УДК 541.138.3

ЭЛЕКТРОХИМИЧЕСКОЕ ПОВЕДЕНИЕ 1-НИТРО-6-СУЛЬФОКИСЛОТЫ НАФТАЛИНА

© 2021 г. А.А.Конарев*

Федеральное государственное унитарное предприятие "Государственный научный центр "НИОПИК"" ул. Большая Садовая, 1, корп. 4, Москва, ГСП-5, 123995 Россия *e-mail: konarev.niopik@gmail.com

Поступила в редакцию 26.02.2020 г. После доработки 22.04.2020 г. Принята к публикации 15.05.2020 г.

Исследовано электрохимическое поведение 1-нитро-6-сульфокислоты нафталина методами полярографии, вольтамперометрии на стеклоуглероде, электролизом при контролируемом потенциале и в гальваностатическом режимах. Показано, что 1-нитро-6-сульфокислота нафталина подобно α-нитронафталину и 1-нитро-3,6,8-трисульфокислоте нафталина полярографически восстанавливается в сильнокислой среде на фоне 0.1 N H₂SO₄ в единую шестиэлектронную стадию до соответствующей аминосульфокислоты нафталина через промежуточно образующийся гидроксиламин. Торможение полярографического восстановления 1-нитро-6-сульфокислоты при этом в виде спада тока на полярограмме, а также сильная зависимость параметров и формы поляризационных кривых от состава фонового раствора и рН в нейтральных и щелочных растворах связаны с анионным характером восстанавливающейся частицы, обусловленной присутствием кислой сульфогруппы в ее молекуле. Для препаративного электросинтеза 1-амино-6-сульфокислоты нафталина определены технологические параметры: плотность тока 5–10 А/дм², температура 30–32°С и концентрация исходного нитросоединения 10-13%, которые на катоде из никеля марки Н3 и нержавеющей стали Х18Н10Т в аммиачном буферном растворе с рН 7.0-8.2 обеспечивают выход целевого продукта по веществу 87.0-93.5%, по току 38.0-42.4% и по выделению из раствора 69.0-80.0%. Для повышения эффективности электровосстановления технической изомерной смеси нитро-Клеве-кислот рекомендуется ее предварительная очистка и создание инертной атмосферы как при электролизе, так и при выделении целевых Клеве-кислот из раствора.

Ключевые слова: Клеве-кислоты, 1-нитро-6-сульфокислота нафталина, 1-амино-6-сульфокислота нафталина, нафтилсульфогидроксиламин, полярография, вольтамперометрия на стеклоуглероде, микроэлектролиз, электролиз гальваностатический и потенциостатический

DOI: 10.31857/S0424857021010059

введение

Изомерная смесь 1,6- и 1,7-нафтиламиносульфокислот (Клеве-кислоты) находит широкое применение в производстве красителей [1]. Клеве-кислоты получают восстановлением соответствующих нитросульфокислот нафталина, используя различные химические реагенты:

В промышленности Клеве-кислоты получают восстановлением смеси нитросульфокислот нафталина чугунной стружкой [2]. При этом производство отягощено большим количеством сточных вод и твердых неутилизируемых отходов в виде угольно-железного шлама (на 1 т продукта образуется 4.0—4.5 т твердых отходов). Кроме того, выход Клеве-кислот нестабилен и определяется качеством чугунной стружки и ее подготовкой перед восстановлением.

Данные, касающиеся электрохимического восстановления изомерной смеси нафтилнитросульфокислот (ННСК), в литературе весьма ограничены [3]. В работе [3] показано, что электрохимическое восстановление 1,6- и 1,7-нафтилнитросульфокислот нафталина на свинцовом катоде в кислой среде протекает лишь до образования нафтилгидроксиламиносульфокислот. Повышение температуры и активности электрода путем осаждения цинка или меди на свинцовом катоде позволило повысить скорость реакции, но не обеспечило дальнейшее превращение гидроксиламинопроизводных в амин.

В работе [4] исследовано электрохимическое восстановление технической изомерной смеси 1.6и 1,7-нафтилнитросульфокислот в соответствующие аминосульфокислоты нафталина (Клеве-кислоты) в сильнокислой и аммиачно-буферной средах на различных катодных материалах. На никелевом катоде в аммиачно-буферной среде в условиях препаративного электролиза выход Клеве-кислот по веществу в растворе составляет 88-93%, выход по току - 58-60%. Однако выход Клеве-кислот по выделению из растворов, полученных после электролиза, составляет 39.0-43.0% против 52.0-60.0% при химическом восстановлении. Кроме того, выделенные из реакционных масс по методике действующего производства Клеве-кислоты в отличие от Клеве-кислот, полученных химическим путем, обогащены изомером 1,7-Клеве-кислоты. Так, соотношение изомерных аминосульфокислот нафталина в пасте составляет: 1,6-Клеве-кислота – 8–9%, 1,7-Клеве-кислота – 80–90%, 1,8-Пери-кислота – 6-8%. Поэтому разработка технологии электровосстановления технической изомерной смеси 1,6- и 1,7-нафтилнитросульфокислот в соответствующие аминосульфокислоты нафталина потребовала предварительного обстоятельного изучения электрохимического поведения 1-нитро-6сульфокислоты нафталина (НСКН), как модельного соединения для установления причины более низкого выхода Клеве-кислот по выделению из раствора, полученного после электролиза, и уменьшения концентрации 1-амино-6-сульфокислоты нафталина в выделенном продукте по сравнению с химическим восстановлением изомерной смеси 1,6- и 1,7-нитросульфокислот нафталина.

МЕТОДИКА ЭКСПЕРИМЕНТА

Полярограммы снимали с помощью полярографа ПУ-1. Ртутный капающий электрод (**р. к. э.**) с принудительным отрывом капли лопаточкой имел следующие характеристики, определенные в 0.1 N растворе КС1 при разомкнутой цепи и высоте столба ртути 50 см: m = 1.0 мг/с, t = 0.65 с. Потенциалы приведены относительно насыщенного каломельного электрода.

Фоновыми электролитами служили растворы Бриттона—Робинсона со значениями pH от 2.0 до 11.0 и постоянной ионной силой 0.5 M, растворы HC1, H_2SO_4 и NaOH с концентрацией 0.1—1.0 N и аммиачно-буферные растворы с pH 5.0—9.0, а также растворы хлорида аммония с концентрацией 0.1—1.0 N.

Циклические вольт-амперные кривые на стеклоуглероде марки СУ-2000 (СУ) регистрировали с помощью полярографа ПУ-1 в дифференциальном режиме. Применявшийся в работе стационарный электрод представлял собой торец стеклоуглеродного стержня диаметром 2 мм [8].

Ячейка представляла собой конический стеклянный сосуд объемом 20 см³ с термостатируемой рубашкой. Электродом сравнения служил насыщенный каломельный полуэлемент, относительно которого и приведены значения потенциалов. В качестве вспомогательного электрода использовали также насыщенный каломельный полуэлемент.

Для получения воспроизводимых результатов СУ шлифовали на мелкой шкурке, полировали до зеркального блеска фетром, пропитанным глицерином с оксидом алюминия. После промывки дистиллированной водой электрод выдерживали в концентрированной серной кислоте и снова тщательно промывали. Непосредственно перед записью каждой вольт-амперной кривой электрод промывали водой и протирали фильтровальной бумагой. Электролит, в который погружали электрод, продували инертным газом для удаления растворенного кислорода.

