УДК 541.138:544.653.2/3:544.653.1:546

МЕДИАТОРНЫЙ ЭЛЕКТРОСИНТЕЗ И КАТАЛИТИЧЕСКАЯ АКТИВНОСТЬ НАНОКОМПОЗИТОВ НАНОЧАСТИЦ МЕТАЛЛОВ С ПОЛИ(N-ВИНИЛПИРРОЛИДОНОМ) И НАНОЦЕЛЛЮЛОЗОЙ

© 2021 г. В. В. Янилкин^{а,} *, Р. Р. Фазлеева^{*a*}, Г. Р. Насретдинова^{*a*}, Ю. Н. Осин^{*b*}, Н. А. Жукова^{*a*}, А. И. Самигуллина^{*a*}, А. Т. Губайдуллин^{*a*}, В. А. Мамедов^{*a*}

^аИнститут органической и физической химии им. А.Е. Арбузова, ФИЦ Казанский научный центр РАН ул. Арбузова, 8, Казань, 420088 Россия

^bКазанский (Приволжский) федеральный университет, Междисциплинарный центр "Аналитическая микроскопия" vл. Кремлевская, 18, Казань, 420018 Россия

левския, 18, Казанв, 4200 *e-mail: yanilkin@iopc.ru

Поступила в редакцию 25.09.2019 г. После доработки 18.02.2020 г. Принята к публикации 07.06.2020 г.

Исследовано получение наночастиц (HY) Au, Ir, Pd, Pt, Rh бензимидазо[1',2':1,2]хинолино-[4,3*b*][1,2,5]оксодиазоло[3,4-*f*]хиноксалин (**BIQOQ**) медиаторным электрохимическим восстановлением AuCl, K₃[IrCl₆], PdCl₂, PtCl₂, RhCl₃, соответственно, в присутствии поли(N-винилпирролидона) (ПВП) и наноцеллюлозы (НЦ) при контролируемом потенциале генерирования анион-радикалов ВІООО^{•–} в среде ДМ Φ А/0.1 М Ви₄NBF₄ при комнатной температуре. Показано, что эффективность электросинтеза определяется природой восстанавливаемого субстрата. К₃[IrCl₆] практически не восстанавливается, остальные субстраты восстанавливаются с образованием НЧ-М. При пропускании теоретического количества электричества генерируемый металл на катоде не осаждается и образуется в объеме раствора. НЧ-Аи образуются количественно, медиатор в ходе процесса сохраняется, в остальных случаях расходуется от ~50 (Ir, Pd, Pt) до 80% (Rh) медиатора и соответственно снижается выход HЧ-М. Результатом синтеза являются индивидуальные сферические HЧ-Рd (4 ± 1 нм), агломераты HЧ золота (78 ± 27 нм), платины (34 ± 14 нм), родия (33 ± 20 нм), стабилизированные в оболочке ПВП. В отличие от ранее описанных НЧ Аg@ПВП, предельно плотно декорирующих НЦ, полученные частицы лишь частично связаны на НЦ. Нанокомпозиты Pd, Pt, Au проявляют каталитическую активность в реакциях восстановления нитроароматических соединений боргидридом натрия в водных средах.

Ключевые слова: электросинтез, наночастицы металлов, нанокомпозит, медиатор, бензимидазо[1',2':1,2]хинолино-[4,3-*b*][1,2,5]оксодиазоло[3,4-*f*]хиноксалин, поливинилпирролидон, наноцеллюлоза, катализ

DOI: 10.31857/S0424857021010114

введение

В последние несколько десятилетий достигнуты огромные успехи в катализе металлами химических и электрохимических реакций [1–5]. По сравнению с некаталитическими реакциями они энергетически менее затратны, высокоселективны и высокоэффективны. Поэтому каталитические процессы привлекательны как основа для разработки востребованных энерго- и ресурсосберегающих, экологически безопасных технологий получения практически полезных веществ и материалов, а также для создания систем преобразования энергии (топливные элементы, фотокаталитические системы). В лабораторных условиях большее распространение получили реакции с использованием гомогенных металлических катализаторов, представляющих, как правило, комплексы металлов. Однако для практического промышленного применения более перспективны гетерогенные катализаторы, обладающие рядом преимуществ перед гомогенными катализаторами: нетоксичны, безопасны при хранении и манипуляциях, стабильны в широком интервале температур и давлений, имеют длительный срок службы и легко регенерируются, легко выделяются из реакционной среды [6]. Поэтому в настоящее время уделяется особое внимание решению комплекса задач, связанных с созданием высокоэффективных гетерогенных металлических катализаторов, разработкой технологии их получения, применения в каталитической реакции и последующей регенерации.

К высокоэффективным относятся катализаторы, позволяющие провести целевой каталитический процесс с высокой скоростью и селективностью в мягких условиях с использованием минимального количества регенерируемого катализатора. Для эффективного катализа реакций в жидкой фазе, в которой и проводится абсолютное большинство химических реакций, перспективны псевдогомогенные металлические нанокатализаторы – моно- и би(поли)металлические наночастицы (НЧ-М), инкапсулированные в оболочке стабилизатора и/или связанные на поверхности диспергированных или растворенных носителей [7-9]. НЧ-М имеют высокоразвитую поверхность, причем чем меньше размер частиц, тем выше соотношение поверхности к массе (объему). Так, например, в сферических НЧ-Рd диаметром 4.6 нм примерно половина атомов палладия являются поверхностными [10]. Кроме того, за счет размерного эффекта и иной упаковки каталитические свойства НЧ-М могут заметно отличаться от свойств массивного металла и частиц металла микронного размера, приближаясь к свойствам гомогенных катализаторов. При равномерном распределении псевдогомогенных катализаторов в растворе зоной каталитической реакции является весь объем раствора, вследствие этого в большой степени снимаются диффузионные ограничения в скорости реакции, характерные для гетерогенных реакций. Положительным моментом иммобилизации НЧ-М на поверхности более крупных частиц носителя является облегчение выделения катализатора после проведения каталитической реакции путем фильтрации или центрифугирования, а в случае магнитно-активных носителей и притяжения к магниту. Многократное увеличение скорости реакции можно получить и формированием каталитической оболочки вокруг НЧ-М путем использования стабилизаторов, концентрирующих реагенты в приповерхностном слое НЧ-М [8, 10, 11].

