УДК 544.653

ЭЛЕКТРОХИМИЧЕСКИ ПЕРЕКЛЮЧАЕМЫЕ СТЕКЛА-ЗЕРКАЛА (ОБЗОР)

© 2019 г. В. А. Майоров*

Новгородский государственный университет им. Ярослава Мудрого ул. Большая Санкт-Петербургская, 41, Великий Новгород, 173003 Россия *e-mail: Vitaly.Mayorov@novsu.ru Поступила в редакцию 12.09.2018 г. После доработки 24.03.2019 г.

Принята к публикации 30.03.2019 г.

В электрохимической ячейке при использовании содержащего соли серебра или меди электролита происходит осаждение металла на поверхности прозрачного электропроводящего покрытия. При определенных условиях металлическая пленка становится зеркальной, а электрохимическая ячейка периодически, при изменении электрического напряжения на ней, переключается из прозрачного состояния в зеркальное. Выполнен анализ результатов исследований переключаемых из прозрачного состояния в зеркальное состояние электрохимических ячеек. Отмечено, что определяющее влияние на характеристики таких устройств оказывают свойства электролита. В настоящее время реализованы опытные образцы с тремя оптическими состояниями: прозрачное – промежуточное полупрозрачное – зеркальное. Достигнуты режимы длительного сохранения (более 2 ч) зеркального состояния в отключенном режиме без потребления электроэнергии. Такие результаты позволяют надеяться, что в скором времени разработки электрохимически переключаемых стекол-зеркал, функционирующих в состояниях прозрачное – промежуточное полупрозрачное коммерческого продукта для использования в окнах.

Ключевые слова: электрохимическая ячейка, электролит, переключаемые стекла-зеркала, прозрачное и зеркальное состояния

DOI: 10.1134/S042485701909010X

ИСТОРИЯ ВОПРОСА

Темпы развития индустрии светопрозрачных конструкций в настоящее время можно сравнить с темпами развития таких современных отраслей деятельности человека, как компьютерная техника, информационные технологии и средства коммуникаций. Причина – желание обеспечить комфортные условия в помещениях и сократить потери энергии через окна, которые составляют ~40% от общих затрат энергии в зданиях. На содержание зданий (отопление, кондиционирование, вентиляция и освещение) затрачивается 30– 40% всей энергии, потребляемой человечеством.

Особый интерес вызывают динамические окна, свойства которых могут изменяться в соответствии с изменением погодных условий согласно предпочтению находящихся в здании людей или автоматически с учетом показаний инженерных систем здания. Другие названия таких окон — переключаемые, интеллектуальные или умные (smart windows). Подробно история развития исследований, освоения производства и характеристики различных видов коммерческих умных окон изложены в обзорных работах [1, 2]. В настоящее время на коммерческой основе выпускаются следующие виды умных окон: электрохромные, термохропные и ламинированные стекла с двумя видами полимерных пленок. Это пленки с диспергированными в полимере микрокаплями жидких кристаллов (пленки **PDLC** – polymer dispersed liquid crystals) и пленки с диспергированными в полимере микрокаплями жидкости с взвешенными частицами (пленки **SPD** – suspended particles devices).

Из всех видов умных стекол лучшими динамическими свойствами обладают электрохромные стекла. Они имеют лучшие, но не идеальные свойства. Регулируемое ослабление проходящих через них видимого света и ближнего инфракрасного излучения осуществляется в основном за счет их поглощения, но не отражения. Поглощаемое излучение преобразуется в теплоту, что вызывает повышение температуры стекла (в некоторых случаях до весьма высоких значений ~60°C). Часть этой теплоты передается внутрь помещения тепловым излучением и конвекцией. Поэтому для этой цели более эффективны устройства, регулирующие пропускание излучения за счет его отражения – переключаемые стекла-зеркала.

Рис. 1. Двухэлектродная электрохимическая ячейка [12]: а – вид сбоку; б – зеркальное состояние при напряжении на рабочем электроде –2.5 В; в – прозрачное отключенное состояние; г – черное состояние при напряжении на рабочем электроде +2.5 В. Одна птичка оригами находится перед ячейкой, другая птичка оригами находится позади ячейки.

Задачу снижения поступающего внутрь помещения солнечного излучения могут выполнить электрохимически переключаемые стекла-зеркала. Явление обратимого электрохимического осаждения зеркального слоя металла интенсивно исследуется более полувека. Первые результаты были опубликованы в 1962 г. [3].

Исследования проводись с использованием различных металлов: Cu, Bi, Pb, Ni, Ag. Наиболее перспективным металлом для этой цели является серебро вследствие его высокой отражательной способности. Однако до настоящего времени электрохимически переключаемые стекла-зеркала не достигли стадии коммерческого продукта в виде умных окон.

Отметим некоторые исследования, выполненные в последние 20 лет с использованием только серебра [4—11]. В них содержится подробная информация о предшествующих результатах.

Принцип действия устройства для обратимого электрохимического осаждения рассмотрим на примере изображенного на рис. 1 использованного для исследований образца. Обратимое электрохимически переключаемое стекло-зеркало состоит из двух параллельных стекол с прозрачными электропроводящими покрытиями на внутренних поверхностях, выполненными из ITO (ITO - Indium Tin Oxide – легированный оловом оксид индия In₂O₃ : Sn) или FTO (FTO – Fluorine doped Tin Oxide – легированный фтором оксид олова SnO₂: F). Пространство между стеклами заполнено электролитом с растворенным в нем электрохромным материалом и герметизируется прокладкой по периметру. Электропроводящие покрытия подключены к источнику постоянного напряжения с помощью прижатых прокладкой проводников из серебряной фольги. Покрытие, на которое подается отрицательное напряжение (катод), называют рабочим электродом. Противоположная поверхность — противоэлектрод. Прохождение электрического тока вызывает осаждение на катоде тонкого слоя металла, который изменяет оптические свойства поверхности. Обычно достаточно напряжения около 2 В. При отключении напряжения металл растворяется в электролите и устройство становится прозрачным. Практически все обсуждаемые далее результаты исследований, кроме оговоренных особо, получены для электрохимически переключаемых стекол-зеркал, выполненных в виде электрохимической ячейки с двумя электродами. Поэтому далее во всех случаях, когда говорится о потенциале рабочего электрода, имеется в виду его потенциал

В большинстве случаев вместо ожидаемой зеркальной пленки получали черное непрозрачное покрытие серебра. Черное покрытие поглощает видимый свет и ближнее инфракрасное излучение, что приводит к значительному повышению температуры стекла. Задача оказалась весьма сложной.

ПРОРЫВНЫЕ ДОСТИЖЕНИЯ

Здесь отметим две работы [12, 13], в которых подробно изложены причины неудач всех предыдущих исследований, а их результаты использованы для создания более эффективных устройств. Именно эти устройства можно рассматривать как прорывные достижения на пути к практической реализации электрохимически переключаемых стекол-зеркал.

Рассмотрим полученные в них результаты.

Два отличительных признака характерны для использованной в работе [12] электрохимической ячейки.

1. В электрохимической ячейке гладкий ITO рабочий электрод и частично модифицирован-

ный "шероховатый" ITO-противоэлектрод отличаются шероховатостью поверхности: средний размер неровностей гладкого ITO-покрытия составляет 3.5 нм, у шероховатого частично модифицированного ITO-покрытия он равен 92 нм. Это дало возможность реализовать три стационарных состояния: прозрачное, зеркальное и черное непрозрачное (рис. 1). Размер электрохимической ячейки 10 × 10 мм, расстояние между электродами 500 мкм. Во всех рассматриваемых далее исследованиях, кроме оговоренных особо, эксперименты с электрохимическими ячейками выполнены при комнатной температуре.

2. Электролит (точнее, его состав) является наиболее важным элементом электрохимически переключаемого зеркала. С учетом результатов всех предыдущих исследований авторы использовали различные электролиты и оптимизировали его состав. Электролит оптимального состава содержит 0.5 ммоль нитрата серебра AgNO₃ (85 мг), 0.1 ммоль хлорида меди CuCl₂ (13 мг) и 2.5 ммоль бромида тетрабутиламмония (**ТВАВ**г) (806 мг), которые растворены в 10 мл диметилсульфоксида (DMSO) с добавлением полимера поливинилбутираля (РVВ) в количестве 10% по весу (1.2 г). Агрегатное состояние электролита – гель. Соотношение числа атомов брома, серебра и меди в растворе Br : Ag : Cu = 25 : 5 : 1. При значительном избытке ионов брома в растворе электролита ионы серебра и брома образуют комплексные анионы $\operatorname{AgBr}_{n}^{1-n}$.