С целью идентификации продуктов восстановления НСКН, а также оценки его эффективности проводили электролиз при контролируемых потенциалах с использованием электронного потенциостата П-5848. Электролиз на электродах из различных материалов осуществляли в стеклянной цилиндрической ячейке с термостатируемой рубашкой с разделенными катионообменной мембраной МК-40 анодным и катодным пространствами. Анодом служила платиновая пластинка, анолитом – 10%-ный раствор серной кислоты. Объем католита составлял 70 мл. Термостатированная ячейка имела пришлифованную крышку со штуцерами для токоподводов, отбора проб, установки капилляра Луггина и подачи азота. Катод из исследуемого металла с поверхностью

0.15 дм² устанавливали на дне ячейки. Токоподвод осуществляли с помощью ножки, впаянной в стеклянную трубку. Для перемешивания католита использовали магнитную мешалку.

Потенциалы задавали в соответствии с данными, полученными из поляризационных измерений на твердых электродах.

В ходе электролиза полярографически и вольтамперометрически контролировали изменение концентрации исходного нитросоединения и продуктов реакции [8].

Восстановление НСКН в гальваностатическом режиме проводили в такой же стеклянной цилиндрической ячейке, что и электролиз при контролируемом потенциале.

Для полярографических и вольтамперометрических исследований НСКН и АСКН очищали двойной перекристаллизацией из деионизованной воды. НСКН в виде аммонийной соли выделяли из технической изомерной смеси нафтилнитросульфокислот с концентрацией 0.5-0.7 М и составом: 40.5% 1-нитро-6-сульфокислоты нафталина, 51.0% 1-нитро-7-сульфокислоты нафталина и 3.5% 1-нитро-8-сульфокислоты нафталина, полученной с действующего производства. Чистоту выделенной НСКН оценивали методом ТСХ, используя в качестве элюента систему: уксусная кислота : бутанол : дистиллированная вода в соотношении 1:4:5. Кроме того, соотношение изомеров аминосульфокислот нафталина в растворе и в выделенном продукте анализировали методом высокоэффективной жидкостной хроматографии (ВЭЖХ), приведенном в [4].

α-Нитронафталин, используемый для полярографических исследований, дважды перекристаллизовывали из этилового спирта.

Концентрацию промежуточно образующейся гидроксиламиносульфокислоты нафталина определяли вольтамперометрически на фоне 1 М раствора NaOH в дифференциальном режиме [5], а концентрацию АСКН — методом диазотирования, считая на диазотирующиеся продукты с молекулярной массой 223.

Выделение целевой АСКН из раствора, полученного после электролиза, проводили его подкислением серной кислотой до pH реакционной массы 3.9–4.1 при температуре 50–55°С, с последующим охлаждением до 20–25°С и подкислением до pH 2.0 при перемешивании, а затем при этой температуре давали выдержку в течение 18– 20 ч при остановленной мешалке с периодическим размешиванием реакционной массы.

Рис. 1. Полярограммы НСКН на фоне 0.1 N H₂SO₄ (*1*) и буферных растворов Бриттона–Робинсона при pH: 2 - 2.7; 3 - 5.3; 4 - 8.3; 5 - 10.3; 6 - 0.1 N NaOH. Концентрация НСКН $- 2.8 \times 10^{-4}$ M, температура 20°С.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Полярографическое восстановление НСКН

В сильнокислой среде на фоне 0.1 N серной и соляной кислот наблюдается одна волна со слабовыраженным спадом тока (рис. 1), аналогичным для полярографического восстановления 1-нитро-3,6,8-трисульфокислоты нафталина и обусловленным анионным характером восстанавливающегося нитросоединения [6]. При рН выше 1.96 спад тока исчезает и в растворах с pH 1.96–5.3, на полярограммах наблюдаются две волны, причем высота второй волны составляет 1/3 от суммарного предельного тока. При увеличении рН фона высота второй волны уменьшается, а при рН 6.2 полностью исчезает и на полярограммах регистрируется одна волна. Зависимость предельного тока первой волны от рН в интервале от 1.96 до 4.5 носит сложный характер, а выше 4.5 перестает зависеть от величины рН (рис. 1).

Потенциал полуволны первой волны, как видно из рис. 1, с ростом pH сдвигается в область более отрицательных значений, а $E_{1/2}$ второй волны практически не изменяется и составляет -1.0...-1.05 В. Зависимость $E_{1/2}$ от pH имеет S-образный характер. В интервале pH 3.0-8.0 $\Delta E_{1/2}/\Delta$ pH составляет 70 мB/ед. pH. В растворах с pH выше 8.0 $E_{1/2}$ первой волны сохраняется постоянным и составляет -0.80 В.

Прямые, характеризующие зависимости I_d первой волны на фоне 0.1 N раствора серной кислоты от корня квадратного из высоты ртутного столба и от концентрации нитросоединения, линейны и проходят через начало координат, а температурный коэффициент предельного тока первой волны в кислых растворах составляет 1.3—1.6%/град, что указывает на диффузионную природу тока первой волны.

В аммиачных буферных растворах с pH 4.95– 8.6 НСКН восстанавливается, образуя на поляро-

Таблица 1. Влияние pH на полярографическое восстановление HCKH в аммиачных буферных (0.1 N NH₄Cl + + NH₄OH) растворах. Концентрация HCKH – 2.8 × \times 10⁻⁴ M

pH	$-E_{1/2}, \mathbf{B}$	<i>I</i> _d , мкА
4.95	0.75	1.46
6.30	0.75	1.50
7.30	0.75	1.50
8.60	0.76	1.50

грамме одну волну. При этом предельный ток и $E_{1/2}$ в исследованном интервале pH практически не изменяются (табл. 1).

Для предельного тока волны восстановления HCKH в аммиачном буферном растворе с pH 8.6 наблюдается линейная зависимость от концентрации вещества, проходящая через начало координат, зависимость I_d от корня квадратного из высоты ртутного столба отсекает отрезок на оси абсцисс, а температурный коэффициент составляет 0.7–0.8%/град. Эти данные свидетельствуют о наличии адсорбционной составляющей тока волны восстановления HCKH.

Число электронов, принимающих участие в электродном процессе, оценивали сравнением

высоты волны α-нитронафталина, восстанавливающегося в сильнокислой среде аналогично другим нитросульфопроизводным нафталина [6, 7] до соответствующего аминосоединения с наблюдаемой одной шестиэлектронной стадией через промежуточно образующийся гидроксиламин, а в щелочной среде – четырех электронов до гидроксиламиносоединения с высотой волны НСКН в идентичных условиях. При этом высота волн НСКН как в сильнокислой, так и в щелочной средах равна высоте волны α-нитронафталина. Поэтому можно полагать, что полярографическое восстановление НСКН также протекает в сильнокислой среде в одну единую шестиэлектронную стадию до соответствующей АСКН, а в щелочной среде с затратой четырех электронов до соответствующей гидроксиламиносульфокислоты нафталина.

Наличие неразделенной шестиэлектронной волны восстановления α-нитронафталина [7], 1-нитро-3,6,8-трисульфокислоты нафталина [6], а также НСКН, вероятно, можно объяснить образованием в сильнокислой среде активного электрофильного промежуточного продукта — мезомерного карбониевого иона, возникающего в результате поверхностной протонизации нафтилсульфогидроксиламина и последующей его дегидратации, напоминающего структуру хинонимина:

который восстанавливается при тех же потенциалах, что и исходное нитросоенинение.