Таким образом, с точки зрения эффективного катализа и последующего выделения катализатора из реакционной среды отчетливый интерес представляют НЧ-М, инкапсулированные в оболочке стабилизатора и связанные на поверхности более крупных НЧ носителя (М@стабилизатор/носитель). В идеале псевдогомогенные металлические нанокатализаторы должны отвечать следующим требованиям: (i) НЧ-М должны быть ультрамалыми (≤10 нм) и эффективно катализировать реакцию; (ii) стабилизатор должен эффективно связываться на поверхности НЧ-М и стабилизировать их, эффективно связывать и концентрировать реагенты и также эффективно связываться на поверхности НЧ носителя.

ЭЛЕКТРОХИМИЯ том 57 № 1 2021

В качестве носителя НЧ-М могут быть использованы НЧ разной природы [9, 12–27]. Среди них особый интерес представляют частицы наноцеллюлозы (НЦ) вследствие их коллоидной стабильности, биоразлагаемости, нетоксичности и легкого получения из целлюлозы - самого распространенного природного полимера на Земле [27]. Недавно [9] нами было показано, что эффективным методом синтеза монодисперсных сферических HЧ-Ag (11 \pm 3 нм), стабилизированных в оболочке ПВП (40000 D) и связанных на поверхности НЦ ($l = 5946 \pm 4819$ нм, $b = 147 \pm 38$ нм) (Ag@ПВП/НЦ), является медиаторное электрохимическое восстановление ионов Ag⁺ в присутствии ПВП и НЦ при использовании в качестве медиатора бензимидазо[1',2':1,2]хинолино[4,3-b] [1, 2, 5]оксодиазоло[3,4-*f*]хиноксалина (BIQOQ). Процесс протекает количественно при пропускании теоретического количества электричества при контролируемом потенциале одноэлектронного восстановления BIQOQ до анион-радикала в среде ДМФА/0.1 М Ви₄NBF₄ при комнатной температуре. Весьма примечательно, что в результате получаются целлюлозные нановолокна. предельно плотно декорированные наночастицами серебра в оболочке ПВП (Аg@ПВП/НЦ). При этом нанокомпозит легко выделяется из реакционной среды центрифугированием и НЧ-Ад имеют существенно меньший размер, чем в нанокомпозите Ag@ПВП, полученном метилвиологенмедиаторным восстановлением ионов Ag⁺ в аналогичных условиях в отсутствие НЦ (20 ± 7 нм). Использованный способ не требует химической модификации поверхности НЦ (например, окисления поверхностных гидроксильных групп в карбоксильные), обычно необходимой для эффективного связывания НЧ-М [27]. Полученный нанокомпозит Ag@ПВП/НЦ проявляет каталитическую активность в реакциях восстановления нитроароматических соединений боргидридом натрия в водных средах того же порядка, что и стабилизированные ПВП НЧ-Ад на носителе из оксида-гидроксида кобальта(II). Представлялось заманчивым распространить этот простой и удобный метод для получения подобных нанокомпозитов (М@ПВП/НЦ) и других металлов. В этой связи мы в аналогичных условиях исследовали BIQOQ-медиаторное восстановление AuCl, K_3 [IrCl₆], PdCl₂, PtCl₂, RhCl₃ и каталитическую активность полученных частиц. В данном сообщении представлены полученные результаты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования были выполнены с использованием методов циклической вольтамперометрии (ЦВА), микроэлектролиза, препаративного электролиза, сканирующей и просвечивающей электронной микроскопии (СЭМ и ПЭМ), порошковой рентгеновской дифракции (**ПРД**) и УФ-видимой спектроскопии.

Циклические вольтамперограммы (ЦВА) регистрировали с помощью потенциостата P-30S (без IR-компенсации) (Elins, Россия) в атмосфере аргона. Рабочим электродом служил стеклоуглеродный (СУ) дисковый электрод (d = 2 мм), впаянный в стекло. Перед каждым измерением электрод очищали механическим полированием. Вспомогательный электрод – Pt-проволока. Потенциалы измерены относительно водного насыщенного каломельного электрода (нас. к. э.), связанного с исследуемым раствором мостиком с фоновым электролитом и имеющего потенциал –0.41 В относительно E'_0 (Fc⁺/Fc). Температура 295 К.

Препаративный электролиз проводили в диафрагменной трехэлектродной стеклянной ячейке в потенциостатическом режиме в атмосфере инертного газа (аргон) при комнатной температуре (T = 295 K) с помощью потенциостата P-30S (Elins, Poccuя). В ходе электролиза раствор перемешивали магнитной мешалкой. Рабочий электрод – СУ-пластина (S = 3.2 см²), электрод сравнения – нас. к. э., соединенный с исследуемым раствором через мостик с фоновым электролитом, вспомогательный электрод – Pt-проволока. После окончания электролиза полученный раствор исследовали методом ЦВА на индикаторном СУ-электроде (d = 2 мм) непосредственно в электролизере.

Для каждого электролиза готовили раствор ДМФА объемом 15 мл. Растворы содержали: 7.1 мг BIQOQ (1.3 мМ), 3.8 мг НЦ (0.25 г/л), 124.9 мг поли(N-винилпирролидона) (ПВП) (75 мМ), 493.5 мг Bu₄NBF₄ (417 мг Bu₄NCl при синтезе HЧ-Pd) (0.1 М), и соответствующие для каждого электролиза соли и комплексы металлов (1.5 мМ): 11.8 мг K₃[IrCl₆], 5.2 мг AuCl, 4.0 мг PdCl₂, 6.0 мг PtCl₂, 4.7 мг RhCl₃.

Для исследования полученных в ходе электролиза наночастиц металлов методами СЭМ, ПЭМ, ПРД и УФ-видимой спктроскопии их осадили центрифугированием (14500 об/мин, 3 ч), один раз промыли ДМФА и два раза этанолом. Промывка заключалась в диспергировании соникацией в растворитель и последующем осаждении центрифугированием (14500 об/мин, 3 ч (ДМФА) и 1 ч (этанол)). Полученный осадок методом соникации диспергировали в этанол.

В случае СЭМ полученный этанольный раствор наносили на поверхность титановой фольги, предварительно очищенной ультразвуковой обработкой в воде и этаноле. Затем образец высушивали при комнатной температуре. Для ПЭМ 5 мкл раствора помещали на 3 мм медную сеточку, покрытую подложкой формвар/углерод (Formvar/Carbon, Lacey Formvar) и высушивали при комнатной температуре. После полного высыхания сеточку помещали в просвечивающий электронный микроскоп в специальный графитовый держатель для проведения микроанализа. В случае ПРД раствор наносили на кремниевую пластинку, уменьшающую фоновое рассеяние. После высыхания слоя, поверх него наносили еще несколько слоев для увеличения суммарного количества образца. Дифрактограммы регистрировались в диапазоне углов рассеяния 20 3°–90°, шаг 0.008°, время набора спектра в точке 0.5–8.0 с. Более детальное описание электронно-микроскопического анализа дано в [10].