При переключении напряжения между электродами осаждение-растворение серебра на катоде происходит в результате обратимых окислительно-восстановительных реакций $Ag \rightarrow Ag^+ c$ образованием галогенидного комплекса $AgBr_n^{1-n}$:

$$\operatorname{Ag}^{+} + n\operatorname{Br}^{-} \to \operatorname{AgBr}_{n}^{1-n}, \ (n = 2 - 4); \tag{1}$$

$$\operatorname{AgBr}_{n}^{1-n} + e \to \operatorname{Ag} + n\operatorname{Br}^{-}.$$
 (2)

Для осаждения Ag на рабочем электроде необходимо непрерывное поступление электронов. Электроны выделяются в результате окислительной реакции на противоэлектроде:

$$3Br^- \rightarrow Br_3^- + 2e.$$
 (3)

При образовании на противоэлектроде одного

аниона Br_3^- два атома Ag оседают на рабочем электроде. Образующиеся на противоэлектроде комплексные анионы Br_3^- за счет градиента концентрации диффундируют в электролите в направлении рабочего электрода. При достижении поверхности металлической пленки анионы Br_3^- окисляют атомы Ag с образованием растворимых комплексных анионов $AgBr_n^{1-n}$, вызывая раство-

ЭЛЕКТРОХИМИЯ том 55 № 9 2019

рение пленки. Повышение вязкости электролита

снижает скорость диффузии анионов Br₃⁻ и интенсивность этого разрушительного процесса.

В электронейтральном состоянии электрохимическая ячейка прозрачна. Подключение отрицательного напряжения к одному из электродов вызывает электроосаждение серебра на его поверхности. Когда серебро осаждается на поверхности гладкого ІТО-электрода, поверхность становится зеркальной, светоотражающей. Когда серебро осаждается на шероховатой поверхности частично модифицированного ІТО-противоэлектрода, ячейка становится черной светопоглощаюшей. При переключении полярности на электродах состояние ячейки меняется на противоположное Три оптических состояния ячейки (прозрачное, зеркальное и черное) контролируются изменением полярности на электродах.

В ходе исследований этой ячейки было установлено назначение каждого из компонентов электролита.

Хлорид меди необходим по двум причинам. Гладкий ITO-электрод не возвращается в прозрачное состояние при отключении напряжения без присутствия хлорида меди в растворе. Вследствие более высокой электрохимической активности ионы Cu^{2+} способствуют окислению атомов Ag и переходу комплексных анионов AgBr¹⁻ⁿ в раствор электролита при отключении напряжения. Реакция растворения пленки серебра описывается уравнением:

$$Ag + Cu^{2+} + nBr^{-} \rightarrow AgBr_n^{1-n} + Cu^{+}.$$
 (4)

В этом случае полностью восстанавливается прозрачность ячейки в исходном электронейтральном состоянии.

Наличие комплексных анионов $AgBr_n^{1-n}$ в электролите играет решающую роль в получении зеркальной пленки. Стабильные комплексы $AgBr_n^{1-n}$ снижают скорость электроосаждения на поверхность электрода, способствуя образованию зеркальной металлической пленки. С электролитом без Ag-галогенидных комплексов нельзя получить зеркальную пленку. В подтверждение этого была собрана ячейка с двумя гладкими ITO-электродами. В составе электролита TBABr был заменен на перхлорат тетрабутиламмония

(**TBAP**) — ионы Br⁻ заменены на ионы ClO_4^- . В этом случае на гладком ITO-электроде зеркальную пленку получить не удалось — получилась черная пленка [12].

Электрохимические свойства переключаемого стекла-зеркала отчетливо проявляются на циклической вольтамперограмме (рис. 2). При сдвиге потенциала рабочего электрода относительно потенциала противоэлектрода от нуля в отрицатель-

Рис. 2. Циклическая вольтамперограмма (внизу) и изменение нормализованного (отнесенного к максимальному значению) коэффициента пропускания излучения при $\lambda = 700$ нм τ_{700} (вверху) электрохимически переключаемого стекла-зеркала со слоем электролита толщиной $\delta = 500$ мкм состава: 50 ммоль AgNO₃, 10 ммоль CuCl₂, 250 ммоль TBABr в DMSO с добавкой 10% по весу PVB. Скорость развертки потенциала 50 мB/с [12].

ном направлении заметный катодный ток вследствие осаждения Ад наблюдается только при превышении пороговой величины потенциала -2.0 В. После этого наблюдается быстрое снижение коэффициента пропускания излучения τ_{700} вследствие образования и роста Ад-частиц и формирования металлической пленки. При смещении потенциала катода от -2.5 В в положительном направлении катодный ток прекращается при -1.3 В. Катодный ток в диапазоне от -2.5 до -1.3 В обусловлен осаждением металла на Ад-частицы. При дальнейшем увеличении потенциала начиная примерно от -0.6 В появляется анодный ток, который достигает максимальной величины при -0.3 В. Наличие анодного тока свидетельствует об окислении осажденного серебра и о растворении металлической пленки. Полностью светопропускание электрохимически переключаемого стекла-зеркала восстанавливается при потенциале рабочего электрода +1.0 В.

Между пороговым потенциалом —2.0 В начала осаждения металла при снижении потенциала катода и величиной потенциала —1.3 В, при которой при увеличении потенциала катода прекращаются катодный ток и сопутствующее осаждение металла, наблюдается значительная разница в 0.7 В. Эта разница между —1.3 и —2.0 В обусловлена при понижении потенциала катода задержкой появления центров зарождения новой фазы — центров кристаллизации металла. Такая задержка аналогична переохлаждению жидкости относительно температуры кристаллизации, необходимому для зарождения центров кристаллизации жидкости.

Приведенные на рис. 2 результаты позволяют сделать заключение, что в переключаемых стеклах-зеркалах реализуются только два установившихся оптических состояния — прозрачное и зеркальное. Серебряная зеркальная пленка формируется по принципу "все или ничего". Причина такого свойства заключается в том, что осаждение серебра на поверхность рабочего электрода происходит только после превышения некоторого порогового потенциала.

В более поздней работе этих же авторов [14] приведены результаты подробного исследования влияния вида Ад-галогенидных комплексов на оптические и электрохимические свойства устройства. В оптимизированном составе электролита последовательно использовали бромид тетрабутиламмония (TBABr), хлорид тетрабутиламмония (TBACl) и йодид тетрабутиламмония (ТВАІ). Агрегатное состояние электролита – гель. Соотношение числа атомов галогенов Х, серебра и меди в растворе X : Ag : Cu = 25 : 5 : 1. Во всех вариантах на рабочем электроде формируются зеркальные серебряные пленки. Точное значение порогового потенциала начала формирования зеркальных пленок зависит от вида Ад-галогенидных комплексов и составляет -2.0 В для

$$AgI_n^{1-n}$$
, -2.2 В для $AgBr_n^{1-n}$ и -2.2 В для $AgCI_n^{1-n}$.

Примеры экспериментальных результатов по оптическим свойствам переключаемого стеклазеркала приведены на рис. 3.

На рис. За изображены спектральные коэффициенты пропускания переключаемой электрохимической ячейки в прозрачном, зеркальном и черном-темном состояниях. Прозрачное состояние — при отсутствии напряжения на электродах. Зеркальное состояние устанавливается при отрицательном потенциале — 2.5 В гладкого ITO-электрода относительно потенциала частично модифицированного противоэлектрода, черное состояние — при подаче на гладкий ITO-электрод положительного потенциала +2.5 В. В зеркальном состоянии ячейка пропускает менее 20% падающего на нее света, в черном состоянии этот показатель примерно в два раза меньше.

На рис. Зб приведены спектральные коэффициенты отражения электрохимической ячейки в тех же прозрачном, зеркальном и черном состояниях. Отражательная способность ячейки в прозрачном и темном состоянии незначительно изменяется в диапазоне длин волн видимого света и равна примерно 20% в прозрачном и убывает до примерно 10% в черном состоянии. В зеркальном же состоянии отражательная способность значительно возрастает и достигает примерно 100% в диапазоне длин волн больше 500 нм. Снижение отражательной способности в диапазоне 400-

Рис. 3. Спектральные коэффициенты пропускания (а) и отражения (б) двухэлектродной электрохимической ячейки [12]: *1* – прозрачное состояние; *2* – зеркальное состоянии при отложении серебра на рабочем гладком электроде при его потенциале –2.5 В; *3* – черное состояние при отложении серебра на частично модифицированном противоэлектроде при потенциале гладкого электрода +2.5 В.

500 нм обусловлено поглощением излучения вследствие плазмонного резонанса в осажденных Ад-наночастицах пленки.