Подобный промежуточный продукт образуется в результате дегидратации N-гидроксиламинофенола и восстанавливается легче исходного соединения [8], в результате чего о- и п-нитрофенолы полярографически восстанавливаются непосредственно до амина, образуя единую шестиэлектронную волну. В то же время полярографическое восстановление 2-нитро-4,8-дисульфокислоты нафталина, как показали наши исследования, на фоне 0.1 N серной и соляной кислот протекает в две сталии аналогично нитробензолу и его производным [9] с суммарным потреблением шести электронов: сначала наблюдается четырехэлектронная волна, приводящая к образованию нафтилсульфогидроксиламина, а затем регистрируется при более отрицательных потенциалах двухэлектронная волна его последующего восстановления в соответствующее аминосоединение. Наблюдаемое отличие в полярографическом поведении 2-нитро-4,8-дисульфокислоты нафталина от α-нитронафталина и других его сульфозамещенных в сильнокислой среде, видимо, можно объяснить невозможностью образования мезомерного карбониевого иона, связанной со строением молекулы нитродисульфокислоты нафталина.

Электровосстановление НСКН на СУ

На катодной ветви циклических поляризационных кривых в 0.1 N растворе серной кислоты, а также в буферных растворах Бриттона—Робинсона с рН 1.96—11.0 наблюдается один необратимый пик восстановления НСКН (табл. 2), как и на р. к. э. При увеличении рН раствора высота пика уменьшается, а на фоне 0.1 N раствора NaOH пик разделяется на два приблизительно равной высоты. При реверсе развертки от потенциала -1.3 В регистрируется анодный пик при потенциалах -0.35...+0.24 В в зависимости от pH фонового раствора, связанный с окислением промежуточного продукта -1-гидроксиламино-6-сульфокислоты нафталина, образующегося в результате восстановления HCKH. К тому же, окисление конечного продукта восстановления нитросоединения - ACKH на фоне 0.1 N H₂SO₄ наблюдается при более положительном потенциале, составляющем +0.65 В, а с увеличением pH фонового раствора E_p сдвигается в катодную сторону, что указывает на облегчение процесса окисления ACKH в щелочной среде (рис. 2).

Потенциал пика восстановления HCKH, как видно из табл. 2, сдвигается в область более отрицательных значений, а в интервале pH 8.3–14.0 мало зависит от pH и составляет -0.71...-0.80 В. Подобная зависимость наблюдается на р. к. э. (рис. 1). При этом как на р. к. э., так и CУ электровосстановление HCKH протекает при близких значениях потенциалов.

В табл. 3 приведены результаты исследования влияния pH на электровосстановление HCKH на CУ в аммиачных буферных растворах с pH 7.45—10.30 при постоянной ионной силе.

Из данных, представленных в табл. 2 и 3, следует, что электровосстановление НСКН в слабощелочных аммиачных буферных растворах протекает при близких потенциалах, что и в буферных растворах Бриттона—Робинсона. Однако высота пиков восстановления в последних заметно ниже по сравнению с аммиачными буферными растворами, и эта разница увеличивается с повышением pH фона. Так, предельный ток восстановления HCKH в буферном растворе Бриттона— Робинсона с pH 10.3 составляет 57 мм, а в аммиачном буферном растворе с той же величиной pH — 70 мм.

Ароматические сульфокислоты являются сильными кислотами (по силе сульфокислоты

Рис. 2. Дифференциальные вольтамперограммы окисления АСКН на СУ на фоне различного состава: $I - 0.1 \text{ N H}_2\text{SO}_4$; 2 - буферный раствор Бриттона–Робинсона с рН 5.2; <math>3 - 0.1 N NaOH. Концентрация АСКН – $3.8 \times 10^{-4} \text{ M}$.

ЭЛЕКТРОХИМИЯ том 57 № 1 2021

Таблица 2. Влияние pH на электровосстановление HCKH на CV в буферных растворах Бриттона–Робинсона. Концентрация HCKH – 2×10^{-4} M, температура 20° C

nH	Катодни	ый пик	Анодный пик	
pm	$-E_{\rm p},{\rm B}$	$I_{\rm p}$, мм	<i>E</i> _p , B	$I_{\rm p}$, мм
0.1 N H ₂ SO ₄	0.39	120	+0.24	31
1.96	0.42	102	+0.20	29
2.70	0.47	100	+0.15	30
4.50	0.56	98	+0.10	30
5.30	0.59	94	+0.03	30
6.20	0.63	91	0.00	30
7.20	0.66	82	-0.02	29
8.30	0.71	68	-0.10	25
9.40	0.73	64	-0.15	24
10.30	0.76	57	-0.20	24
11.00	0.77	54	-0.23	24
0.1 N NaOH	0.80	35	-0.35	18
	1.04*	26*		

* *E*_p и *I*_p для второго катодного пика.

близки к серной и соляной кислотам [3]) и в объеме раствора находятся в диссоциированном состоянии. Поэтому было исследовано влияние ионной силы раствора на электровосстановление HCKH в растворе 0.1 N NH_4OH с добавкой NH_4Cl (рис. 3).

Как видно из рис. 3, с увеличением ионной силы раствора необратимый пик восстановления

Рис. 3. Циклические вольтамперограммы восстановления HCKH на СУ на фоне 0.1 N NH₄OH с добавкой NH₄Cl, N: 1 - 1.0; 2 - 0.1; 3 - 0.01. Концентрация HCKH $- 2 \times 10^{-4}$ M, температура 20°C.

KOHAPEB

	Course have	Катоднь		Анодный пик	
рн	Состав фона	$-E_{\rm p},{ m B}$	<i>I</i> _р , мм	$-E_{\rm p},{ m B}$	<i>I</i> _р , мм
7.45	0.01 N NH ₄ OH + 1.99 N NH ₄ Cl	0.67	87	0.11	37
8.40	$0.1 \text{ N NH}_4\text{OH} + 1.9 \text{ N NH}_4\text{Cl}$	0.70	87	0.16	37
9.30	$0.5 \text{ N NH}_4\text{OH} + 1.5 \text{ N NH}_4\text{Cl}$	0.72	85	0.21	37
9.70	1.0 N NH ₄ OH + 1.0 N NH ₄ Cl	0.74	81	0.23	37
10.30	$1.5 \text{ N NH}_4\text{OH} + 0.5 \text{ N NH}_4\text{Cl}$	0.77	70	0.26	34
~12.0	2 N NH ₄ OH	0.79	32	0.35	29
		1.00*	22*		

Таблица 3. Влияние pH на электровосстановление HCKH на СУ в аммиачных буферных растворах при постоянной ионной силе. Концентрация HCKH – 2 × 10⁻⁴ M

**E*_{p/2} и *I*_p для второго катодного пика.

Таблица 4. Электровосстановление НСКН на СУ на фоне различных электролитов при потенциостатическом режиме. Концентрация НСКН $- 2 \times 10^{-4}$ М, продолжительность микроэлектролиза 30 мин, температура $20-22^{\circ}$ С

Состав фонового раствора	<i>E</i> _p , B	<i>I</i> _р , мкА	Потенциал электрода, В	Продукты электролиза
0.1 N H ₂ SO ₄ , pH 0.15	-0.65	1.16	-0.7	Гидроксиламин
			-1.01.2	Гидроксиламин и амин
1 N KCl, pH 6.9	-0.83	1.16	-0.9	Гидроксиламин
			-1.6	Гидроксиламин
1 N NH ₄ Cl, pH 4.4	-0.75	1.32	-0.9	Гидроксиламин
			-1.6	Гидроксиламин и амин
$1 \text{ N NH}_4\text{Cl} + \text{NH}_4\text{OH}, \text{pH 7.5}$	-0.80	1.3	-0.85	Гидроксиламин
			-1.6	Гидроксиламин и амин

НСКН сдвигается в область менее электроотрицательных значений потенциала. Так, с увеличением концентрации электролита с 0.01 до 1.0 N раствора $E_{\rm p}$ сдвигается на 100 мВ в анодную сторону. При этом существенно увеличивается высота катодного пика, а продуктами восстановления НСКН являются, видимо, соответствующий нафтилсульфогидроксиламин, на что указывают анодные пики его окисления в соответствующее нитрозосоединение [4, 5] при потенциалах -0.14...-0.25 В (пики A_2), и анион-радикал (пики A_1), обратимо окисляющийся в исходное соединение при потенциалах, близких к E_p HCKH, наблюдающиеся при развертке потенциала в анодном направлении от -1.4 В. При этом образование АСКН не регистрируется.