Рентгендифракционные исследования образцов выполняли на автоматическом рентгеновском дифрактометре Bruker D8 Advance (Германия), оборудованном приставкой Vario и линейным координатным детектором Vantec. Использовали Cu $K_{\alpha 1}$ -излучение (λ 1.54063 Å), монохроматизированное изогнутым монохроматором Йохансона, режим работы рентгеновской трубки 40 кВ, 40 мА. Порошковые дифрактограммы получали при комнатной температуре в геометрии Брэгг—Брентано с плоским образцом.

Образец в жидком виде наносили на кремниевую пластинку, уменьшающую фоновое рассеяние. После высыхания слоя, поверх него наносили еще несколько слоев для увеличения суммарного количества образца. Дифрактограммы регистрировали в диапазоне углов рассеяния 20 3°-90°, шаг 0.008°, время набора спектра в точке 0.1-5.0 с.

Спектры УФ-видимой области регистрировали на спектрометре Perkin-Elmer Lambda 25 (США). В кварцевой кювете (l = 1.0 см) изучали 2 мл раствора, полученного непосредственно после электролиза, и раствора выделенных в этанол наночастиц.

Каталитическое восстановление нитроароматических соединений боргидридом натрия в присутствии синтезированных нанокомпозитов. В кварцевой кювете (l = 0.5 см) к 1.5 мл водного раствора, содержащего 0.1 мМ нитроароматического соединения и 5 мМ NaBH₄, добавили 2 мкл дисперсии полученных при электролизах в ДМФА нанокомпозитов. Реакцию контролировали по изменению во времени оптической плотности нитроароматического соединения при 295 К.

Коммерческие соли AuCl, PdCl₂, K₃[IrCl₆], PtCl₂, Bu₄NBF₄, Bu₄NCl ("Aldrich"), RhCl₃ ("Acros Organics"), ПВП (40 000 D) ("Alfa Aesar"), использовали без дополнительной очистки. BIQOQ синтезировали из 3-(2-фторфенил)хиноксалин-2(1H)она и 4,5-диамино-2,1,3-бензоксадиазол с использованием перегруппировки Мамедова [28–30] по методике (схема 1) [31].

Схема 1. Синтез BIQOQ.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Металлические прекурсоры (MX) AuCl, K₃[IrCl₆], $PdCl_2$, $PtCl_2$, $RhCl_3$ слабо растворимы в ДМФА, поэтому при используемой концентрации 1.5 мМ при комнатной температуре они растворяются не полностью даже при длительной соникации. Лучше растворяются AuCl и PdCl₂, в последнем случае вследствие образования комплексного иона $[PdCl_4]^{2-}$ [32]. ЦВА этих соединений аналогичны ранее описанным [32-34] и на них регистрируются отчетливые пики восстановления (E_{C}) до металла(0) и реокисления (E_A) Pd(0) (табл. 1). Остальные соединения растворимы значительно хуже и для них фиксируются едва заметные несколько ступеней восстановления (табл. 1). В случае PtCl₂, RhCl₃ пики необратимы. Первый пик восстановления $K_3[IrCl_6]$ при $E_C^1 = -0.08$ В отн. нас. к. э. обратим, а более интенсивный второй пик, наблюдаемый в области потенциалов восстановления ионов К⁺ [35], необратим. Полагаем, что второй пик связан с восстановлением этих ионов.

ЦВА четырехкомпонентной системы (1.3 мМ ВІQOQ + 1.5 мМ МХ + 0.25 г/л НЦ + 75 мМ ПВП) в области потенциалов от стационарного $E_{\rm cr}$ до –1.20 В, включающей первый пик восстановления ВІQOQ ($E_{\rm C}^1 = -0.99$ В), соответствует аддитивной кривой отдельно взятых ВІQOQ и МХ. На ней присутствуют пики восстановления ВІQOQ до ВІQOQ^{•-} и МХ при соответствующих потенциалах и соответствующей интенсивности. [PdCl₄]²⁻ в этой области потенциалов не восстанавливается (табл. 1), поэтому и в многокомпонентной системе пик восстановления PdCl₂ отсутствует. На рис. 1 представлены репрезентативные ЦВА на примере системы (1.3 мМ ВІQOQ + 1.5 мМ AuCl + + 0.25 г/л НЦ + 75 мМ ПВП).

Полученные ЦВА-данные свидетельствуют, что в четырехкомпонентной системе присутствие в растворе других компонентов не осложняет

Таблица 1. Потенциалы (отн. нас. к. э.) пиков восстановления (E_C), реокисления (E_A) и плотности тока первых пиков восстановления (i_C^1) MX (1.5 мМ) и BIQOQ (1.3 мМ) на СУ-электроде в среде ДМФА/0.1 М Bu₄NBF₄. v = 100 MB/c

Субстрат	<i>Е</i> _С , В	<i>i</i> ¹ _C , мкА/см ²	<i>E</i> _A , B
AuCl	0.00; -0.22	0.03	_
K ₃ [IrCl ₆]	-0.08; -1.96	0.003	0.01 ⁶
PdCl ₂ ^a	-1.48	0.37	0.57
PtCl ₂	-0.52; -0.91; -1.48	0.013	_
RhCl ₃	-1.40; -1.90	0.022	0.12
BIQOQ	-0.99; -1.40; -1.71; -1.90; -2.25; -2.59	0.32	-0.90 ⁶

^а Фоновый электролит – 0.1 М Ви₄NCl. ^б При реверсе потенциала с первого пика восстановления.

Рис. 1. ЦВА системы (1.3 мМ BIQOQ + 1.5 мМ AuCl + 0.25 г/л НЦ + 75 мМ ПВП) в среде ДМФА/0.1 М Bu₄NPF₆ (а) и после выдержки электрода при E = -1.20 В (б) в течение, с: 5 (1), 60 (2), 180 (3). v = 100 мВ/с.

процесс восстановления BIQOQ по первой ступени до анион-радикала и делает возможным BIQOQ-медиаторное восстановление MX при потенциалах генерирования BIQOQ^{•–} (рис. 1). Низкие токи восстановления MX при этих потенциалах практически исключают восстановление MX непосредственно на электроде.