Почему на гладком ITO-электроде образуется зеркальная пленка, а на шероховатом ITO-электроде — черная? Для ответа на этот вопрос необходимо разобраться в микроструктуре пленки осаждаемого на электроде металла.

Оседающие на поверхности катода атомы Ад не образуют сплошную пленку. Вначале образуются центры кристаллизации, и последующее осаждение металла происходит на них в виде отдельных растущих наночастиц. Количество, размеры и плотность упаковки этих наночастиц зависят от свойств покрытия и определяют оптические свойства слоя осаждающегося металла. На это оказывает влияние также и присутствие в электролите хлорида меди. Нужно отметить, что в более поздней работе [13] было показано, что образующаяся при осаждении на электроде биметаллическая Ag-Cu-пленка имеет значительно лучшую морфологию - более однородную равномерную и мелкую структуру – по сравнению с пленкой из одного серебра. При этом наночастицы меди вызывают объединение наночастиц серебра и улучшают морфологию биметаллической пленки.

На рис. 4 приведены полученные с помощью сканирующего электронного микроскопа изображения гладкой и шероховатой ITO-поверхностей до и после осаждения серебряной пленки.

Электроды отличаются шероховатостью поверхности: средний размер неровностей гладкого ITO-покрытия составляет 3.5 нм, у шероховатого частично модифицированного ITO-покрытия он равен 92 нм.

ЭЛЕКТРОХИМИЯ том 55 № 9 2019

На поверхностях гладкого и шероховатого ITО-электродов образующиеся серебряные пленки имеют различную микроструктуру. На поверхности гладкого ITO-электрода наночастицы серебра имеют примерно одинаковый размер 90 нм и соединены между собой с образованием плоской ровной поверхности со средней шероховатостью 8.3 нм. На поверхности шероховатого ІТО-электрода серебро осаждается на исходные ІТО-наночастицы в виде отдельных кластеров наночастиц. Размер формирующихся кластеров 300-500 нм, они не соединены между собой, образуя неровную поверхность со средней шероховатостью 100 нм. Еще более крупные частицы размером около 1 мкм образуются на поверхности гладкого ІТО-электрода в том случае, когда в

электролите ионы Br⁻ заменены на ионы ClO₄.

Шероховатая поверхность микроструктурной пленки Ag оптически проявляется как черная в результате многократного рассеяния и поглощения света наночастицами серебра. Совокупность таких наночастиц широкого диапазона размеров поглощает свет вследствие плазмонного резонанса в широком диапазоне длин волн видимого спектра. Рассеиваемый свет поглощается соседними кластерами наночастиц.

На рис. 5 показано изменение коэффициента пропускания излучения τ_{700} при длине волны 700 нм в ходе многократных циклических переключений потенциала на рабочем электроде от -2.5 до +2.5 В. Цикл включает выдержку 10 с при потенциале -2.5 В, 20 с при +0.5 В, 10 с при +2.5 В и 30 с при -0.5 В. Изменение коэффициента пропускания (модуляция) составляет ~72% в первых циклах и незначительно снижается при 2500 пе-

Рис. 4. Полученные с помощью сканирующего электронного микроскопа изображения поверхностей гладкого (а), (в) и шероховатого (б), (г) ITO-электродов до (а), (б) и после (в), (г) осаждения пленки серебра [12].

реключений. Это свидетельствует о высокой стабильности процессов осаждения и растворения серебра в исследованной электрохимической ячейке.

Выполненные в работе [12] исследования позднее были повторены авторами [15–18]. Во

Рис. 5. Изменение коэффициента пропускания τ_{700} (при $\lambda = 700$ нм) в ходе циклических испытаний двухэлектродной электрохимической ячейки [12]. Последовательность подачи напряжения на рабочий электрод: -2.5 В (10 с), 0.5 В (20 с), 2.5 В (10 с), -0.5 В (30 с).

всех случаях использовали оптимизированный в работе [12] состав электролита и электрохимические ячейки только с гладкими [15] или гладкими и шероховатым электродами [16–18]. В работе [16] использовали электроды с ITO-покрытием, шероховатость достигалась напылением ITO-наночастиц средним размером 434 нм. В двух других работах [17, 18] применяли электроды с FTO-покрытием. При этом использовали три шероховатых электрода, на которые напыляли наночастицы TiO₂ фракций 5–10, 40 и 100 нм соответственно. Во всех вариантах получены результаты, аналогичные данным работы [12], с фиксацией трех состояний – прозрачное, зеркальное и черное.

Следует отметить, что третье черное состояние и обусловленное этим усложнение конструкции вследствие необходимости дополнительного шероховатого покрытия для оконных стекол не желательно. Шероховатый электрод полностью поглощает падающее солнечное излучение и при высокой его интенсивности может нагреваться до весьма значительных температур.

Продолжительные циклические переключения во всех перечисленных работах показали стабильность процессов осаждения и растворения серебра в электрохимических ячейках. Однако продолжительность каждого из переключаемых состояний не превышала 40 с. Здесь не отмечено поведение электрохимических ячеек при длительном включенном зеркальном состоянии. В выключенном прозрачном состоянии ячейка стабильна. Именно в длительном включенном зеркальном состоянии и обнаруживаются серьезные проблемы.

1. Растрескивание пленки. Для сохранения зеркального состояния необходимо на рабочем электроде непрерывно поддерживать отрицательный потенциал для предотвращения растворения пленки серебра в электролите. Однако состоящая из микрочастиц пленка вследствие слабой адгезии к ITO-покрытию обычно достаточно быстро дает трещины и складки при продолжительной выдержке потенциала на ячейке. Поэтому необходимо улучшить адгезию образующейся пленки при осаждении серебра.

2. Короткая оптическая память в выключенном состоянии — при отключении напряжения зеркальная пленка быстро растворяется — это наглядно и было подтверждено в ходе ранее отмеченных циклических испытаний. Пленка раство-

ряется вследствие диффузии анионов Br₃⁻ из электролита к поверхности пленки и окисления металлического серебра с образованием раство-

римых комплексных ионов $AgBr_n^{1-n}$. Этот процесс ускоряется при наличии в электролите ионов Cu^{2+} в соответствии с реакцией согласно уравнению (4).

Способность длительное время сохранять зеркальное состояние как при включенном, так и при выключенном напряжении чрезвычайно важна для коммерческой реализации переключаемых стекол-зеркал в окнах.

Отмеченные две проблемы были решены авторами работы [13] следующим образом.

1. Для предотвращении разрушения металлической пленки рабочий электрода был поверхностно модифицирован — на поверхность ITOпокрытия нанесено в виде монослоя тиолсодержащее вещество (3-меркаптопропил)триметоксисилан (**MPTMS**). Это вещество улучшает адгезию наночастиц серебра к поверхности ITO-покрытия, а также способствует формированию более плотной структуры образующейся пленки более плотной упаковке наночастиц серебра в пленке.

2. Для защиты от растворения зеркальной металлической пленки при отключенном напряжении в состав электролита были включены вязкие бромсодержащие ионные жидкости, способные формировать двойной электрический слой у поверхности металлической пленки при включенном напряжении и длительное время сохранять этот двойной электрический слой при отключении напряжения. Этот слой блокирует диффузию ионов из электролита к поверхности металличе-

ской пленки и тем самым предотвращает ее растворение.

Использованы электролиты четырех составов:

1 — оптимизированный в работе [12] электролит **ТВАВ** состава: 0.5 ммоль AgNO₃, 0.1 ммоль CuCl₂, 2.5 ммоль ТВАВг растворены в 11 г DMSO с добавлением 1.2 г полимера PVB. Соотношение числа атомов брома, серебра и меди в растворе Br : Ag : Cu = 25 : 5 : 1.

2-4 – электролиты **MHIB**, **BEIB** и **BHIB** получены растворением 0.5 ммоль AgNO₃ и 0.1 ммоль CuCl₂ в смеси 10% по весу DMSO и 45 ммоль вязкой бромсодержащей ионной жидкости бромида 1-метил-4-гексилимидазолия (**MHImB**r), бромида 1-бутил-4-этилимидазолия (**BEImB**r) и бромида 1-бутил-4-гексилимидазолия (**BHImBr**) соответственно. Соотношение числа атомов брома, серебра и меди в растворе Br : Ag : Cu = 450 : 5 : 1.

Размер электрохимической ячейки 20 × 20 мм, расстояние между электродами 500 мкм.

Различие в воздействии электролитов ТВАВ и ВЕІВ на процессы переноса ионов в электрохимической ячейке показано схематично на рис. 6.

