частиц. Очевидно, он меняет природу и степень функцианализации поверхности, а также условия контакта между частицами и на границе углеродного материала и коллектора. Действительно, оцененное по скачку потенциала в начале заряда на гальваностатических кривых сопротивление чистого угольного электрода оказалось в 6-8 раз выше сопротивления электродов, в состав которых входит 1% бензотриазола. По данным спектроскопии электрохимического импеданса, эквивалентное последовательное сопротивление образцов 1 и 2 (чистого активированного угля и при введении в него 1% БТА) отличается незначительно, а сопротивление угольного электрода 3, погруженного в раствор с бензотриазолом, оказывается заметно выше, рис. 4.

ЭЛЕКТРОХИМИЯ том 55 № 8 2019

При этом в области средних и низких частот отсутствуют линейные участки с наклоном 45 град. В области средних частот угол выше и близок к идеальному емкостному поведению. В области высоких частот полуокружность наблюдается у чистого угольного электрода. Разный вид годографов может быть обусловлен как протекающими фарадеевскими процессами с участием функциональных групп, так и отличающейся формой пор в электродах [16].

Таким образом, при использовании в качестве углеродного материала тканей T-040. Л-03 и активированного угля Norit DLS SUPRA 30 лучшие характеристики получены на ткани Т-040 и активированном угле. При скорости сканирования потенциала 2 мВ/с средние значения удельной емкости для указанных материалов составляют 53 и 76 Ф/г соответственно. Введение бензотриазола в электролит или в электродный материал увеличивает удельную емкость и незначительно расширяет рабочую область потенциалов, что ведет к росту энергии и мощности. При введении в активированный уголь БТА меняет степень функцианализации поверхности и условия контакта как между частицами, так и между углеродным материалом и коллектором.

БЛАГОДАРНОСТИ

Авторы признательны кандидату химических наук Бутовой Вере – сотруднику международного центра "Интеллектуальные материалы" Южного федерального университета за определение удельной поверхности методом БЭТ использованных материалов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках госзадания Министерства образования и науки РФ (тема № 13.3005.2017/4.6).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ИНФОРМАЦИЯ О ВКЛАДЕ АВТОРОВ

Бережная Александра Григорьевна и Чернявина Валентина Владимировна разработали план эксперимента, провели вольтамперометрические, импедансные измерения и необходимые расчеты. Синявин Анатолий Леонидович придумал конструкцию макета суперконденсатора и провел циклирование. Текст статьи подготовлен Бережной А.Г. Все авторы участвовали в обсуждении результатов. ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ Нет.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Бережная Александра Григорьевна – Orchid ID 0000-0002-9931-6333.

Чернявина Валентина Владимировна — Orchid ID 0000-0002-6111-0444.

СПИСОК ЛИТЕРАТУРЫ

- 1. Lewandowski, A. and Galinski, M., Practical and theoretical limits for electrochemical double-layer capacitor, *J. Power Sources*, 2007, vol. 173, p. 822.
- 2. Иванов, А.М., Герасимов, А.Ф. Молекулярные накопители электрической энергии на основе двойного электрического слоя. Электричество (in Russian). 1991. № 8. С. 16.
- Conway, B.E., Electrochemical supercapacitors scientific fundamentals and technological applications, New York.: Kluwer Academic / Plenum Press, 1999, 698 p.
- 4. Wang, G., Zhang, L., and Zhang, J., A review of electrode materials for electrochemical supercapacitors, *Chem. Soc. Rev.*, 2012, vol. 41, p. 797.
- 5. Kotz, R. and Carlen, M., Principles and applications of electrochemical capacitors, *Electrochim. Acta*, 2000, vol. 45, p. 2483.
- 6. Шевелева, И.В., Земскова, Л.А., Войт, А.В., Курявый, В.Г., Сергиенко, В.И. Формирование и электрохимические свойства композитов оксид никеля/углеродное волокно, полученных в присутствии поверхностно-активных веществ. Электрохимия, 2011. Т. 47. С.1304. [Sheveleva, I.V., Zemskova, L.A., Voit, A.V., Kuryavyi, V.G., and Sergienko, V.I., Study of the formation and electrochemical properties of nickel oxide-carbon fiber composites obtained in the presence of surfactants, *Russ. J. Electrochem.*, 2011, vol. 47, no. 11, p. 1220.]
- Чернявина, В.В., Бережная, А.Г. Удельная масса и энергетические свойства угольных электродов на основе активированного угля марки NORIT DLC SUPRA 50. Электрохимия. 2018. Т. 54. С. 42. [Chernyavina, V.V. and Berezhnaya, A.G., Specific mass and energy properties of carbon electrodes on the basis of the activated carbon NORIT DLC SUPRA 50, *Russ. J. Electrochem.*, 2018, vol. 54, p. 42.]
- Тан, Е., Лиу, Я., Ю Ш., Гао, Ф., Жао, Ю. Сравнительное исследование трех видов коммерческого углерода для применения в суперконденсаторах, Электрохимия, 2015. Т. 51. С. 89. [Tang, Y., Liu, Y., Yu, Sh., Gao, F., and Zhao, Y., Comparative Study on Three Commercial Carbons for Supercapacitor Applications, Russ. J. Electrochem., 2015, vol. 51, p. 77.]