Препаративный диафрагменный электролиз системы (1.3 мМ BIQOQ + 1.5 мМ MX + 0.25 г/л HЦ + 75 мМ ПВП) проводили на СУ-электроде при комнатной температуре в ДМФА при контролируемом потенциале восстановления BIQOQ до BIQOQ^{•–} (E = -1.05 В). При этом пропустили теоретическое количество электричества в расчете на MX: 3 F в случае K₃[IrCl₆], RhCl₃, 2 F в случае PdCl₂, PtCl₂ и 1 F в случае AuCl. В ходе электролиза происходило снижение тока, изменение цвета раствора (рис. 2). Ни генерируемый металл, ни какие-либо иные продукты реакции не осаждались на катоде, о чем свидетельствовало равенство веса электрода до и после электролиза.

На ЦВА растворов после электролиза в области потенциалов от $E_{\rm cr}$ до -1.20 В отсутствуют пики восстановления MX и регистрируется только пик восстановления BIQOQ (рис. 3). Из сравнения токов пика до и после электролиза следует, что медиатор полностью сохраняется при восстановлении AuCl, в случае остальных MX происходит снижение его концентрации на 60 (K₃[IrCl₆]), 55 (PdCl₂), 47 (PtCl₂) и 80% (RhCl₃). Очевидно, что медиаторно эффективно восстанавливается лишь AuCl, в остальных случаях существенная часть электричества расходуется на необратимое восстановление медиатора и при пропускании теоретического количества электричества большая часть МХ не восстанавливается. Механизм превращения медиатора неизвестен, поэтому невозможно оценить долю электричества, расходуемого на восстановление медиатора, а соответственно, и степень конверсии МХ.

Микрозондовым элементным анализом выделенных центрифугированием и промытых продуктов электролиза (см. Экспериментальную часть) в случае K₃[IrCl₆] наряду с иридием обнаруживается большое количество хлора, в случае остальных МХ фиксируется только металл, ни хлор, ни фтор не обнаруживаются (рис. 4в). Очевидно, что AuCl, PdCl₂, PtCl₂ и RhCl₃ медиаторно восстанавливаются с образованием НЧ-М, в то время как K₃[IrCl₆], по всей видимости, в заметной степени не восстанавливается. Согласно СЭМ-, ПЭМ-изображению (рис. 4a, 4б): (i) ультрамалые HЧ-Pd (4 ± 1 нм) стабилизируются в индивидуальном виде в матрице ПВП и нанокомпозит Pd@ПВП не связывается на поверхности НЦ; (ii) НЧ-Au (13 ± 3 нм) образуют более крупные агломераты (78 ± 27 нм), которые стабилизируются в оболочке ПВП и нанокомпозит Аи@ПВП преимущественно связывается на поверхности НЦ; (iii) НЧ-Рt и НЧ-Rh представляют собой агломераты со средним размером 34 ± 14 и 33 ± 20 нм, соответственно, которые стабилизированы в оболочке ПВП и частично располагаются на поверхности НЦ.

Экспериментальные порошковые дифрактограммы образцов продуктов электросинтеза при-

Рис. 2. Фотографии катодного пространства разделенной ячейки во время электролиза системы (1.3 мМ BIQOQ + + 1.5 мM MX + 0.25 г/л HU + 75 мM ПВП) при E = -1.05 B в среде ДМФА/0.1 М Bu₄NBF₄ (Bu₄NCl) при различных количествах пропущенного электричества, %: 0 (a), 20 (б), 80 (в), 100 (г). MX = AuCl (A), K₃[IrCl₆] (Б), PdCl₂ (B), PtCl₂ (Г), RhCl₃ (Д).

Рис. 3. ЦВА систем (1.3 мМ BIQOQ + 0.25 г/л НЦ + + 75 мМ ПВП) (*I*); (1.3 мМ BIQOQ + Au Cl (*2*) (PdCl₂ (*3*), PtCl₂ (*4*), K₃[IrCl₆] (*5*) и RhCl₃ (*6*)) + 0.25 г/л НЦ + + 75 мМ ПВП) после препаративного электролиза. ДМФА/0.1 М Bu₄NBF₄, v = 100 мB/c.

Рис. 4. СЭМ- (а) и ПЭМ- (б) изображения и энергодисперсионные спектры (в) нанокомпозитов $K_3[IrCl_6]@\Pi B\Pi/H (A)$ и $M@\Pi B\Pi/H (G-A)$. M = Au (G), Pd (B), Pt (Γ), Rh (A). (Cu, Ti – от подложки).

ведены на рис. 5. Как видно, частицы металла в кристаллической форме удается зафиксировать только в продуктах электросинтеза НЧ золота и палладия. Дифракционные пики, соответствующие кристаллической форме золота, хорошо выражены. Их полнопрофильный анализ свидетельствует о размерах кристаллитов около 20–30 нм (табл. 2). Для образца с палладием можно отметить наличие на дифрактограмме только первого уширенного дифракционного пика, что соответствует малым размерам кристаллитов (рис. 5). Определение размерных характеристик кристаллитов в данном случае не представляется возможным. При этом образец на основе палладия характеризуется наименьшей суммарной степенью кристаллично-

Рис 5. Экспериментальные порошковые дифрактограммы для образцов НЧМ. Вертикальными штрихами показаны положения интерференционных пиков, соответствующих кристаллическим формам золота и палладия.

сти среди всех исследованных образцов. Наличие сильно уширенного пика в области $2\theta = 5^{\circ} - 8^{\circ}$ указывает на наноструктурированность и других кристаллических компонент в образце.

Следует отметить, что все образцы характеризуются присутствием в том или ином количестве неизвестной кристаллической фазы, дифракционные пики которой лежат в диапазоне $2\theta = 3^{\circ} - 30^{\circ}$ (рис. 5). Идентифицировать кристаллическую фазу с использованием базы данных PDF-2 не удалось. В случае образца с Ir кристаллическая фаза является мультикомпонентной, так как представлена большим набором дифракционных пиков, как схожих по положению и интенсивности с наблюдаемыми в других образцах, так и дополнительного набора пиков, возможно отвечающих одной или нескольким кристаллическим фазам. причем достаточно хорошо сформированным.