Во включенном состоянии при напряжении -2.5 В на рабочем электроде образуется биметаллический зеркальный слой Ад—Си при использовании обоих электролитов. При этом в электролите BEIB около обоих электродов формируется двойной электрический слой. При отключении напряжения в ячейке с электролитом TBAB зеркальная пленка быстро растворяется. В ячейке с электролитом BEIB двойной электрический слой у поверхности зеркальной пленки длительное время сохраняется, блокирует диффузию из рас-

твора анионов Br_3^- и тем самым предотвращает растворение серебра с поверхности пленки. При подаче положительного напряжения +2.5 В на рабочий электрод двойной электрический слой в электролите BEIB у поверхности электродов исчезает, серебро с поверхности рабочего электрода переходит в раствор.

На рис. 7 показаны фотографии электрохимической ячейки с содержащим ионную жидкость электролитом МНІВ в прозрачном и зеркальном состояниях. Зеркальные состояния в режимах через 10 мин после подачи напряжения —2.5 В на рабочий электрод и через 120 мин после отключения напряжения. Перед ячейкой расположены цветные детские игрушки, за ячейкой находится лист белой бумаги с текстом. В левом верхнем углу каждого фото приведено увеличенное изображение ячейки.

На рис. 8 показано изменение спектрального коэффициента отражения электрохимической ячейки с электролитом BEIB при переходе из прозрачного в стационарное зеркальное состояние. В течение 10 мин после включения напряже-

Рис. 6. Схематическое изображение процессов переноса ионов в электрохимической ячейке при использовании электролитов ТВАВ и ВЕІВ [13]: а – зеркальное состоянии при напряжении –2.5 В на рабочем электроде; б – состояние при отключении напряжении (0.0 В); в – прозрачное состояние при напряжении +2.5 В на рабочем электроде.

Рис. 7. Изображения электрохимической ячейки с поверхностно модифицированным электродом и электролитом МНІВ в исходном прозрачном состоянии, в зеркальном состоянии через 10 мин после подачи напряжения –2.5 В на рабочий электрод и в зеркальном состоянии через 120 мин после отключения напряжения [13].

ния отражательная способность зеркальной пленки непрерывно увеличивается по мере роста ее толщины. В диапазоне видимого света 380—780 нм и ближнего инфракрасного излучения до 1000 нм коэффициент отражения остается примерно одинаковым. Интересно отметить, что через 15 мин после отключения напряжения отражательная способность увеличилась

На рис. 9 показана динамика изменения коэффициентов отражения ρ_{650} ячеек с различными электролитами в течение 0.5 ч после включения напряжения —2.5 В на рабочий электрод и в тече-

Рис. 8. Изменение спектра отражения электрохимической ячейки с поверхностно модифицированным электродом и электролитом BEIB [13]: 1 – исходное прозрачное состояние; 2 – переходное состояние через 5 мин после подачи напряжения –2.5 В; 3 – переходное зеркальное состояние через 10 мин после подачи напряжения –2.5 В; 4 – зеркальное состояние через 15 мин после отключения напряжения на рабочем электроде.

ние 1 ч после отключения напряжения. Электролит TBAB — оптимизированный обычный, электролиты MHIB, BEIB и BHIB — с вязкими ионными жидкостями. Данные приведены для коэффициента отражения при $\lambda = 650$ нм. При этой длине волны коэффициент отражения имеет максимальную величину, как это изображено на предыдущем рис. 8.

Здесь отчетливо проявляется влияние состава электролита на динамику изменения отражательной способности зеркальной пленки. В ячейке с обычным оптимизированным электролитом ТВАВ при подаче напряжения отражательная способность очень быстро возрастает до постоянного значения, после отключения напряжения — столь же быстро падает почти до нуля. Это значит, что в этой ячейке при включении напряжения зеркальная пленка быстро нарастает и столь же быстро растворяется при отключении напряжения.

В ячейках с электролитами, содержащими в своем составе вязкие ионные жидкости, имеет место другая динамика явления. В них после включения напряжения зеркальная пленка в течение 30 мин медленно нарастает, но после отключения напряжения она не исчезает в течение длительного времени, значительно больше 1 ч. При этом на динамику явления значительное влияние оказывают свойства ионных жидкостей. Эти ячейки обладают свойством памяти – способностью сохранять зеркальное состоянии без потребления энергии. Для ячейки с электролитом MHIB эффект сохранения отражательной спо-

Рис. 9. Изменение коэффициента отражения ρ_{650} электрохимической ячейки (при $\lambda = 650$ нм) с поверхностно модифицированным электродом в ходе экспериментов с различными электролитами (BEIB, MHIB, BHIB, TBAB) [13].

собности после отключения напряжения продолжался более 2 ч (рис. 7). Образующийся двойной электрический слой у поверхности зеркальной пленки затрудняет движение ионов как при образовании серебряной пленки, так и при ее растворении.

Поскольку время перехода в зеркальное состояние на рис. 9 слишком велико (10-30 мин), были выполнены специальные исследования по выбору оптимальных параметров электрохромной ячейки с целью снижения длительности переходных процессов [19]. При этом изменяли состав, концентрацию электролита и толщину его слоя. Поверхность ІТО-покрытия рабочего электрода модифицирована монослоем тиолсодержащего вещества MPTMS. Толщину слоя электролита б изменяли от 60 до 960 мкм. Лучшие результаты получены для электролита ВЕІВ, в состав которого входят AgNO₃ и CuCl₂ в молярном соотношении 5 : 1, растворенные в ионной жидкости BEImBr. Молярную концентрацию AgNO₃ в pacтворе изменяли в диапазоне от 0.032 до 0.25 М. Верхняя граница этого диапазона установлена ограничениями по растворимости этой соли. Результаты приведены в табл. 1.

Оптимальные результаты получены при $\delta = 240$ мкм и молярной концентрации AgNO₃, равной 0.25 М. Они выделены жирным шрифтом в табл. 1.

Из приведенных в табл. 1 данных следует, что величина коэффициента отражения ρ_{650}^* (%) сформировавшейся зеркальной пленки зависит от концентрации электрохромного материала и практически не зависит от толщины слоя электролита. Эта величина изменяется в широком

Таблица 1. Влияние молярной концентрации AgNO₃ и толщины слоя δ электролита на величину коэффициента отражения ρ_{650}^{*} (%) зеркальной пленки, сформировавшейся на рабочем электроде под действием потенциала –2.5 В в течение 180 с [19]

$c(AgNO_3),$	δ, мкм				
М	60	120	240	480	960
0.032	15.4	16.4	15.4	15.4	15.3
0.064	36.0	32.9	25.4	30.8	28.6
0.13	59.5	55.9	47.6	52.7	51.9
0.25	86.3	86.9	81.7	80.4	81.8

Таблица 2. Влияние молярной концентрации AgNO₃ и толщины слоя δ электролита на время *t* ($\rho_{90\%}$) (c) формирования зеркальной пленки с коэффициентом отражения $\rho = 0.90\rho^*$ под действием потенциала -2.5 В [19]

c(AgNO ₃), M	δ, мкм					
	60	120	240	480	960	
0.032	166	165	165	167	164	
0.064	152	149	162	151	152	
0.13	151	156	155	150	147	
0.25	123	102	97.9	99.8	95	

диапазоне 15 < ρ_{650}^* < 87%. Обычно получали пленку с коэффициентом отражения, близком к единице, что характерно для практически светонепроницаемой ($\tau_{650} = 0$) пленки. К сожалению, авторы [19] для всех указанных в табл. 1 электрохимических ячеек не привели соответствующие значения коэффициента светопропускания τ_{650}^* . Указано единственное значение $\tau_{650}^* = 0.1\%$ для оптимального варианта c = 0.25 M, $\delta = 240$ мкм.

В электрохимической ячейке с параметрами $\rho_{650}^* = 81.7\%$ и $\tau_{650}^* = 0.1\%$ серебряная пленка представляет собой идеальное зеркало и практически не пропускает свет. Следует полагать, что для сформированной металлической пленки при указанных в табл. 1 значениях концентрации и толщины слоя электролита в ячейках величина τ_{650}^* также изменяется в достаточно широком диапазоне. Для оконных стекол не требуется полное прекращение светопропускания — величина τ_{650}^* для металлической пленки должна иметь заданное значение в диапазоне 10-25%. Поэтому приведенные в табл. 1 результаты можно трактовать следующим образом: необходимое светопропускание переключаемого стекла-зеркала в зеркальном состоянии может быть реализовано и однозначно контролируется и регулируется выбором соответствующей концентрации AgNO₃ в электролите.