Однако как в сильнокислом растворе на фоне 0.1 N H_2SO_4 (рис. 4), так и в аммиачном буферном растворе (0.7 N NH₄Cl + NH₄OH) с pH 8.4 (рис. 5) при микроэлектролизе на СУ при потенциалах -1.0...-1.2 и -1.2...-1.4 В соответственно в течение 10–30 мин и при последующей развертке потенциала в анодном направлении на вольтамперограмме регистрируются не только пики окисления нафтилсульфогидроксиламинопроизводного (пик A_2) и анион-радикала (пики A_1), но и пик окисления АСКН, что подтверждается введением в раствор последней (кривая 6 на рис. 4, кривая 5 на рис. 5). Из рис. 4 и 5 видно, что соотношение образующихся гидроксиламино- и аминосоединений зависит от залаваемого потенциала восстановления НСКН. При потенциалах предельных токов как в кислых, так и аммиачно-буферных растворах восстановление НСКН протекает с образованием нафтилсульфогидроксиламина, а при потенциалах, близких к разряду фона, - с образованием нафтилсульфогидроксиламина и АСКН. Причем с увеличением катодного потенциала концентрация нафтилсульфогидроксиламина уменьшается, а концентрация АСКН увеличивается. Так как электровосстановление НСКН протекает с участием протонов, то были проведены исследования ее восстановления на СУ в растворах различной кислотности в присутствии доноров протонов разной химической природы. Результаты электровосстановления НСКН на фоне различных электролитов на СУ и потенциостатического режима микроэлектролиза при потенциалах предельных токов приведены в табл. 4.

Рис. 4. Классическая вольтамперограмма восстановления HCKH(*1*), циклическая дифференциальная вольтамперограмма восстановления HCKH (*2*), а также дифференциальные вольтамперограммы окисления продуктов восстановления HCKH, образующихся при различных потенциалах в течение 30 мин: E = -0.7 (*3*); E = -1.0 (*4*); E = -1.2 B (*5*) и дифференциальная вольтамперограмма ACKH (*6*) на фоне 0.1 N H₂SO₄. Концентрация HCKH 2.5 × 10⁻⁴ M, концентрация ACKH 1.9 × 10⁻⁴ M, скорость развертки потенциала – 20 мB/с.

Из данных, приведенных в табл. 4, следует, что в исследованных фоновых растворах продуктами электровосстановления НСКН на СУ при потенциалах, соответствующих предельному току регистрируемой волны, является соответствующее гидроксиламинопроизводное. При потенциалах, близких к разряду фона (-1.6...-1.7 В), наряду с последним образуется АСКН. Аналогичные результаты получены на фоне 0.1 N H₂SO₄. Однако на фоне 1 N раствора КСІ даже при потенциале -1.6 В дальнейшее восстановление гидроксиламиносульфокислоты нафталина в соответствующее аминосоединение не наблюдается.

В растворах NH₄Cl и аммиачно-буферных растворах с pH 7.5–8.6 процесс электровосстановления м-HCKH не только сдвинут в область более положительных потенциалов по сравнению с растворами KCl, но и при этом облегчается дальнейшее восстановление гидроксиламинопроизводного в амин. По-видимому, это обусловлено

высокой протонодонорной способностью NH₄⁺ по сравнению с водой (роль доноров протонов в растворах KCl выполняют молекулы воды), обеспечивающей протонирование нитро- и гидрок-

ЭЛЕКТРОХИМИЯ том 57 № 1 2021

силаминовой групп, рекомбинацию анионов НСКН с донорами протонов, а также возможное участие NH_4^+ в образовании электроактивных частиц с анионами НСКН (ионных пар) [9].

При химическом восстановлении в присутствии хлорида аммония нитробензол восстанавливается в анилин с большим выходом, чем в присутствии других электролитов (MgCl₂, CaCl₂, Na₂SO₄, KCl), а в случае восстановления α -нитронафталина положительный эффект усиливается [10]. В этих условиях в присутствии хлорида аммония pH раствора лежит в пределах 7.6–8.4, а с хлоридом кальция – 11.0–11.75.

Как показано в [4], более эффективно препаративное электровосстановление технической изомерной смеси нитро-Клеве-кислот протекает на катодах из свинца, меди, титана и никеля, поэтому для электровосстановления НСКН в потенциостатическом режиме были использованы эти же металлы в качестве катодов. Предварительно были измерены поляризационные кривые восстановления НСКН на этих катодах в аммиач-

Рис. 5. Классическая вольтамперограмма восстановления HCKH (*1*), циклическая дифференциальная вольтамперограмма восстановления HCKH (*2*), а также дифференциальные вольтамперограммы окисления продуктов восстановления HCKH, образующихся при различных потенциалах в течение 30 мин: E = -1.2 В (*3*); E = -1.6 В (*4*) и дифференциальная вольтамперограмма ACKH (*5*) на фоне аммиачного буферного раствора (0.7 N NH₄Cl + NH₄OH) с pH 8.4. Концентрация HCKH – 2.5×10^{-4} M, концентрация ACKH – 1.9×10^{-4} M, скорость развертки потенциала 20 мB/c.

ном буферном растворе (0.22 N NH₄Cl + NH₄OH) с pH 8.3 (рис. 6).

Как видно из рис. 6, поляризационные кривые восстановления НСКН, измеренные на титановом, медном, никелевом и свинцовом электродах, имеют только одну волну восстановления с $E_{1/2} - 0.93, -0.72, -0.48$ и -0.45 В соответственно. Высота наблюдаемых волн восстановления НСКН примерно одинакова.

Таблица 5. Результаты электровосстановления НСКН при контролируемом потенциале на никелевом электроде в аммиачном буферном растворе (0.22 N NH₄Cl + + NH₄OH) с pH 8.3. Концентрация НСКН – 4×10^{-2} M, температура 25°C

	Выход по веществу, %			
Потенциал катода, В	ACKH	1-гидроксиламино-6- сульфокислота нафталина		
-0.50	_	84.0		
-0.70	_	84.7		
-1.10	78.2	15.0		
-1.30	92.5	_		

Потеншиостатическое восстановление НСКН проводили в аммиачном буферном растворе с pH 8.3 на никелевом катоде, так как на нем восстановление НСКН протекает с меньшей поляризацией и с лучшей эффективностью электровосстановления технической смеси нитро-Клевекислот в этой среде [4]. Результаты исследования приведены в табл. 5. При электролизе на никелевом катоде в потенциостатическом режиме в зависимости от задаваемого потенциала электрода в реакционных растворах после электролиза наряду с АСКН обнаружен соответствующий нафтилсульфогидроксиламин. Последний, как видно из табл. 5 и рис. 7, образуется с высоким выходом (84.0-84.7%) при потенциалах электрода -0.5...-0.70 В, близких к потенциалу полуволны.

При более отрицательных потенциалах катода (-1.1...-1.3 В) сначала в растворе наблюдается накопление гидроксиламинопроизводного, достигая максимума при полной конверсии НСКН, которое в ходе электролиза превращается в АСКН. Причем чем отрицательнее потенциал электрода, тем меньше концентрация гидроксиламиносульфокислоты нафталина в растворе в процессе электролиза, а АСКН образуется с самого начала процесса.