Каталитическая активность

Каталитическую активность полученных нанокомпозитов М@ПВП/НЦ тестировали в реакциях восстановления *n*-нитрофенола (НФ) и 5-(4метилпиперазин-1-ил)-2-нитроанилина $(M\Pi HA)$ боргидридом натрия при комнатной температуре. В каталитической реакции использовали аликвоту растворов нанокомпозитов, полученных при

Индексы Миллера пика	111	200	220	
----------------------	-----	-----	-----	--

Таблица 2. Размеры кристаллитов Au, рассчитанные из параметров дифракционных пиков

Индексы Миллера пика	111 200		220	311	
Угол 20, град	38.2462(7)	44.442(2)	64.654(3)	77.638(4)	
CrySizeL, нм	33.4(5)	23.8(8)	28(1)	21(1)	
LVol-IB, нм	21.3(8)	15.2(9)	18(2)	13(1)	
Lvol-FWHM, нм	29.8(6)	21.2(9)	25(1)	19(1)	
$R_{\rm wp}$	5.26%				
R _{exp}	5.42%				

Рис. 6. Восстановление НФ и МПНА (0.1 мМ) боргидридом натрия (5 мМ) в водной среде, катализируемое М@ПВП/НЦ ($c_{\rm M} = 2 \times 10^{-6}$ М): изменения в УФ-видимом спектре реакционной смеси с НФ (а) и МПНА (6) после добавления катализатора; полулогарифмическая кинетическая кривая для реакции восстановления НФ (в).

электролизе. Реакцию проводили в водной среде в присутствии 50-кратного избытка боргидрида натрия (NaBH₄, 5 мМ). Исходная концентрация НФ и МПНА составляла 0.1 мМ. Контроль над прохождением реакции осуществляли с помощью УФ-видимой спектроскопии. Реакция восстановления не идет в отсутствие катализатора: в УФ-видимом спектре реакционной смеси не наблюдаются какие-либо изменения в течение длительного времени (60 и более минут). При добавлении полученных нанокомпозитов (2 мол. % М по отношению к НФ и МПНА) полосы поглощения *п*-нитрофенолят иона в области 400 нм и МПНА в области 408 нм падают и возрастают полосы поглощения продуктов восстановления: при 300 нм *п*-аминофенола и при 306 нм 4-(4-метилпиперазин-1-ил)-1,2-диаминобензола соответственно (рис. 6а, 6б). При использовании в качестве катализаторов нанокомпозитов Pd@ПВП/НЦ индукционный период отсутствует и реакция начинается непосредственно после добавления катализатора в реакционную смесь (рис. 6в). В случае Pt@ПВП/НЦ индукционный период в обеих реакциях составляет в среднем около 2 мин, в случае же Au@ПВП/НЦ каталитическая активность наблюдается только в реакции восстановления

НФ, в которой индукционный период составляет 26 мин. После индукционного периода скорости реакций резко возрастают. Каталитические реакции характеризуются псевдопервым порядком. Константы скорости псевдопервого порядка (k_1) , и каталитическая активность нанокомпозитов (k_2) , вычисленная как отношение k_1 к молярной концентрации НЧ-М, обобщены в табл. 3.

Наибольшую проявляет активность Рd@ПВП/НЦ в реакции восстановления МПНА, наименьшую Ir@ПВП/НЦ и Rh@ПВП/НЦ. Их активности отличаются в десятки раз. Другие катализаторы имеют промежуточную активность. В целом каталитическая активность полученных в настоящей работе нанокомпозитов ниже активности иных описанных в литературе нанокомпозитов этих металлов (табл. 3). По-видимому, низкая активность Au@ПВП/НЦ связана с большим размером агломератов Au, а других М@ПВП/НЦ – с меньшим содержанием НЧ-М вследствие неполного восстановления МХ. Такая интерпретация в последнем случае предполагает, что МХ сами по себе не катализируют реакцию и в условиях проведения каталитической реакции в заметной степени не восстанавлива-

Таблица 3. Каталитическ новления нитроаромати c _{HФ} = c _{MПНА} = 0.1 мМ, <i>T</i>	хая активность нанокомпозитов ческих соединений боргидридс ?= 295 К	$K_3[IrCl_6]@\Pi B\Pi/HЦ и M@\Pi B\Pi/HЦ в реакции восм натрия в водной среде. c_{NaBH_4} = 5 \text{ MM}, c_M = 2 \text{ M}$	сста- икМ
		T.	1

Нанокомпозит	Размер НЧ, нм		Каталитическая активность нанокомпозитов в реакции восстановления				
			ΗΦ		МПНА		ылка
	электронная микроскопия		<i>l</i>	L	<i>L</i> = =]	L 1 M-1	Cci
	ПЭМа	СЭМб	κ_1, c	$k_2, c \in \mathbf{M}$	κ_1, c	κ_2, c ivi	
K ₃ [IrCl ₆]@ПВП/НЦ	157 ± 54	161 ± 85	4.3×10^{-6}	2.2	1.5×10^{-5}	7.5	
Аи@ПВП/НЦ	78 ± 27	82 ± 21	1.5×10^{-4}	7.5×10^{1}	2.7×10^{-6}	1.4	
Рd@ПВП/НЦ	4 ± 1	7 ± 2	4.6×10^{-3}	2.3×10^{3}	6.7×10^{-3}	3.4×10^{3}	
Рt@ПВП/НЦ	34 ± 14	38 ± 15	2.2×10^{-4}	6.0×10^{1}	5.8×10^{-3}	2.9×10^{3}	
Rh@ПВП/НЦ	33 ± 20	39 ± 22	1.2×10^{-5}	6	2.6×10^{-6}	1.3	
Au/CoO_xH_y	20 ± 5		$4.9 imes 10^{-4}$	2.5×10^2			36
Au@ПВП/CoO _x H _y	44 ± 16		2.2×10^{-3}	1.1×10^{3}			36
Pd/CoO_xH_y	6 ± 1		8.5×10^{-3}	4.3×10^{3}			36
Pd@ΠBΠ/CoO _x H _y	3 ± 1		9.5×10^{-3}	4.8×10^{3}			36
Rh@ПBП	1.7 ± 0.3		1.2×10^{-2}	6.0×10^{3}			10

^а Размер НЧ-М. ^б Размер М@ПВП.

ются боргидридом натрия с образованием каталитически активных НЧ-М.