На рис. 10а приведены данные по изменению коэффициента отражения во время образования металлической пленки при толщине слоя электролита 240 мкм. С увеличением концентрации ионов Ag⁺ в электролите возрастает скорость изменения отражательной способности р₆₅₀ осаждающегося слоя. За время 180 с пленка почти полностью формируется и ее характеристики стабилизируются. В табл. 2 приведены значения времени $t^{\bullet}(\rho_{90\%})$, за которое коэффициент отражения формирующейся металлической пленки достигает величины, равной 90% от максимального значения ρ*. Толщина слоя электролита оказывает слабое влияние на эту величину. С увеличением концентрации AgNO₃ пленка формируется быстрее.

Влияние концентрации AgNO₃ и толщины слоя электролита на время достижения коэффициентом отражения ρ_{650} значений 50, 80 и 90% от своей максимальной величины ρ_{650}^* изображено на рис. 10в.

На рис. 10б показано изменение коэффициентов пропускания τ₆₅₀ и отражения ρ₆₅₀ во время образования металлической пленки после включения напряжения -2.5 В на 180 с и после его отключения на 20 мин. Время снижения коэффициента пропускания формирующейся пленки до 90% от исходной величины составляет $t^{\bullet}(\tau_{90\%}) =$ = 25.1 с. При этом снижение светопропускания пленки т₆₅₀ происходит значительно быстрее увеличения ее отражательной способности р₆₅₀. Это обусловлено изменением морфологии и поглощательной способности пленки при ее утолщении. Время увеличения коэффициента отражения от исходного значения до 90% от конечного максимального ρ_{650}^* равно $t^{\bullet}(\rho_{90\%}) = 97.9$ с. Причем это время $t^{*}(\rho_{90\%})$ примерно в 30 раз меньше, чем для результатов рис. 9, которые были получены для концентрации AgNO₃, равной 0.032 М.

Из данных рис. 10б также следует, что после отключения напряжения пленка металла продолжительное время не растворяется и сохраняет свою высокую отражательную способность ячейка обладает длительной оптической памятью. В табл. 3 приведены значения времени, за которое коэффициент отражения пленки после отключения напряжения снижается на 10% от своего максимального значения. Жирным шрифтом выделены значения, превышающие остальные почти на порядок величины. Это электрохимические ячейки с продолжительной оптической памятью, которая приписывается стабильности двойного электрического слоя в этих устройствах.

Рис. 10. Характеристики электрохимически переключаемого стекла-зеркала [19]: а – влияние концентрации AgNO₃ в слое электролита толщиной $\delta = 240$ мкм на характер изменения коэффициента отражения формирующейся серебряной пленки после подключения напряжения –2.5 В: 1 - 0.032; 2 - 0.64; 3 - 0.13; 4 - 0.25 М. δ – Изменения коэффициентов светопропускания τ_{650} и отражения ρ_{650} электрохимически переключаемого стекла-зеркала после подключения коэффициентов светопропускания τ_{650} и отражения ρ_{650} электрохимически переключаемого стекла-зеркала после подключения напряжения –2.5 В на рабочий электрод в течение 3 мин и последующего его отключения в течение 20 мин при оптимальных параметрах $\delta = 240$ мкм, $c(AgNO_3) = 0.25$ М. в – Зависимость времени достижения коэффициентом отражения ρ_{650} значений 50, 80 и 90% максимальной величины от концентрации AgNO₃ (1-3) и от толщины слоя электролита (4-6). г – Обратимое изменение коэффициентов пропускания τ_{650} и отражения последкое изменения потенциала рабочего электрода в ячейке с оптимальными параметрами $\delta = 240$ мкм, $c(AgNO_3) = 0.25$ М.

Наиболее длительной оптической памятью (более 2 ч) обладает электрохимическая ячейка с оптимальными параметрами $\delta = 240$ мкм, c = 0.25 М.

На рис. 10г показано изменение коэффициентов пропускания и отражения в ходе циклического изменения напряжения на стекле. Продолжительность цикла 300 с, программа переключения потенциала для зеркального состояния (М), прозрачного (Т) и отключенного состояния (Z) приведена на вставке и содержит значения: М (-2.5 B/11 c), Т (+2.5 B/2 c), Z (0.0 B/287 c). Время 11 с выдержки потенциала -2.5 В мало по сравнению со временем перехода $t^{*}(\rho_{90\%}) = 97.9$ с в зеркальное состояние, поэтому коэффициент отражения не достигает значения $\rho > 80\%$. Коэффициент пропускания за эти же 11 с успевает уменьшиться почти до своего минимального значения. Переход из зеркального в прозрачное со-

ЭЛЕКТРОХИМИЯ том 55 № 9 2019

стояние обратим с небольшим изменением модуляции коэффициентов пропускания и отражения в ходе более 30 циклических переключений.

Таблица 3. Влияние молярной концентрации AgNO₃ и толщины слоя δ электролита на время снижения (мин) коэффициента отражения металлической пленки ρ_{650} на 10% от максимальной величины ρ_{650}^* после отключения потенциала –2.5 В на рабочем электроде [19]

		-		-	
$c(AgNO_3),$	δ, мкм				
М	60	120	240	480	960
0.032	5.69	4.08	14.1	9.15	6.13
0.064	4.12	9.31	13.0	10.8	8.44
0.13	3.41	13.8	76.0	97.9	20.1
0.25	3.60	5.38	>120	11.3	0.93

Рис. 11. Изменение коэффициента пропускания излучения τ_{600} при образовании и растворении пленки серебра на рабочем электроде электрохимически переключаемого стекла-зеркала при подаче на него напряжения –0.6 В длительностью 180 с и затем +0.8 В длительностью 120 с [20]. Пояснения в тексте.

ВЛИЯНИЕ СОСТАВА ЭЛЕКТРОЛИТА И СКОРОСТИ ФОРМИРОВАНИЯ МЕТАЛЛИЧЕСКОЙ ПЛЕНКИ НА ЕЕ ОПТИЧЕСКИЕ СВОЙСТВА

Для получения металлической зеркальной пленки необходимо снизить скорость осаждения металла и обеспечить гладкую поверхность электрода. Для уменьшения скорости осаждения снижают скорость диффузии ионов металла к рабочему электроду двумя способами: повышением вязкости электролита и присоединением ионов металла к комплексам. Например, с образовани-

ем Ад-галогенидных комплексов $AgBr_n^{1-n}$.

Ранее уже было отмечено, что при замене в

электролите ионов Br⁻ на ионы ClO₄⁻ (в результате замены бромида тетрабутиламмония (TBABr) на перхлорат тетрабутиламмония (TBAP)) крупные комплексы в электролите не образуются и на гладком ITO-электроде вместо зеркальной сформировалась черная пленка [12]. Она состояла из крупных частиц размером около 1 мкм.

Представляет интерес информация о времени, за которое может образоваться черная пленка, и за какое — зеркальная. Таких данных в настоящее время имеется немного.

О длительности формирования металлической пленки можно судить по времени приближения коэффициентов отражения и пропускания излучения к предельным значениям. Согласно имеющимся в табл. 2 и на рис. 10б данным, при оптимальных условиях время снижения коэффициента пропускания формирующейся зеркальной пленки до 90% от исходной величины составляет $t^{*}(\tau_{90\%}) = 25.1$ с, а время увеличения коэффициента отражения до 90% от конечной величины равно $t^{*}(\rho_{90\%}) = 97.9$ с.

На рис. 11 показан другой имеющийся пример изменения светопропускания формирующейся серебряной пленки [20]. После подключения напряжения -0.6 В на ITO-электрод осаждающий на него металл вызывает снижение светопропускания от исходной величины 81 до <30% за 30 с и до <5% за 180 с. В этом примере пленка образуется черная и формируется она медленнее, чем зеркальная в указанном ранее варианте. Черная пленка состоит из агрегатов слабо связанных металлических частиц средним размером порядка длины волны видимого света. Частицы такого размера не отражают свет зеркально, а рассеивают его во всех направлениях. При этом авторы [20] много сделали для улучшения качества пленки. Для улучшения адгезии на гладкую ІТО-поверхность нанесли монослой меркаптопропионовой кислоты. Кроме этого, сверху на такое покрытие нанесены в один слой наночастицы платины средним размером 3 нм. Наночастицы платины служат центрами кристаллизации металла на поверхности катода. Наличие центров осаждения металла улучшает морфологию образующейся пленки. В состав электролита для повышения вязкости добавлено 3.3% по весу гидроксиэтилцеллюлозы. Ничего не помогло. Все дело в составе электролита: 10 ммоль AgClO₄, 15 ммоль $Cu(ClO_4)_2$ и 1 моль LiCl в воде. Соотношение атомов в растворе Ag: Cu = 2:3.

Из сравнения приведенных двух примеров следует, что основное влияние на свойства образующейся металлической пленки оказывает не скорость осаждения металла.