Рис. 6. Поляризационные кривые восстановления HCKH в аммиачном буферном растворе (0.22 N NH₄Cl + + NH₄OH) с pH 8.3 на титановом (*1*), медном (*2*), ни-келевом (*3*) и свинцовом (*4*) катодах. Концентрация HCKH – 4×10^{-2} M.

Результаты восстановления исследуемых нитросульфокислот нафталина в гальваностатическом режиме приведены в табл. 6, из которых следует, что восстановление разбавленных растворов НСКН в гальваностатическом режиме в аммиачной буферной среде с рН 8.3 при плотности тока 1.0 А/дм² и температуре 25°С протекает с выходом АСКН по веществу 93.3% и выходом по току 71%, как и в случае электролиза при контролируемом потенциале. Однако при восстановлении технической изомерной смеси нитро-Клеве-кислот достигаются более низкий выход аминосульфокислот нафталина по веществу, составляющий 77.8%, и выход по току — 58.2%. Кроме того, в реакционном растворе, полученном после электролиза, остается непрореагировавший промежуточ-

Рис. 7. Зависимость изменения концентраций НСКН (1-4), 1-гидроксиламино-6-сульфокислоты нафталина $(1_1, 2_1, 3_1, 4_1)$ и АСКН $(3_{11}, 4_{11})$ от продолжительности электролиза в аммиачном буферном растворе $(0.22 \text{ N NH}_4\text{Cl} + \text{NH}_4\text{OH})$ с рН 8.3 при различных потенциалах никелевого катода: 1 - 0.50; 2 - 0.70; 3 - 1.1; 4 - 1.3 В. Концентрация НСКН -4×10^{-2} М.

но образующийся нафтилсульфогидроксиламин с выходом по веществу 11.2%.

Препаративное электровосстановление НСКН

Результаты, приведенные в табл. 6, послужили основанием для более подробного исследования влияния различных технологических параметров на процесс восстановления НСКН, в частности материала катода, pH среды, плотности тока и температуры.

В качестве катодных материалов использовали медь, никель, свинец и нержавеющую сталь марки X18H10T. Результаты этого исследования приведены в табл. 7 и на рис. 8 и 9.

Таблица 6. Восстановление НСКН в аммиачном буферном растворе (0.22 N NH₄Cl + NH₄OH) с pH 8.2 в гальваностатическом режиме. Катод – никель, плотность тока 1.0 А/дм², температура 25°C, концентрация НСКН – 0.05 M

Нитросульфокислота нафталина	Выход А	СКН, %	Выход нафтилсульфогидроксиламина, 9		
	по веществу	по току	по веществу	по току	
1-Нитро-6-сульфокислота нафталина	93.3	71.0	—	—	
Техническая изомерная смесь нитро- Клеве-кислот*	77.8	58.2	11.2	7.7	

* Техническая изомерная смесь нитро-Клеве-кислот, содержащая 1-нитро-6-сульфокислоту нафталина 40.5%, 1-нитро-7сульфокислоту нафталина 51.0% и 1-нитро-8-сульфокислоту нафталина 3.5%.

Таблица 7. Влияние материала катода на выход ACKH по веществу и по току. Концентрация HCKH – 4 × $\times 10^{-2}$ M, плотность тока 1.0 A/дм², температура 25°C; фон – аммиачный буферный раствор (0.2 N NH₄Cl + + NH₄OH) с pH 8.2

Материал катода	Выход по веществу, %	Выход по току, %
Никель	86.5-90.3	56.2-71.0
Медь	80.0-85.0	33.0-40.4
Сталь Х18Н10Т	84.5	60.0
Свинец	54.8	31.0

Как видно из представленных данных табл. 7, выход АСКН по веществу и по току зависит от природы катодного материала. Самый низкий выход целевого продукта по веществу и по току получен на свинцовом катоде. Низкая эффективность процесса восстановления НСКН на этом катоде, вероятно, связана с уменьшением фактической плотности тока в результате коррозии свинцового электрода в щелочном растворе, приводящая к увеличению поверхности катода. Уменьшение плотности тока приводит к смешению потенциала катода в область менее электроотрицательных значений. как видно из рис. 8. что затрудняет дальнейшее восстановление промежуточно образующегося гидроксиламинопроизводного в АСКН. При этом выход гидроксиламино-

Рис. 8. Зависимость потенциала катода от количества затраченного электричества для различных катодных материалов: *1* – свинец; *2* – никель; *3* – медь; *4* – нержавеющая сталь X18H10T. Концентрация HCKH – 4×10^{-2} M, плотность тока – 1.0 А/дм², температура 25°C, фон – аммиачный буферный раствор (0.2 N NH₄Cl + NH₄OH) с pH 8.2.

сульфокислоты нафталина составляет около 41.0%.

Для всех электродных материалов, как видно из рис. 8, отмечается постепенный сдвиг потенциала в область более отрицательных значений по мере расходования исходной НСКН. Однако при пропускании количества электричества, близкого к теоретическому (~0.3 А ч), для исследованных катодных материалов потенциал электродов изменяется незначительно (50-100 мВ) и составляет -0.50...-0.75 В. При этом конверсия исхолного НСКН составляет 75-80%, а пролуктом восстановления является 1-гидроксиламино-6-сульфокислота нафталина, выход которой достигает 82-88% (рис. 9). Дальнейшее восстановление образовавшегося нафтилсульфогидроксиламина в АСКН протекает при более электроотрицательных значениях потенциала -1.1...-1.3 В.

Из полученных результатов следует, что на никелевом катоде восстановление НСКН в соответствующий амин протекает с большей эффективностью, что послужило основанием его выбора для дальнейших исследований.

Принимая во внимание нестабильностьα-нафтилгидроксиламина в кислой и щелочных средах [11], приводящую в кислой среде к перегруппировке Гаттермана, а в щелочной среде к образованию димерных продуктов, было исследовано влияние pH среды в аммиачных буферных растворах (0.2 N NH₄Cl + NH₄OH) и в 0.2 N NH₄Cl с добавкой соляной кислоты до определенного значения

Рис. 9. Зависимость изменения концентраций НСКН (1), нафтилсульфогидроксиламина (2), АСКН (3) и потенциала электрода (4) от количества пропущенного электричества. Концентрация НСКН – 4×10^{-2} M, плотность тока – 1.0 А/дм², температура 25°С, катод – никель марки H3, фон – аммиачный буферный раствор (0.2 N NH₄Cl + NH₄OH) с pH 8.2.

Таблица 8. Влияние pH католита на выход ACKH по веществу и по току. Концентрация HCKH – 4×10^{-2} M, плотность тока – 1.0 A/дм², температура 25°C, катод – никель марки H3

рН католита	Выход по веществу, %	Выход по току, %
1.5	61.2	26.7
5.0	76.0	40.7
8.2	86.5	56.2
10.0	76.6	43.6

рН раствора на выход АСКН. Результаты исследования приведены в табл. 8 и на рис. 10.

Из данных, представленных в табл. 8, видно, что с увеличением pH раствора с 1.5 до 8.2 выход целевой ACKH по веществу и по току повышается соответственно с 61.2 до 86.5% и с 26.7 до 56.2%. Дальнейшее увеличение pH раствора приводит к снижению выхода ACKH как по веществу, так и по току.

Скорость превращения исходного НСКН, как видно из рис. 10, практически не зависит от величины pH раствора в исследованном интервале, и при пропускании теоретически необходимого количества электричества (0.3 A ч) степень конверсии НСКН составляет около 85.0—90.0%.