ЗАКЛЮЧЕНИЕ

Ранее [9] восстановлением ионов Ag⁺ в ДМФА был выполнен эффективный BIQOQ-медиаторный электросинтез малых сферических НЧ-Ад в оболочке ПВП, предельно плотно декорирующих поверхность волокон наноцеллюзы. Ввиду большого интереса к композитам НЧ-М с наноцеллюлозой, в частности, в катализе в "зеленой" химии [37-45], сенсорных устройствах [45-50], медицине [51, 52] в настоящей работе была предпринята попытка распространения этого простого и удобного способа синтеза для получения подобных нанокомпозитов Au, Ir, Pd, Pt, Rh аналогичным восстановлением Au(I), Ir(III), Pd(II), Pt(II) и Rh(III), соответственно. Однако результаты оказались иными. К₃[IrCl₆] практически не восстанавливается, остальные субстраты восстанавливаются с образованием НЧ-М. НЧ-Аи образуются количественно, медиатор в ходе процесса сохраняется, в остальных случаях расходуется от ~50 (Ir, Pd, Pt) до 80% (Rh) медиатора и соответственно снижается выход НЧ-М. Результатом синтеза являются ин-

ЭЛЕКТРОХИМИЯ том 57 № 1 2021

дивидуальные сферические НЧ-Рd (4 \pm 1 нм), агломераты НЧ золота (78 \pm 27 нм), платины (34 \pm 14 нм), родия (33 \pm 20 нм), стабилизированные в оболочке ПВП. Полученные частицы М@ПВП лишь частично связываются на поверхности НЦ. Известно, что частицы Ag@ПВП существуют в растворе в индивидуальном виде [34], а композит Pd@ПВП образует достаточно крупные агрегаты [34]. По-видимому, сил многоточечного нековалентного межмолекулярного взаимодействия между НЦ и ПВП достаточно для эффективного связывания малых частиц Ag@ПВП на поверхности НЦ, но их недостаточно для удержания на цилиндрической поверхности НЦ больших частиц М@ПВП (M = Au, Pd, Pt, Rh).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект № 17-03-00280). Рентгендифракционные исследования выполнены в Отделении рентгеноструктурных исследований Центра коллективного пользования ЦКП САЦ на базе Лаборатории дифракционных методов исследования ИОФХ им. А.Е. Арбузова КазНЦ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Nanoparticles and Catalysis*, Astruc, D., Ed., Wiley-VCH, 2008, p. 663.
- 2. Beller, M. and Bolm, C., *Transition Metals for Organic Synthesis*, Wiley-VCH, 2008, p. 577.
- 3. Lara, P. and Philippot, K., The hydrogenation of nitroarenes mediated by platinum nanoparticles: an overview, *Catal. Sci. Technol.*, 2014, vol. 4, p. 2445.
- 4. De Meijere, A. and Diederich, F., *Metal-Catalyzed Cross-Coupling Reactions*, Wiley-VCH, 2008, p. 938.
- Meyer, T.H., Finger, L.H., Parthasarathy, Gandeepan, and Lutz, Ackermann, Resource Economy by Metallaelectrocatalysis: Merging Electrochemistry and C–H Activation, *Trends in Chemistry*, 2019, vol. 1, p. 63.
- 6. Анаников, В.П., Хемчян, Л.Л., Иванова, Ю.В., Бухтияров, В.И., Сорокин, А.М., Просвирин, И.П., Вацадзе, С.З., Медведько, А.В., Нуриев, В.Н., Дильман, А.Д., Левин, В.В., Коптюг, И.В., Ковтунов, К.В., Живонитко, В.В., Лихолобов, В.А., Романенко, А.В., Симонов, П.А., Ненайденко, В.Г., Шматова, О.И., Музалевский, В.М., Нечаев, М.С., Асаченко, А.Ф., Морозов, О.С., Джеваков, П.Б., Осипов, С.Н., Воробьева, Д.В., Топчий, М.А., Зотова, М.А., Пономаренко, С.А., Борщев, О.В., Лупоносов, Ю.Н., Ремпель, А.А., Валеева, А.А., Стахеев, А.Ю., Турова, О.В., Машковский, И.С., Сысолятин, С.В., Малыхин, В.В., Бухтиярова, Г.А., Терентьев, А.О., Крылов, И.Б. Развитие методологии современного селективного органического синтеза: получение функционализированных молекул с атомарной точностью. Успехи химии. 2014. T. 83. C. 885. [Ananikov, V.P., Khemchyan, L.L., Ivanova, Yu.V., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Vatsadze, S.Z., Medved'ko, A.V., Nuriev, V.N., Dilman, A.D., Levin, V.V., Koptyug, I.V., Kovtunov, K.V., Zhivonitko, V.V., Likholobov, V.A., Romanenko, A.V., Simonov, P.A., Nenajdenko, V.G., Shmatova, O.I., Muzalevskiy, V.M., Nechaev, M.S., Asachenko, A.F., Morozov, O.S., Dzhevakov, P.B., Osipov, S.N., Vorobyeva, D.V., Topchiy, M.A., Zotova, M.A., Ponomarenko, S.A., Borshchev, O.V., Luponosov, Yu.N., Rempel, A.A., Valeeva, A.A., Stakheev, A.Yu., Turova, O.V., Mashkovsky, I.S., Sysolyatin, S.V., Malykhin, V.V., Bukhtiyarova, G.A., Terent'ev, A.O., and Krylov, I.B., Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision, Russ. Chem. *Rev.*, 2014, vol. 83, p. 885.]
- Янилкин, В.В., Насретдинова, Г.Р., Кокорекин, В.А. Медиаторный электрохимический синтез наночастиц металлов. *Успехи химии*. 2018. Т. 87. С. 1080. [Yanilkin, V.V., Nasretdinova, G.R., and Kokorekin, V.A., Mediated electrochemical synthesis of metal nanoparticles, *Russ. Chem. Rev.*, 2018, vol. 87, p. 1080.]
- Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu.N., Gubaidullin, A.T., and Ziganshina, A.Yu., Two-step one-pot electrosynthesis and catalytic activity

of the CoO-CoO \cdot xH₂O supported silver nanoparticles, *J. Solid State Electrochem.*, 2020, vol. 24, p. 829.