ПЕРЕКЛЮЧАЕМЫЕ СТЕКЛА-ЗЕРКАЛА С ПРОМЕЖУТОЧНЫМ ОПТИЧЕСКИМ СОСТОЯНИЕМ

Оптические характеристики переключаемого стекла-зеркала в зеркальном состоянии, как следует из данных в табл. 1, могут значительно различаться. Стекло-зеркало с оптимальными параметрами $\delta = 240$ мкм и c = 0.25 М имеет практически нулевое светопропускание $\rho_{650}^* = 81.7\%$, $\tau_{650}^* = 0.01\%$. Такое состояние полного затемнения – не совсем желательный результат для окон. Из данных табл. 1 следует также, что ячейки при меньших значениях концентрации электрохромного вещества имеют величины коэффициентов отражения в широком диапазоне $15 < \rho_{650}^* < 87\%$. Электрохимические ячейки с такими оптическими характеристиками существуют.

Ранее, при обсуждении приведенной на рис. 2 циклической вольтамперограммы, было сделано

заключение, что в переключаемых стеклах-зеркалах реализуются только два установившихся оптических состояния — прозрачное и зеркальное. Совершенно естественно возникает задача обеспечить несколько оптических стационарных состояний переключаемого стекла-зеркала с последовательно уменьшающимися коэффициентами пропускания и возрастающими коэффициентами отражения.

Возможны два способа ее решения.

Первый способ — прервать процесс формирования пленки до его завершения за счет отключения напряжения — использовать переходные состояния.

Переходные состояния могут возникнуть при прерывании процесса формирования металлической пленки – например, переходное состояние на рис. 7 через 10 мин после подключения напряжения и состояния 2 и 3 на рис. 8. В работе [20] приведены фотографии образца переключаемого стекла-зеркала в прозрачном, черном и в одном переходном полупрозрачном состоянии. Размер образца 50 × 50 мм. Использован электролит, содержащий атомы Ад и Си в соотношении 2:3, состава 10 ммоль AgClO₄, 15 ммоль Cu(ClO₄)₂ и 1 моль LiCl в воде. Но металлическая пленка и в переходном, и в конечном состоянии не зеркальная, а черная. Все эти переходные состояния – не установившиеся, а зафиксированные в процессе непрерывного утолщения пленки.

Обеспечить переходное однородное состояние пленки равной толщины — задача трудно решаемая. Особенно если учесть тот факт, что при больших размерах стекла пленка в разных его местах формируется с различной скоростью и до завершения процесса в каждый момент времени пленка вдоль стекла будет иметь различную толщину и степень уплотнения.

Второй способ реализации промежуточных состояний — за счет ступенчатого изменения потенциала рабочего электрода обеспечить несколько установившихся зеркальных состояний с последовательно возрастающим коэффициентом отражения. Данных о фиксации нескольких зеркальных оптических состояний при неизменном составе электролита и последовательном увеличении потенциала рабочего электрода до настоящего времени не имеется.

Впервые второй способ реализации нескольких установившихся состояний осуществлен в работе [21]. При этом необходимо отметить, что здесь при различных потенциалах рабочего электрода процесс осаждения имеет различный физический механизм — при изменении потенциала происходит изменение характера процесса. При разборе всех предыдущих результатов было отмечено чрезвычайно большое значение состава электрохромного раствора и электролита. Выбор

Рис. 12. Схема процессов в электрохимически переключаемом стекле-зеркале [21]. а — Схема электроосаждения Си-ионов на рабочий электрод. б — Распределение Си-ионов в электролите в прозрачном состоянии без подключения напряжения на рабочий электрод, голубое состояние при напряжении — 0.9 В и зеркальное состояние при увеличении напряжения до — 1.8 В. В различных состояниях шарики обозначают различные элементы. В прозрачном состоянии шарики — это ионы Cu²⁺, в голубом состоянии — это молекулы CuCl, в зеркальном состоянии — нейтральные атомы Cu.

соответствующего электрохромного раствора имеет критическое значение и для реализации электрохимически переключаемого стекла-зеркала с установившимся промежуточным (между прозрачным и зеркальным) состоянием.

Электролит приготовлен растворением 0.8 ммоль $CuCl_2$, 2.5 ммоль $LiClO_4$ и 0.006 ммоль KI в 10 г DMSO с добавлением 10% по весу полимера PVB [21]. Последняя добавка перевела раствор в вязкое гелеобразное состояние. Вязкий раствор замедляет диффузию анионов к пленке металла и предотвращает ее от быстрого растворения, т.е. выполняет функцию, аналогичную ионным жидкостям в составе электролита, использованного в работах [13, 19].

Процесс электроосаждения ионов меди на рабочий электрод схематично изображен на рис. 12. В исходном состоянии все Cu^{2+} ионы равномерно распределены в гелеобразном электролите. Когда на рабочий ITO-электрод подается отрицательный потенциал, под действием электрического поля Cu^{2+} -ионы диффундируют из электролита на электрод. При этом сначала при потенциале -0.9 В на электроде образуется голубая пленка CuCl, которая при потенциале –1.8 В преобразуется в металлическую зеркальную. Когда на рабочий электрод прикладывается положительный

Рис. 13. Циклическая вольтамперограмма электрохимической ячейки с медной пленкой на ITO-электроде [21]. Скорость развертки потенциала 20 мВ/с.

потенциал, металлическая пленка растворяется в гелеобразном электролите, тем самым переводя все устройство в прозрачное состояние.

На рис. 13 изображена циклическая вольтамперограмма электрохимической ячейки с медной пленкой, зафиксированная со скоростью развертки потенциала 20 мВ/с. При смещении потенциала рабочего электрода от нуля в сторону отрицательных значений наблюдается первый катодный пик *I*_с при -0.47 В. Этот пик приписывается восстановлению ионов Cu²⁺ до Cu⁺. Когда потенциал достигает величины -1.10 В, наблюдается второй катодный пик II_с. Этот пик соответствует формированию металлической пленки, когда ионы Cu⁺ восстанавливаются до Cu⁰. По мере электроосаждения металла на электрод коэффициент отражения пленки увеличивается. При изменении потенциала в обратном положительном направлении от —1.80 В при —0.30 В по-является анодный пик II_a . Этот пик соответствует окислению Cu⁰ до ионов Cu⁺, вызывая увеличение светопропускания пленки вследствие ее частичного растворения. Второй анодный пик Іа появляется при +0.35 В. Он соответствует окислению ионов Cu⁺ до Cu²⁺, в результате чего происходит полное растворение металлической пленки в электролите.

Процесс электроосаждения ионов меди на рабочий электрод протекает в две стадии:

сначала образуется голубая пленка, когда и
оны Cu^{2+} в составе CuCl_2 восстанавливаются до
 Cu^+

$$CuCl_2 + e \to CuCl + Cl^-, \tag{5}$$

затем формируется зеркальная металлическая пленка, когда CuCl претерпевает восстановление до атомов Cu

$$CuCl + e \to Cu + Cl^{-}.$$
 (6)

Наличие или отсутствие вязкого полимера в составе электролита оказывает определяющее воздействие на структурные и оптические свойства пленки электроосаждаемого металла. При наличии полимера при осаждении металла образуются наночастицы размером от 30 до 50 нм, которые формируют сплошную зеркальную металлическую пленку толщиной ~105 нм с гладкой поверхностью шероховатостью менее 10 нм. При отсутствии вязкого полимера в составе электролита скорость осаждения металла возрастает и свойства пленки качественно изменяются. В этом случае наночастицы металла объединяются в агломераты размером 200-750 нм, пленка формируется рыхлая толщиной 240 нм с шероховатой внешней поверхностью при среднем размере шероховатостей ~27 нм. Такая пленка отражает свет диффузно, не зеркально. Изменение морфологии пленки и увеличение шероховатости ее поверхности изменяют оптическое проявление пленки от зеркального до черного. Добавление полимера в электролит снижает скорость электроосаждения металла и предотвращает агломерацию наночастиц в кластеры, что проявляется в однородной морфологии пленки.

Оптические характеристики переключаемого стекла-зеркала изображены на рис. 14а, 14б. Имеются четко выраженные прозрачное состояние при +0.1 В с коэффициентом пропускания $\tau_{550} = 82\%$, зеркальное состояние при –1.2 В с нулевым светопропусканием ($\tau_{550} = 0.33\%$). Очень важно – имеется промежуточное полупрозрачное состояние при –0.9 В с коэффициентом пропускания $\tau_{550} = 24.6\%$. Коэффициентом пропускания в прозрачном и в промежуточное состояния достаточно близки между собой и значительно меньше аналогичной характеристики для зеркального состояния.