- Соляникова, А.С., Чайка, М.Ю., Боряк, А.В., Кравченко, Т.А., Глотов, А.В., Пономаренко, И.В., Кирик, С.Д. Композитные электроды электрохимических конденсаторов на основе углеродных материалов различной структуры. Электрохимия. 2014. Т. 50. № 5. С. 470. [Solyanikova, A.S., Chayka, M.Yu., Boryak, A.V., Kravchenko, T.A., Glotov, A.V., Ponomarenko, I.V., and Kirik, S.D., Composite electrodes of electrochemical capacitors based on carbon materials with different structure, Russ. J. Electrochemistry, 2014, vol. 50, p. 419.]
- Пономаренко, И.В., Соляникова, А.С., Чайка, М.Ю., Парфенов, В.А., Кирик, С.Д., Кравченко, Т.А. Активация мезоструктурированных электродных материалов электрохимических конденсаторов. Электрохимия. 2015. Т. 51. С. 863. [Ponomarenko, I.V., Parfenov, V.A., Solyanikova, A.S., Chayka, M.Y., Kravchenko, T.A., and Kirik, S.D., Activation of mesostructured electrode materials for electrochemical capacitors, Russ. J. Electrochemistry, 2015, vol. 51, p. 764.]
- Вервикишко, Д.Е., Школьников, Е.И., Янилкин, И.В., Чирков, Ю.Г., Ростокин, Ю.Г. Влияние режимов синтеза активированного угля из древесины на его пористую структуру и удельные характеристики двойнослойных суперконденсаторов с электролитом на основе серной кислоты. Электрохимия. 2017. Т. 53. № 5. С. 567. [Vervikishko, D.E., Shkolnikov, E.I., Yanilkin, I.V., Chirkov, Yu.G., and Postokin, V.I., Effect of the conditions of activated carbon synthesis from wood on its porous structure and the specific characteristics of double layer supercapacitors with a sulfuric acid-based electrolyte, *Russ. J. Electrochemistry*, 2017, vol. 53, p. 500.]
- Кузнецов, Ю.И., Андреева, Н.П., Агафонкина, М.О. Адсорбция и защитные свойства 1,2,3-бензотриазола на сплаве МНЖ 5-1 в нейтральных растворах. Электрохимия. 2014. Т. 50. С. 1100. [Kuznetsov, Y.I., Andreeva, N.P., and Agafonkina M.O., Adsorption and protecting properties of 1,2,3-benzotriazole on MNZh 5-1 alloy in neutral solutions, *Russ. J. Electrochem.*, 2014, vol. 50, p. 989.]
- Трабанелли, Дж., Фриньяни, А., Монтичелли, Ч., Зукки, Ф. Алкилзамещенные бензотриазолы как ингибиторы коррозии железа и меди. *Коррозия: материалы. защита* (in Russian). 2015. № 5. С. 29.
- Salitra, G., Soffer, A., Eliad, L., Cohen, Y., and Aurbach, D, Carbon Electrodes for Double Layer Capacitors I. Relations Between Ion and Pore Dimensions, *J. Electrochem. Soc*, 2000, vol. 147, p. 2486.
- 15. Radeke, K.H., Backhaus, K.O., and Swiatkowski, A., Electrical Conductivity of Activated Carbons, *Carbon*, 1991, vol. 29, p.122.
- Keiser, H., Beccu, K.D., and Gutjahr, M.A., Abschätzung der porenstruktur poröser elektroden aus impedanzmessungen, *Electrochim. Acta*, 1979, vol. 21, p. 539.