- Янилкин, В.В., Фазлеева, Р.Р., Насретдинова, Г.Р., Осин, Ю.Н., Жукова, Н.А., Мамедов, В.А. Бензимидазо[1',2':1,2]хинолино[4,3-b][1,2,5]оксодиазоло[3,4-f]хиноксалин – новый медиатор для электросинтеза наночастиц металлов. Электрохимия. 2020. Т. 56. С. 710. [Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu. N., Zhukova, N.A., and Mamedov, V. A., Benzimidazo[1',2':1,2]quinolino [4, 3-b] [1, 2, 5]oxodiazolo [3, 4-f]quinoxaline—New Mediator for Electrosynthesizing Metal Nanoparticles, *Russ. J. Electrochem.*, 2020, vol. 56, p. 646.]
- Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Osin, Y.N., Evtugyn, V.G., Ziganshina, A.Y., and Gubaidullin, A.T., Structure and catalytic activity of ultrasmall Rh, Pd and (Rh + Pd) nanoparticles obtained by mediated electrosynthesis, *New J. Chem.*, 2019, vol. 43, p. 3931.
- Nasretdinova, G.R., Fazleeva, R.R., Osin, Yu.N., Evtugin, V.G., Gubaidullin, A.T., Ziganshina, A.Yu., and Yanilkin, V.V., Methylviologen Mediated Electrochemical Synthesis of Catalytically Active Ultrasmall Pd–Ag Bimetallic Nanoparticles Stabilized by CTAC, *Electrochim. Acta*, 2018, vol. 285, p. 149.
- 12. Suh, M.P., Metal-Organic Frameworks and Porous Coordination Polymers: Properties and Applications, *Bull. Jpn. Soc. Coord. Chem.*, 2015, vol. 65, p. 9.
- Caia, X., Denga, X., Xiea, Z., Shia, Y., Panga, M., and Lina, J., Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@polypyrrole core-shell nanohybrids for cancer therapy, *Chem. Engineering J.*, 2018, vol. 358, p. 369.
- Gao, X.W., Yang, J., Song, K., Luo, W.B., Dou, S.X., and Kang, Y.M., Robust FeCo nanoparticles embedded in a Ndoped porous carbon framework for high oxygen conversion catalytic activity in alkaline and acidic media, *J. Mater. Chem. A*, 2018, vol. 46, no. 6, p. 23445.
- Sun, Q., Zhai, W., Hou, G., Feng, J., Zhang, L., Si, P., Guo, S., and Ci, L., In situ Synthesis of a Lithiophilic Ag-Nanoparticles-Decorated 3D Porous Carbon Framework toward Dendrite-Free Lithium Metal Anodes, *ACS Sustainable Chem. Eng.*, 2018, vol. 11, no. 6, p. 15219.
- Zhang, S., Wu, Q., Tang, L., Hu, Y., Wang, M., Zhao, J., Li, M., Han, J., Liu, X., and Wang, H., Individual High-Quality N-Doped Carbon Nanotubes Embedded with Nonprecious Metal Nanoparticles toward Electrochemical Reaction, *ACS Appl. Mater. Interfaces*, 2018, vol. 46, no. 10, p. 39757.
- Wu, Y., Qiu, X., Liang, F., Zhang, Q., Koo, A., Dai, Y., Lei, Y., Sun, X., A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries, *Appl. Catal. B: Environmental*, 2019, vol. 241, p. 407.
- Wu, T., Ma, J., Wang, X., Liu, Y., Xu, H., Gao, J., Wang, W., Liu, Y., and Yan, J., Graphene oxide supported Au–Ag alloy nanoparticles with different shapes and their high catalytic activities, *Nanotechnology*, 2013, vol. 24, no. 12, p. 125301.
- Gan, T., Wang, Z., Shi, Z., Zheng, D., Sun, J., and Liu, Y., Graphene oxide reinforced core–shell structured Ag@Cu₂O with tunable hierarchical morpholo-

44

gies and their morphology–dependent electrocatalytic properties for bio-sensing applications, *Biosensors and Bioelectronics*, 2018, vol. 112, p. 23.

- Wang, L., Wang, L., Zhang, J., Wang, H., and Xiao, F.-S., Enhancement of the activity and durability in CO oxidation over silica-supported Au nanoparticle catalyst via CeO_x modification, *Chinese J. Catal.*, 2018, vol. 39, p. 1608.
- Fedorenko, S., Jilkin, M., Nastapova, N., Yanilkin, V., Bochkova, O., Buriliov, V., Nizameev, I., Nasretdinova, G., Kadirov, M., Mustafina, A., and Budnikova, Y., Surface decoration of silica nanoparticles by Pd(0) deposition for catalytic application in aqueous solutions, *Colloids and Surfaces A: Physicochem. Eng. Aspects*, 2015, vol. 486, p. 185.
- An, K. and Somorjai, G.A., Nanocatalysis I: Synthesis of Metal and Bimetallic Nanoparticles and Porous Oxides and Their Catalytic Reaction Studies, *Catal. Lett.*, 2015, vol. 145, p. 233.
- Eremenko, A., Smirnova, N., Gnatiuk, I., Linnik, O., Vityuk, N., Mukha, Y., and Korduban, A., Silver and Gold Nanoparticles on Sol-Gel TiO₂, ZrO₂, SiO₂ Surfaces: Optical Spectra, Photocatalytic Activity, Bactericide Properties, In Nanocomposites and Polymers with Analytical Methods, Cuppoletti J., Ed., Croatia: InTech, 2011, p. 404.
- 24. Majhi, S.M., Naik, G.K., Lee, H.-J., Song, H.-G., Lee, C.-R., Lee, I.-H., and Yu, Y.-T., Au@NiO coreshell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism, *Sensors and Actuators B*, 2018, vol. 268, p. 223.
- Liu, J., Zou, S., Li, S., Liao, X., Hong, Y., Xiao, L., and Fan, J., A general synthesis of mesoporous metal oxides with well-dispersed metal nanoparticles via a versatile sol-gel process, *J. Mater. Chem. A*, 2013, vol. 1, p. 4038.
- Padbury, R.P., Halbur, J.C., Krommenhoek, P.J., Tracy, J.B., and Jur, J.S., Thermal Stability of Gold Nanoparticles Embedded within Metal Oxide Frameworks Fabricated by Hybrid Modifications onto Sacrificial Textile Templates, *Langmuir*, 2015, vol. 31, no. 3, p. 1135.
- 27. Kaushik, M. and Moores, A., Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis, *Green Chem.*, 2016, vol. 18, p. 622.
- Hassner, A. and Namboothiri, I., Organic Syntheses Based on Name Reactions. 3th ed., Amsterdam: Elsevier, 2012, p. 299.
- Mamedov, V.A., Recent advances in the synthesis of benzimidazol(on)es via rearrangements of quinoxalin(on)es, *RSC Adv.*, 2016, vol. 6, p. 42132.
- Mamedov, V.A., Quinoxalines. Synthesis, Reactions, Mechanisms and Structure. Springer, 2016, p. 437.
- Mamedov, V.A., Zhukova, N.A., Kadyrova, M.S., Fazleeva, R.R., Bazanova, O.B., Beschastnova, T.N., Gubaidullin A.T., Rizvanov, I.K., Yanilkin, V.V., Latypov, S.K., and Sinyashin, O.G., Environmentally friendly and efficient method for the synthesis of the new α,α'-diimine ligands with benzimidazole moiety, *J. Heterocycl. Chem.*, 2020, vol. 57, p.2466.