Следует отметить, что спектральная отражательная характеристика 5 на рис. 146 для зеркальной медной пленки имеет одинаковый вид с аналогичной характеристикой 2 на рис. 36 для серебряной пленки. На обеих кривых имеется провал на начальном участке в диапазоне 400—500 нм. Причина одинакова — поглощение излучения вследствие плазмонного резонанса в наночастицах металлической пленки.

Скорость переходных процессов образования и растворения зеркальной медной пленки была исследована в ходе циклических переключений по программе изменения потенциала: -1.2 В (20 с), -1.5 В (10 с), -0.1 В (60 с), 0.2 В (20 с) и 0.0 В (20 с). Продолжительность цикла 130 с. Результаты приведены на вставке на рис. 14в. Время перехода из зеркального в прозрачное состояние составляет $t^{\circ} = 24.2$ с, время обратного перехода из прозрачное в зеркальное несколько меньше $t^{*} = 17.4$ с. На этом же рис. 14в приведены данные по цикли-

Puc. 14. Характеристики электрохимически переключаемого стекла-зеркала [21]: а – спектры пропускания при различных напряжениях на рабочем электроде: 1 – электронейтральное состояние (0 B); 2 – прозрачное при +0.1 B; 3 – голубое при -0.9 B; 4 – зеркальное при -1.2 B. 6 – Спектры отражения при различных напряжениях на рабочем электроде: 1 – электронейтральное состояние (0 B); 2 – прозрачное при -0.9 B; 4 – зеркальное при -1.2 B. 6 – Спектры отражения при различных напряжениях на рабочем электроде: 1 – электронейтральное состояние (0 B); 2 – прозрачное при +0.1 B; 3 – голубое при -0.9 B; 4 – зеркальное при -1.2 B; 5 – зеркальное при -1.8 B. в – Изменение коэффициента пропускания излучения $τ_{550}$ в ходе 200 циклических переключений потенциала на рабочем электроде по программе -1.2 B (20 c), -1.5 B (10 c), -0.1 B (60 c), +0.2 B (20 c) и 0.0 B (20 c). На вставке изображено изменение коэффициента пропускания $τ_{550}$ в ходе циклического обратимого электросаждения медной пленки на ITO-электроде и ее растворения в электролите. г – изменение коэффициента отражения $ρ_{650}$ в входе циклических переключений потенциала на рабочем электроде по программе –1.5 B (30 c), -1.8 B (30 c), 0.0 B (60 c) и +0.1 B (30 c).

ческой стабильности. Вначале модуляция коэффициента пропускания в видимом диапазоне составляет $\Delta \tau_{550} = 58.3\%$ и достигает максимальной величины $\Delta \tau_{550} = 83.6\%$ после 53-го цикла. Затем эта величина постепенно убывает и снижается до $\Delta \tau_{550} = 41\%$ после 200 циклов.

На рис. 14г показано изменение в ходе циклических переключений коэффициента отражения ρ_{660} для излучения с длиной волны $\lambda = 660$ нм. Спектральный коэффициент отражения ρ имеет максимальное значение в зеркальном состоянии именно для такой длины волны (рис. 14б). Модуляция коэффициента отражения составляет $\Delta \rho_{660} = 58.9\%$. Время образования *t*[•] и растворения

ЭЛЕКТРОХИМИЯ том 55 № 9 2019

 t° металлической зеркальной пленки составляет 23.3 и 13.7 с соответственно. Время образования медной пленки 23.3 с сопоставимо с аналогичной величиной времени $t^{*}(\rho_{90}) = 97.9$ с, полученной ранее для серебряной пленки (рис. 10б).

Нужно отметить, что для переключаемых стекол-зеркал не требуется очень быстрое изменение оптических характеристик — необходима задержка для адаптации глаз человека к изменению освещенности.

Использованный способ ступенчатого повышения потенциала рабочего электрода для получения промежуточного полупрозрачного оптического состояния переключаемого стекла-зеркала с МАЙОРОВ

Рис. 15. Эффект оптической памяти (сохранение отражательной способности) электрохимически переключаемого стекла-зеркала после отключения напряжения –1.8 В на рабочем электроде, поддерживаемого до отключения в течение 10 мин [21].

электролитом, содержащим единственный электрохромный материал $CuCl_2$, может быть использован и для электролитов с двумя солями AgNO₃ и CuCl₂. Например, для электролита TBAB оптимизированного состава или электролита BEIB с бромсодержащей ионной жидкостью.

При смещении величины потенциала катода относительно потенциала противоэлектрода от нуля в сторону отрицательных значений имеются следующие реперные состояния: при -0.47 В начинается восстановление Cu²⁺ → Cu⁺ с осаждением на рабочий электрод CuCl; при –1.10 В начинается восстановление $Cu^+ \rightarrow Cu^0$ с осаждением меди; при -2.0 В начинается восстановление $Ag^+ \rightarrow Ag^0$, сопровождающееся осаждением серебра. Изменением концентраций металлов Ag-Cu и соотношения между ними вполне возможно добиться условий, когда при соответствующем изменении потенциала образующиеся вначале пленки CuCl и Cu имеют требуемые значесветопропускания и отражения. ния При дальнейшем увеличении потенциала рабочего электрода начинает формироваться пленка серебра с окончательным более высоким коэффициентом отражения и меньшим светопропусканием. При этом следует учесть данные табл. 1, из которых следует, что за счет изменения концентрации электрохромного вещества можно реализовать значения коэффициентов отражения в широком диапазоне $15 < \rho_{650}^* < 87\%$.

Существенной характеристикой переключаемого стекла-зеркала является способность сохранять зеркальное состояние без потребления электроэнергии после отключения напряжения — оптическая память. На рис. 15 показано изменение

Рис. 16. Изменение коэффициента пропускания излучения при $\lambda = 550$ нм электрохимически переключаемого стекла-зеркала с образованием медной пленки на ITO-электроде в ходе многократных циклических переключений напряжения от -1.8 до +1.8 В при выдержке 20 с в каждом состоянии [21].

коэффициента отражения ρ_{660} после отключения напряжения — 1.8 В. Коэффициент отражения постепенно снижается, но в течение 15—20 мин остается весьма значительным. Способность ячейки достаточно длительное время сохранять высокое отражательное свойство обусловлена вязкостью гелеобразного электролита, который замедляет диффузию анионов к металлической Сu-пленке и предохраняет ее от растворения в электролите. Для сравнения отметим, что в устройстве с ионными жидкостями высокая отражательная способность сохранялась после отключения напряжения значительно дольше — более 2 ч (рис. 10б).

Результаты, приведенные на рис. 16, показывают, что обратимость процессов электроосаждения и растворения металла в переключаемых стеклах-зеркалах сохраняется в ходе многократных (до 900) циклических переключений.

Неизменность оптических свойств в ходе повторяющихся переключений (циклическая стабильность) является важным требованием для электрохимически переключаемого стекла-зеркала, так как определяет его максимальный срок службы. Из расчета одно переключение в сутки при 30-летнем сроке эксплуатации оптические свойства не должны снижаться более чем на 10– 20% после 11000 переключений.

Циклическая стабильность электрохимически переключаемых стекол-зеркал существенно увеличивается при модификации поверхности ITOпокрытия рабочего электрода. Для этого используются монослойные покрытия тиолсодержащих веществ. Ранее было указано, что авторы [13] использовали тиолсодержащее вещество MPTMS. В работе [20] для этой цели применили монослой меркаптопропионовой кислоты. Кроме этого, сверху на такое покрытие были нанесены в один слой наночастицы платины средним размером 3 нм. Наночастицы платины служат центрами осаждения металла из электролита. Наличие центров осаждения металла улучшает морфологию образующейся пленки. Использован электролит, содержащий атомы Ад и Си в соотношении 2 : 3. Применение такого покрытия позволило обеспечить обратимое осаждение-растворение черной металлической пленки в течение 5500 циклов без заметного ухудшения оптических характеристик пленки. При этом была отмечена высокая равномерность светопропускания по поверхности образца размером 50 × 50 мм в переходных состояниях по мере увеличения толщины пленки даже в последнем цикле [20].

Для расширения температурного диапазона применения переключаемых стекол-зеркал были выполнены отдельные исследования с электролитом, в состав которого включены незамерзающие жидкости [22]. Электролит содержал атомы Си и Ві в соотношении 3 : 1. В качестве антифризов, которые не соединяются с ионами электрохромных металлов, были использованы водные растворы метанола, этиленгликоля и глицерина в концентрации по объему 40% воды и 60% одной из этих жидкостей. Применение незамерзающих электролитов обеспечило стабильное обратимое переключение стекол-зеркал между прозрачным и черным состояниями при достаточно низких температурах вплоть до –40°С.