В то же время концентрация образующегося промежуточного соединения — нафтилсульфогидроксиламина зависит от pH раствора и достигается наибольшей в интервале pH 5.0–8.2. В этом интервале pH католита получен максимальный выход ACKH по веществу.

Как в кислой (pH 1.5), так и в щелочной (pH 10.0) средах концентрация нафтилсульфогидроксиламина резко снижается и его выход не превышает 30%, что приводит к снижению выхода ACKH по веществу. Наблюдаемая неустойчивость нафтилсульфогидроксиламина в кислых и щелочных растворах, как и в случае α -нафтилгидроксиламина [11], вероятно, связана в кислой среде с протеканием гаттермановской перегруппировки, а в щелочной среде — с образованием, вероятно, побочных димерных продуктов.

Таким образом, в аммиачных буферных растворах с pH 7.0–8.2 обеспечивается стабильность промежуточного нафтилсульфогидроксиламина, а следовательно, более высокий выход АСКН по веществу, образующейся в результате дальнейшего восстановления нафтилсульфогидроксиламина.

В табл. 9 представлены результаты исследования влияния плотности тока на процесс восстановления HCKH.

Из табл. 9 видно, что с повышением плотности тока с 1.0 до 5.0 A/дm^2 выход ACKH увеличивается с 86.5 до 93.5%, а выход по току при этом снижа-

ЭЛЕКТРОХИМИЯ том 57 № 1 2021

Таблица 9. Влияние плотности тока на выход АСКН по веществу и по току. Концентрация НСКН – 4×10^{-2} М, плотность тока – 1.0 А/дм², температура 25°С, катод – никель, фон – аммиачный буферный раствор (0.2 N NH₄Cl + NH₄OH) с pH 8.2

Плотность тока, А/дм ²	Выход по веществу, %	Выход по току, %
1.0	86.5	56.2
2.5	89.7	42.4
5.0	93.5	39.0

ется с 56.2 до 39.0%. С увеличением плотности тока происходит более резкий сдвиг потенциала электрода до -1.4...-1.5 В, что увеличивает долю тока на выделение водорода. Кроме того, при плотности тока 5.0 А/дм² в процессе электролиза образуется α -нафтиламин. Очевидно, при более отрицательных потенциалах электрода протекает реакция десульфирования, приводящая к снижению выхода аминосульфокислоты нафталина при длительном электролизе.

Результаты исследования влияния температуры на процесс электровосстановления НСКН приведены в табл. 10.

Рис. 10. Зависимость изменения концентраций НСКН (*1*-4), нафтилсульфогидроксиламина (*1₁*, *2₁*, *3₁* и *4₁*) и АСКН (*1₁₁*, *2₁₁*, *3₁₁* и *4₁₁*) от количества пропущенного электричества при различных pH раствора: *1*, *1₁*, *1₁₁* – 1.5; *2*, *2₁*, *2₁₁* – 5.0; *3*, *3₁*, *3₁₁* – 8.2; *4*, *4₁*, *4₁₁* – 10.0. Концентрация НСКН – 4 × 10⁻² M, плотность тока – 1.0 А/дм², температура 25°С, катод – никель марки НЗ.

Таблица 10. Влияние температуры на выход АСКН по веществу и по току. Концентрация HCKH – 4×10^{-2} M, плотность тока – 1.0 А/дм², катод – никель H3, фон – аммиачный буферный раствор (0.2 N NH₄Cl + + NH₄OH) с pH 8.2

Температура, °С	Выход по веществу, %	Выход по току, %
25	86.5	56.2
40	62.0	31.5
60	57.3	29.0

Как видно из табл. 10, при изменении температуры от 25 до 60°С выход АСКН по веществу и по току снижается с 86.5 до 57.3% и с 56.2 до 29.0% соответственно. Потенциал электрода с повышением температуры становится менее электроотрицательным, что затрудняет дальнейшее восстановление нафтилсульфогидроксиламина в АСКН и создаются благоприятные условия для протекания побочных реакций конденсации с участием исходных и промежуточных продуктов (рис. 11) [12, 13]. На образование димерных продуктов конденсации указывают окрашенные растворы, полученные после электролиза при повышенной

Рис. 11. Зависимость потенциала катода от количества пропущенного электричества при различной температуре, °C: I - 25; 2 - 40; 3 - 60. Концентрация HCKH – 4×10^{-2} M, плотность тока – 1.0 А/дм², катод – никель марки H3, фон – аммиачный буферный раствор (0.2 N NH₄Cl + NH₄OH) с pH 8.2.

температуре, а также в аммиачном буферном растворе с рН 10.0.

На рис. 12 приведены данные по распределению продуктов реакции в ходе электровосстановления НСКН при различной температуре. Из рис. 12 видно, что концентрация исходного нитросоединения до высокой степени превращения снижается пропорционально времени электролиза и незначительно зависит от температуры. В то же время концентрация промежуточно образующегося нафтилсульфогидроксиламина сначала линейно увеличивается, достигает максимума, а после исчерпывания в реакционной массе нитросоединения быстро снижается.

Концентрация нафтилсульфогидроксиламина существенно зависит от температуры и резко снижается с повышением ее до 60°С. При этом его выход не превышает 25.0%, а выход АСКН по веществу составляет 57.3%. По-видимому, при повышенной температуре, а также в аммиачной буферной среде с рН 10.0 наблюдается одновременное электровосстановление нитросоединения и превращение соответствующего нафтилсульфогидроксиламина в АСКН, что подтвер-

Рис. 12. Зависимость изменения концентраций HCKH (1, 2), нафтилсульфогидроксиламина (1_1 , 2_1) и ACKH (1_{11} , 2_{11}) от количества пропущенного электричества при различной температуре: 1, 1_1 , 1_{11} – 25°C, 2, 2_1 , 2_{11} – 60°C. Концентрация HCKH – 4 × × 10⁻² M, плотность тока – 1.0 А/дм², катод – никель марки H3, фон – аммиачный буферный раствор (0.2 N NH₄Cl + NH₄OH) с pH 8.2.

ЭЛЕКТРОХИМИЯ том 57 № 1 2021

Нитросоединение	pН	Температура, °С	Плотность тока, А/дм ²	Выход по веществу, %	Выход по току, %	Выход по выделению, %
НСКН	8.0	30-32	10.0	92.0	42.0	76.0
	7.5	30-32	10.0	90.0	38.0	75.5
	7.5	30-32	10.0	87.6	38.0	69.0
	7.0	50-55	10.0	72.8	30.0	80.0
Техническая изо-	8.0	25-30	10.0	94.0	27.0	43.7
мерная смесь нитро- Клеве-кислот	7.5	30-32	10.0	89.6	44.0	43.0
	7.5	30-32	5.0	94.0	48.4	40.3
	7.5	50-55	10.0	85.6	34.0	39.5
	7.4	60-62	5.0	85.0	44.7	39.0
	7.0	60-62	10.0	93.8*	30.5	41.3
	8.5	60-62	10.0	93.6*	32.5	41.0

Таблица 11. Препаративное восстановление нитросульфокислот нафталина в аммиачных буферных растворах (0.4 N NH₄Cl + NH₄OH) в фильтр-прессном электролизере. Концентрация нитросульфокислот нафталина 0.4...–0.48 М, катод – нержавеющая сталь X18H10T, линейная скорость католита – 0.06 м/с

* Порциальная загрузка нитросоединения.