- 32. Янилкин, В.В., Настапова, Н.В., Насретдинова, Г.Р., Мухитова, Р.К., Зиганшина, А.Ю., Низамеев, И.Р., Кадиров, М.К. Электрохимический синтез наночастиц Pd⁰ в растворе. Электрохимия. 2015. Т.51. С. 1077. [Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Mediated Electrochemical Synthesis of Pd⁰ Nanoparticles in Solution, *Russ J. Electrochem.*, 2015, vol. 51, p. 951.]
- 33. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., and Osin, Yu.N., Molecular oxygen as a mediator in the electrosynthesis of gold nanoparticles in DMF, *Electrochem. Commun.*, 2016, vol. 69, p. 36.
- 34. Янилкин, В.В., Настапова, Н.В., Фазлеева, Р.Р., Насретдинова, Г.Р., Султанова, Э.Д., Зиганшина, А.Ю., Губайдуллин, А.Т., Самигуллина, А.И., Евтюгин, В.Г., Воробьев, В.В., Осин, Ю.Н. Молекулярный кислород в роли медиатора при электросинтезе наночастиц металлов в ДМФА. Электрохимия. 2018. Т. 54. С. 307. [Yanilkin, V.V., Nastapova, N.V., Fazleeva, R.R., Nasretdinova, G.R., Sultanova, E.D., Ziganshina, A.Yu., Gubaidullin, A.T., Samigullina, A.I., Evtyugin, V.G., Vorob'ev, V.V., and Osin, Yu.N., Molecular Oxygen as Mediator in the Metal Nanoparticles' Electrosynthesis in N,N-Dimethylformamide, Russ. J. Electrochem., 2018, vol. 54, p. 265.]
- 35. Манн, Ч., Барнес, К. Электрохимические реакции в неводных средах, М: «Химия», 1974, 480 с. [Mann, C. and Barnes, K., Electrochemical reactions in nonaqueous systems, Moscow: Khimiya, 1974, p. 480.]
- 36. Фазлеева, Р.Р., Насретдинова, Г.Р., Осин, Ю.Н., Зиганшина, А.Ю., Янилкин, В.В. Двухстадийный электросинтез и каталитическая активность наночастиц Ag, Au, Pd на носителе из CoO–CoO · xH₂O. *Изв. АН. Сер. хим.* 2020. Т. 69. С. 241. [Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu. N., Ziganshina, A. Yu., and Yanilkin, V.V., Two-step electro-synthesis and catalytic activity of CoO – CoO · xH₂O-supported Ag, Au, and Pd nanoparticles, *Russ. Chem. Bull.*, 2020, vol. 69, p. 241.]
- Rajender Reddy, K., Kumar, N.S., Surendra Reddy, P., Sreedhar, B., and Lakshmi Kantam, M., Cellulose supported palladium(0) catalyst for Heck and Sonogashira coupling reactions, *J. Molecular Catal. A: Chemical*, 2006, vol. 252, p. 12.
- Koga, H., Tokunaga, E., Hidaka, M., Umemura, Y., Saito, T., Isogai, A., and Kitaoka, T., Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers, *Chem. communications*, 2010, vol. 46, p. 8567.
- 39. Cirtiu, C.M., Dunlop-Brière, A.F., and Moores, A., Cellulose nanocrystallites as an efficient support for nanoparticles of palladium: application for catalytic hydrogenation and Heck coupling under mild conditions, *Green Chem.*, 2011, vol. 13, no. 2, p. 288.
- Lam, E., Hrapovic, S., Majid, E., Chong, J.H., and Luong, J.H.T., Catalysis using gold nanoparticles decorated on nanocrystalline cellulose, *Nanoscale*, 2012, vol. 4, no. 3, p. 997.
- 41. Tang, J., Shi, Z., Berry, R.M., and Tam, K.C., Mussel-Inspired Green Metallization of Silver Nanoparticles on Cellulose Nanocrystals and Their Enhanced Catalytic Reduction of 4-Nitrophenol in the Presence of

β-Cyclodextrin, *Ind. Eng. Chem. Res.*, 2015, vol. 54, p. 3299.

- 42. Kaushik, M. and Moores, A., Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis, *Green Chem.*, 2016, vol. 18, p. 622.
- 43. Chen, L., Cao, W., Quinlan, P.J., Berry, R.M., and Tam, K.C., Sustainable Catalysts from Gold-Loaded Polyamidoamine Dendrimer-Cellulose Nanocrystals, *ACS Sustain. Chem. Eng.*, 2015, vol. 3, p. 978.
- 44. Tang, J., Sisler, J., Grishkewich, N., and Tam, K.C., Functionalization of cellulose nanocrystals for advanced applications, *J. Colloid and Interface Sci.*, 2017, vol. 494, p. 397.
- 45. Eisa, W.H., Abdelgawad, A.M., and Rojas, O.J., Solid-State Synthesis of Metal Nanoparticles Supported on Cellulose Nanocrystals and Their Catalytic Activity, *ACS Sustain. Chem. Eng.*, 2018, vol. 6, no. 3, p. 3974.
- Liu, H., Wang, D., Shang, S., and Song, Z., Synthesis and characterization of Ag–Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites, *Carbohydrate Polymers*, 2011, vol. 83, no. 1, p. 38.
- 47. Liu, H., Wang, D., Song, Z., and Shang, S., Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of

DNA hybridization, *Cellulose*, 2011, vol. 18, no. 1, p. 67.

- Schlesinger, M., Giese, M., Blusch, L.K., Hamad, W.Y., and MacLachlan, M.J., Chiral Nematic Cellulose-Gold Nanoparticle Composites from Mesoporous Photonic Cellulose, *Chem. Commun.*, 2015, vol. 51, p. 530.
- Zhang, T., Wang, W., Zhang, D., Zhang, X., Ma, Y., Zhou, Y., and Qi, L., Biotemplated Synthesis of Gold Nanoparticle–Bacteria Cellulose Nanofiber Nanocomposites and Their Application in Biosensing, *Adv. Funct. Mater.*, 2010, vol. 20, p. 1152.
- 50. Wang, W., Zhang, T.J., Zhang, D.W., Li, H.Y., Ma, Y.R., Qi, L.M., Zhou, Y.L., and Zhang, X.X., Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles-bacteria cellulose nanofibers nanocomposite, *Talanta*, 2011, vol. 84, p. 71.
- Drogat, N., Granet, R., Sol, V., Memmi, A., Saad, N., Koerkamp, C.K., Bressollier, P., and Krausz, P., Antimicrobial silver nanoparticles generated on cellulose nanocrystals, *J. Nanoparticle Res.*, 2011, vol. 13, no. 4, p. 1557.
- Berndt, S., Wesarg, F., Wiegand, C., Kralisch, D., and Müller, F.A., Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles, *Cellulose*, 2013, vol. 20, p. 771.