ПРОБЛЕМЫ ДЛЯ РЕШЕНИЯ

Существенное достоинство электрохимически переключаемых стекол-зеркал состоит в малой величине (не более 2.5 В) постоянного электрического напряжения, необходимого для их включения. В переключаемых умных окнах следует использовать электрохимическую ячейку с гладкими электродами для реализации трех стационарных состояний: прозрачное, промежуточное полупрозрачное и зеркальное.

Для коммерческой реализации электрохимически переключаемых стекол-зеркал оконного размера нужно решить последнюю проблему внедрить гелеобразный электролит между стеклами. Как сделать? Выполнить это можно по той же технологии, которая используется для изготовления пленок PDLC и пленок SPD [1]. Отличие заключается в составе и количестве преполимера, который при полимеризации должен образовать связанную полимерную матрицу-сеть, удерживающую электролит. Раствор гелеобразного электролита с преполимером распределяется тонким слоем между двумя пленками из полиэтилентерефталата, каждая с электропроводящим ITO-по-

ЭЛЕКТРОХИМИЯ том 55 № 9 2019

крытием на внутренней поверхности. Все операции, начиная от напыления ITO-покрытия на пленки и далее до завершения, выполняются непрерывно по высокопроизводительной технологии при перематывании изделия с барабана на барабан. Затем преполимер фотополимеризуется при контролируемой повышенной температуре под воздействием ультрафиолетового излучения с образованием связанной полимерной матрицысети. Готовая пленка электрохимически переключается между прозрачным, промежуточными и зеркальным состояниями, и ее можно использовать как для ламинирования оконных стекол, так и в виде гибкой пленки, наклеиваемой на стекла произвольной формы и размера.

БЛАГОДАРНОСТЬ

Автор выражает искреннюю признательность рецензенту за тщательную проработку рукописи и достаточно многочисленные замечания, которые позволили улучшить содержание статьи.

КОНФЛИКТ ИНТЕРЕСОВ

Автор заявляет, что у него нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Майоров, В.А. Коммерческие стеклопакеты с умными стеклами. Ч. 1. *Светопрозрачные конструкции*. 2016. № 1. С. 21. [Mayorov, V.A., Commercial glazings with smart glasses. Pt 1, *Svetoprozrachnue Konstrukcii* (in Russion), 2016, no. 1, p. 21.]
- 2. Майоров, В.А. Коммерческие стеклопакеты с умными стеклами. Ч. 2. *Светопрозрачные конструкции.* 2016. № 2. С. 8. [Mayorov, V.A., Commercial glazings with smart glasses. Part 2, *Svetoprozrachnue Konstrukcii* (in Russion), 2016, no. 2, p. 8.]
- Zaromb, S., Theory and Design Principles of the Reversible Electroplating Light, *J Electrochemical Society*, 1962, vol. 109, p. 903. https://doi.org/10.1149/1.2425204
- Carrière, D., Du Pasquier, A., Herrera Urbina, R., and Tarascon J.-M., A reversible inorganic electrochromic solution system, *Solar Energy Materials and Solar Cells*, 2000, vol. 62, p. 431. https://doi.org/10.1016/S0927-0248(00)00026-X
- Esplandiu, M.J. and Hagenström, H., Functionalized self-assembled monolayers and their influence on silver electrodeposition, *Solid State Ionics*, 2002, vol. 150, p. 39.

https://doi.org/10.1016/S0167-2738(02)00262-X

- Tench, D.M. and Warren, L.F., Jr., Reversible electrodeposition device with ionic liquid electrolyte. Pat. 6552843 B1 (US). 2003.
- Krastev, I., Valkova, T., and Zielonka, A., Effect of electrolysis conditions on the deposition of silver–bismuth alloys, *J. Appl. Electrochem.*, 2003, vol. 33, p. 1199.

https://doi.org/10.1023/B:JACH.0000003867.58916.47

- Foster, D.G., Shapir, Y., and Jorne, J., The Effect of Rate of Surface Growth on Roughness Scaling, *J. Electrochem. Soc.*, 2005, vol. 152, p. C462. https://doi.org/10.1149/1.1921767
- 9. Oliveira, M.R.S., Mello, D.A.A., Ponzio, E.A., and de Oliveira, S.C., KI effects on the reversible electrodeposition of silver on poly(ethylene oxide) for application in electrochromic devices, *Electrochim. Acta*, 2010, vol. 55, p. 3756.

https://doi.org/10.1016/j.electacta.2009.11.023

- Fukui, R., Katayama, Y., and Miura, T., The Influence of Potential on Electrodeposition of Silver and Formation of Silver Nanoparticles in Some Ionic Liquids, *J. Electrochem. Soc.*, 2011, vol. 158, p. D567. https://doi.org/10.1149/1.3610202
- Serizawa, N., Katayama, Y., and Miura, T., EQCM Measurement of Ag (I)/Ag Reaction in an Amide-Type Room-Temperature Ionic Liquid, *J. Electrochem. Soc.*, 2009, vol. 156, p. D503. https://doi.org/10.1149/1.3223669
- Araki, S., Nakamura, K., Kobayashi, K., Tsuboi, A., and Kobayashi, N., Electrochemical Optical-Modulation Device with Reversible Transformation Between Transparent, Mirror, and Black, *Advanced Materials*, 2012, vol. 24, p. OP122. https://doi.org/10.1002/adma.201200060
- Park, C., Seo, S., Shin, H., Sarwade, B.D., Na, J., and Kim, E., Switchable silver mirrors with long memory effects, *Chem. Sci.*, 2015, vol. 6, p. 596. https://doi.org/10.1039/c4sc01912a
- Kimura, R., Tsuboi, A., Nakamura, K., and Kobayashi, N., Effects of silver halide complexes on optical and electrochemical properties of silver depositionbased electrochromic device, *Solar Energy Materials and Solar Cells*, 2018, vol. 177, p. 128. https://doi.org/10.1016/j.solmat.2017.01.014
- Kim, T.-Y., Cho, S.M., Ah C.S., Suh, K.-S., Ryu, H., and Chu, H.Y., Electrochromic device for the reversible electrodeposition system, *J. Information Display*, 2014, vol. 15, no. 1, p. 13. https://doi.org/10.1080/15980316.2014.882280

- 16. Onodera, R., Seki, Y., Seki, S., Yamada, K., Sawada, Y., and Uchida, T., Smart Windows, Switchable between Transparent, Mirror, and Black States, Fabricated Using Rough and Smooth Indium Tin Oxide Films Deposited by Spray Chemical Vapor Deposition, *Applied Physics Express*, 2013, vol. 6, 026503 (1-3). https://doi.org/10.7567/APEX.6.026503
- Ye, T., Xiang, Y., Ji, H., Hu, C., and Wu, G., Electrodeposition-based electrochromic devices with reversible three-state optical transformation by using titanium dioxide nanoparticle modified FTO electrode, *RSC Advances*, 2016, vol. 6, p. 30769. https://doi.org/10.1039/C6RA03315F
- Wu, L., Yang, D., Fei, L., Huang, Y., Wu, F., Sun, Y., Shi, J., and Xiang, Y., Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices, *Nanoscale Res. Lett.*, 2017, vol. 12, no. 1:390. https://doi.org/10.1186/s11671-017-2163-0
- Park, C., Na, J., Han, M., and Kim, E., Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror, *ACS Nano*, 2017, vol. 11, no. 7, p. 6977. https://doi.org/10.1021/acsnano.7b02294
- Barile, C.J., Slotcavage, D.J., Hou, J., Strand, M.T., Hernandez, T.S., and McGehee, M.D., Dynamic Windows with Neutral Color, High Contrast, and Excellent Durability Using Reversible Metal Electrodeposition, *Joule*, 2017, vol. 1, no. 1, p. 133. https://doi.org/10.1016/j.joule.2017.06.001
- Eh, A.L.-S., Lin, M.-F., Cui, M., Cai, G., and Lee, P.S., A copper-based reversible electrochemical mirror device with switchability between transparent, blue, and mirror states, *J. Mater. Chem. C*, 2017, vol. 5, no. 26, p. 6547.
 - https://doi.org/10.1039/C7TC01070B
- 22. Alcaraz, G.K.A., Juarez-Rolon, J.S., Burpee, N.A., and Barile, C.J., Thermally-stable dynamic windows based on reversible metal electrodeposition from aqueous electrolytes, *J. Mater. Chem. C*, 2018, vol. 6, no. 8, p. 2132.

https://doi.org/10.1039/C7TC05222G