ждается образованием последней с самого начала электролиза (рис. 10 и 12). Одновременность этих превращений можно объяснить, по-видимому, протеканием реакции диспропорционирования нафтилсульфогидроксиламина с образованием нитрозо- и аминосоединения. Эта реакция, открытая Бамбергером, характерна для ароматических гидроксиламинопроизводных и зависит от среды (катализируется кислотой и щелочью), природы заместителя и температуры [14–16], а также инициируется следами кислорода и соединениями железа [17].

Таким образом, восстановление разбавленных растворов НСКН в гальваностатическом режиме приводит к тем же продуктам, что и при электролизе с контролируемым потенциалом. Наиболее эффективно восстановление НСКН протекает на никелевом электроде и электроде из стали X18H10T в аммиачном буферном растворе с рН 7.0–8.2 при температуре 25–30°С и плотности тока 5.0 А/дм².

Найденные условия электросинтеза НСКН и изомерной смеси Клеве-кислот [4] были апробированы на укрупненной лабораторной установке с фильтр-прессным электролизером (табл. 11).

ЭЛЕКТРОХИМИЯ том 57 № 1 2021

Из данных, представленных в табл. 11, видно, что НСКН восстанавливается в условиях препаративного электролиза с выходом АСКН по веществу 87.0–92.0% и выходом по току 38.0–42.0%. С повышением температуры с 30 до 55°С выход АСКН по веществу снижается до 72.8%. Выход АСКН, выделенной из раствора после электролиза, не зависит от условий восстановления и составляет 69.0–80.0%.

Препаративное восстановление смеси нитро-Клеве-кислот протекает с выходом Клеве-кислот по веществу 85.0-94.0%. Более низкий выход аминосульфокислот нафталина достигается при температуре 50-60°С. Однако при порциальной загрузке нитро-Клеве-кислот в ходе процесса восстановления, как это производится при химическом восстановлении [1, 18, 19], выход Клевекислот повышается до 93.6-93.8% при температуре 60-62°С. В растворе, полученном после электролиза, соотношение изомерных аминосульфокислот нафталина составляет: 1,6-Клевекислота 44-45%, 1,7-Клеве-кислота 40-45%, 1,8-Пери-кислота 8-10%, установленное методом ВЭЖХ в расчете на сумму аминов. Такой же изомерный состав имеют реакционные смеси после химического восстановления нитро-Клевекислот.

Однако выход Клеве-кислот по выделению из растворов, полученных после электролиза, как показано в табл. 11, составляет 39.0-43.7% против 52.0-56.0% при химическом восстановлении [19], а выделенная паста Клеве-кислот из реакционных масс по методике действующего производства обогащена изомером 1,7-Клеве-кислоты (80-90% по отношению к сумме аминов). Сравнительно низкий выход Клеве-кислот по выделению из раствора и измененный изомерный состав аминосульфокислот нафталина в выделенном продукте, вероятно, обусловлен побочными продуктами, образующимися в процессе электролиза и регистрируемыми на циклических вольтамперограммах полученных растворов после электролиза [4], а также побочными продуктами, образующимися на предыдущих стадиях сульфирования и нитрования нафталина, в частности α-нитронафталином, восстанавливающимся при электролизе до α-нафтиламина. Это подтверждается восстановлением НСКН, выделенной из изомерной смеси нитро-Клеве-кислот и очищенной перекристаллизацией из воды, которое протекает с выходом по выделению из раствора АСКН 69.0-80.0%. Кроме того, к снижению выхода Клеве-кислот по выделению из раствора могут приводить продукты их окисления, а также побочные соединения. Раствор с аминосоединениями, полученный после электролиза, на воздухе мгновенно темнеет с образованием смолообразных продуктов. Результаты по окислению исследуемых аминосульфокислот нафталина на СУ показали, что АСКН окисляется значительно легче по сравнению с 2-амино-4,8-дисульфокислотой нафталина и 1-амино-3,6,8-трисульфокислотой нафталина, выделяющимися из раствора с выходом 88-90% [20] и 70-80% [21]. Так, в буферном растворе Бриттона-Робинсона с рН 5.2 $E_{\rm p}$ окисления АСКН на СУ составляет +0.50 В, для 2-амино-4,8-дисульфокислоты нафталина – +0.83 В, а для 1-амино-3,6,8-трисульфокислоты нафталина – +0.77 В. К тому же, промежуточно нафтилсульфогидроксиламин, образующийся являющийся нестабильным продуктом, который накапливается в ходе электролиза в зависимости от условий процесса (рис. 10 и 12), может оставаться в реакционных растворах после электролиза (табл. 6) [4]. Как видно из рис. 3–5, нафтилсульфогидроксиламин окисляется до соответствующего нитрозосоединения еще легче, чем АСКН, как в кислой, так и слабощелочной средах. При этом могут образовываться димерные побочные продукты [12], которые, по-видимому, также могут затруднять выделение целевых изомерных аминосульфокислот нафталина из раствора.

В то же время α -нафтиламин — один из побочных продуктов, содержащийся в технической изомерной смеси, окисляется легче, чем АСКН. Так, на фоне аммиачного буферного раствора (0.4 N NH₄Cl + NH₄OH) с pH 8.4 E_p окисления на СУ для АСКН и α -нафтиламина составляют соответственно +0.23 и +0.10 В.

Полученные результаты указывают на то, что важными факторами для эффективного электрохимического восстановления технической изомерной смеси нитро-Клеве-кислот и выделения Клеве-кислот из реакционных растворов являются предварительная очистка исходного раствора нитро-Клеве-кислот и создание условий, исключающих окисление образующихся аминосульфокислот нафталина, промежуточных и побочных продуктов в ходе электролиза и на стадии выделения Клеве-кислот из раствора, в частности проведение этих технологических стадий под азотом.

ЗАКЛЮЧЕНИЕ

На основании полученных результатов можно сделать следующие основные выводы:

1. Методами полярографии, вольтамперометрии на СУ, микроэлектролиза в потенциостатическом режиме на СУ, электролиза при контролируемом потенциале и в гальваностатическом режимах установлены закономерности электрохимического восстановления НСКН в кислых, а также в хлоридоаммонийных и аммиачных буферных растворах.

2. Установлено, что НСКН подобно α-нитронафталину и 1-нитро-3,6,8-трисульфокислота нафталина полярографически восстанавливаются в сильнокислой среде в единую шестиэлектронную стадию до соответствующей АСКН через промежуточно образующийся гидроксиламин. Наличие единой шестиэлектронной волны предположительно объясняется легкостью восстановления карбониевого иона, образующегося в результате дегидратации протонированного гидроксиламинопроизводного, имеющего иминохиноидную структуру.

3. Полярографическое восстановление нитрогруппы НСКН в сильнокислой среде протекает с предшествующей поверхностной протонизацией и начинается при положительных зарядах поверхности р. к. э. Торможение процесса при отрицательных зарядах поверхности р. к. э., проявляющееся в виде спада тока, связано с анионным характером восстанавливающихся частиц, обусловленным присутствием кислой сульфогруппы в ее молекуле.

4. Показано, что анионная природа НСКН в нейтральных и шелочных растворах как на р. к. э.. так и на СУ проявляется сложной формой поляризационных кривых и изменением их характеристик в зависимости от концентрации и природы фонового электролита, а также рН последнего.

5. Методом микроэлектролиза в потенциостатическом режиме на СУ, электролизом при контролируемом потенциале и в гальваностатическом режимах, а также электроокислением аминосульфокислот на СУ установлена природа отдельных стадий катодного процесса для НСКН, обнаружены и идентифицированы промежуточные и конечные продукты реакции: анион-радикалы НСКН, гидроксиламино- и аминосульфокислоты нафталина.

6. Аммиачные буферные растворы с рН 7.0-8.2, плотность тока 5-10 А/дм², температура 30-32°С и концентрация НСКН 10-13% могут быть рекомендованы для препаративного электросинтеза АСКН, так как в этих растворах в гальваностатическом режиме электролиза на катоде из никеля марки НЗ и нержавеющей стали Х18Н10Т АСКН получена с выходом по веществу 87.0-93.5% и выходом по току 38.0-42.4%. При этом выход АСКН, выделенной из раствора после электролиза, не зависит от условий восстановления и составляет 69.0-80.0%.

7. Для повышения выхода Клеве-кислот по выделению из раствора, полученного после электролиза, требуется предварительная очистка исходной технической изомерной смеси нитро-Клеве-кислот и создание условий, исключающих окисление образующихся промежуточных, конечных и побочных продуктов восстановления как при электролизе, так и при выделении целевых Клеве-кислот из раствора.

КОНФЛИКТ ИНТЕРЕСОВ

Автор подтверждает, что представленные данные не содержат конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ворожцов, Н.Н. Основы синтеза промежуточных продуктов и красителей, М.: Госхимиздат, 1955. 839 c. [Vorozhtsov, N.N., The fundamentals of synthesis of intermediate products and dyes (in Russian), Moscow: Goskhimizdat, 1955. 839 p.]
- 2. Венкатараман, К. Химия синтетических красителей, Л.: Госхимиздат, 1956. 803 с. [Venkataraman, К., Chemistry of synthetic dyes (in Russian), Leningrad: Goskhimizdat, 1956. 803 p.]
- 3. Fierz, H.E. and Weissenbuch, P., Uber die Reduktion von Nitronaphtalinssulfosauren, Helv. Chim. Acta, 1920, Bd 3, S. 305.

4. Конарев, А.А. Электрохимический синтез Клевекислот. Электрохимия. 1998. Т. 34. С. 1166. [Konarev, A.A., Electrochemical synthesis of Clevesacids, Russ. J. Electrochem., 1998, vol. 34, p. 1160.]

- 5. Конарев, А.А. Способ определения ароматических нитросоединений и продуктов их восстановления. Пат. 2159424 (Россия). 2000. [Konarev, A.A., Method for detection of aromatic nitrocompounds and products of their reduction, Pat. 2159424 (Russia), 2000.]
- 6. Конарев. А.А., Аврушкая, И.А. Особенности электрохимического восстановления 1-нитро-3,6,8-трисульфокислоты нафталина. Электрохимия. 1988. T. 24. C. 1548. [Konarev, A.A. and Avrutskaya, I.A., Features of electrochemical reduction of 1-nitro-3,6,8trisulfonic acid of naphthalene, Russ. J. Electrochem., 1988, vol. 24, p. 1548.]
- 7. Jubault, M. and Peltier, D., Reduction electrochimique a potentiel controle des nitronaphtalenes substitues. Etudes preliminaries, Bull. Soc. Chem. France, 1972, no. 4, p. 1544.
- 8. Страдынь, Я.П. Полярография органических нитросоединений, Рига.: Из-во АН Латв. ССР, 1961. 163 с. [Stradyn, Ya.P. Polarography of organic nitrocompounds, Riga: the AN publisher, Latvian SSR, 1961. 163 p.]
- 9. Кварацхелия, Р.К., Кварацхелия, Е.Р. Об особенностях электрохимического поведения соединений I(5+) и I(7+) в растворах солей аммония. Электрохимия. 1996. Т. 32. С. 868. [Kvaratskheliya, R.K. and Kvaratskheliya, E.R., On peculiarities of electrochemical behavior of I(5+) and I(7+) compounds in ammonium salt solutions, Russ. J. Electrochem., 1996, vol. 32, p. 868.]
- 10. Лукашевич, В.О. Органические полупродукты и красители, М.: Госхимиздат, 1959. 40 с. [Lukashevich, V.O., Organic semi-products and dyes (in Russian), Moscow: Goskhimizdat, 1959, 40 p.1
- 11. Jubault, M. and Peltier, D., Reduction electrochimique a potentiel controle des nitronaphtalenes substitues. Influence des substituants, Bull. Soc. Chim. France, 1972, no. 4, p. 1551.
- 12. Томилов, А.П., Майрановский, С.Г., Фиошин, М.Я., Смирнов, В.А. Электрохимия органических соединений, Л.: Химия, 1968. 592 с. [Tomilov, A.P., Mayranovsky, S.G., Fioshin, M.Ya., and Smirnov, V.A., Electrochemistry of organic compounds (in Russian), Leningrad: Chemistry, 1968. 592 p.]
- 13. Bamberger, E., Arylhydroxylamine und Arylazideeine Parallele, Ann., 1921, Bd 424, S. 233.
- 14. Heller, H.E., Hughes, E.D., and Ingold, C.K., A New View of the Arylhydroxylamine Rearrangement, Nature, 1951, vol. 168, p. 909.
- 15. Bamberger, E. and Lagutt, G., Uber das Verhalten des Phenylhudroxylamins gegen alkoholische Schwefelsaure und gegen Anilin, Ber., 1898, Bd 31, S. 1500.
- 16. Симонов, В.Д., Денисенко, Т.В., Савченко, В.И. Исследование реакции разложения фенилгидроксиламина и его производных в присутствии катализаторов гидрирования. ЖОХ. 1976. Т. 12. С. 1036. [Simonov, V.D., Denisenko, T.V., and Savchenko, V.I., Study of decomposition reaction of phenylhydroxyl-

ЭЛЕКТРОХИМИЯ 2021 том 57 Nº 1

amine and its derivatives in presence of hydrogenation catalysts, *Russ. J. Organic Chem.*, 1976, vol. 12, p. 1036.]

- 17. Мизуч, К.Г. Побочные окислительные процессы при восстановлении нитросоединений ароматического ряда. ДАН СССР. 1937. Т. 15. № 1. С. 37. [Mizuch, K.G., Collateral oxidation processes in reduction of aromatic nitrocompounds, *Russ. The USSR Academy Sci. J.*, 1937, vol. 15, no. 1, p. 37.]
- Фирц-Давид, Г.Э., Бланже, Л. Основные процессы синтеза красителей, М.: Изд. иностр. литературы, 1957. 382 с. [Fierz-David, H.E. and Blangey, L. Grundlegende Operationen der Farbenchemie (in Russian), Moscow: Publishing House of Foreign Literature, 1957. 382 p.]
- 19. Дональдсон, Н. Химия и технология соединений нафталинового ряда, М.: Госхимиздат, 1963. 655 с.

[Donaldson, N., The Chemistry and Technology of Naphthalene Compounds (in Russian), Moscow: Goskhimizdat, 1963. 655 p.]

- Конарев, А.А., Помогаева, Л.С., Воротникова, Е.Ю. и др. Способ получения кислой натриевой соли 2-амино-4,8-дисульфокислоты нафталина. Пат. 2009125 (Россия). 1994. [Копагеv, А.А., Ротоgaeva, L.S., Vorotnikova, E.Yu., et al., Method for preparation of acidic sodium salt of naphthalene 2-amino-4,8-disulfonic acid, Pat. 2009125 (Russia), 1994.]
- Конарев, А.А., Катунин, В.Х., Сухинина, Н.Г. и др. Способ получения 1-амино-3,6,8-трисульфокислоты нафталина. А.с. 1369232 (СССР). 1987. [Konarev, A.A., Katunin, V.Kh., and Sukhinina, N.G., Method for preparation of naphthalene 1-amino-3.6.8trisulfonic acid, Copyright certificate 1369232 (USSR), 1987.]