УДК 544.653.3+546.05

## МИКРОТРУБЧАТЫЕ МЕМБРАНЫ ДЛЯ СЕЛЕКТИВНОГО ПОЛУЧЕНИЯ КИСЛОРОДА И ВОДОРОДА<sup>1</sup>

# © 2021 г. И. В. Ковалев<sup>*a*, *b*</sup>, И. А. Мальбахова<sup>*a*</sup>, А. М. Воробьев<sup>*a*</sup>, Т. А. Борисенко<sup>*a*</sup>, М. П. Попов<sup>*a*</sup>, \*, А. А. Матвиенко<sup>*a*</sup>, А. И. Титков<sup>*a*</sup>, А. П. Немудрый<sup>*a*</sup>

<sup>а</sup>Институт химии твердого тела и механохимии СО РАН, Новосибирск, Россия <sup>b</sup>Новосибирский государственный технический университет, Новосибирск, Россия \*e-mail: popov@solid.nsc.ru

Се-тип. ророу @sona.nsc.ru Поступила в редакцию 29.12.2020 г. После доработки 01.04.2021 г. Принята к публикации 05.04.2021 г.

В настоящей работе приведены результаты исследования газовой проницаемости микротрубчатых кислород- и водород-проницаемых мембран. Для микротрубчатых кислород-проницаемых мембран состава  $Ba_{0.5}Sr_{0.5}Co_{0.75}Fe_{0.2}Mo_{0.05}O_{3-\delta}$  впервые изучено влияние серебряного катализатора при использовании нового метода нагрева. Альтернативные водород-проницаемые мембраны на основе металлического никеля изготовлены из оксида никеля методом фазовой инверсии с последующим восстановлением в водороде.

Ключевые слова: перовскиты, никель, мембраны, кислородный обмен, водородная проницаемость

DOI: 10.31857/S0424857021100078

## **ВВЕДЕНИЕ**

Эффект газовой проницаемости был обнаружен более сотни лет назад [1], однако его исследование до сих пор представляет интерес. В классическом варианте [2] процесс диффузионной газовой проницаемости через мембрану описывается согласно следующей схеме: физадсорбция  $\rightarrow$  хемосорбция → абсорбция → твердофазная диффузия и зеркальные процессы на обратной стороне мембраны. В зависимости от природы газа и материала мембраны газовая диффузия может протекать с аномальной для твердых тел скоростью, что находит применение в различных отраслях инженерной мысли. Одними из наиболее интересных, с прикладной точки зрения, являются (1) кислород- и (2) водород-проницаемые мембраны.

(1) Материалами для кислород-проницаемых (КП) мембран, как правило, являются перовскитоподобные оксиды со смешанной кислородэлектронной проводимостью (СКЭП). КП-мембраны находят применение в различных инновационных технологиях [3–5], например, сепарации кислорода из воздуха с помощью ион-транспортных мембран, которые легко интегрируются в высокотемпературные процессы: каталитической конверсии природного газа в синтез-газ [6]; окислительного пиролиза метана с получением ацетилена [7]; эффективного сжигания топлива с утилизацией углекислого газа [8], а также конверсии химической энергии топлива в электрическую энергию с помощью твердооксидных топливных элементов (**ТОТЭ**) [9].

(2) Традиционным материалом для водородпроницаемых (ВП) мембран является палладий. ВП-мембраны используют в процессах, где требуется водород исключительной чистоты без наличия серосодержащих соединений и оксида углерода(II) [10]. Ввиду высокой стоимости палладия в настоящее время ведутся разработки по созданию альтернативных ВП-мембран. Одним из наиболее перспективных материалов для данных целей является никель. Преимуществом никелевых мембран является не только значительно низкая стоимость материала, но и высокая устойчивость к воздействию отравляющих веществ [11]. Однако водородная проницаемость никелевых мембран намного ниже, чем у мембран на основе палладия при аналогичных рабочих температурах, поскольку растворимость водорода и коэффициент диффузии твердой фазы в никеле намного ниже, чем палладия [11].

<sup>&</sup>lt;sup>1</sup> По материалам доклада на 15-м Международном совещании "Фундаментальные проблемы ионики твердого тела", Черноголовка, 30.11.—07.12.2020.



Рис. 1. Схема получения микротрубчатых мембран методом фазовой инверсии.

Для увеличения газовой проницаемости мембран применяют различные стратегии, основанные на:

 создании мембраны с определенной микрои макроструктурой [12]. Для формирования архитектуры мембраны применяют метод фазовой инверсии для получения мембран в виде микротрубок с высокой пористостью (вплоть до 50 об. %) и тонким газоплотным слоем (до десятков микрон). Как правило, формование мембран в микротрубчатой (МТ) форме приводит к заметному повышению удельных функциональных характеристик [12, 13];

- модификации мембраны при помощи катализатора. Известно, что нанесение на поверхность кислород-проницаемой мембраны серебряного катализатора приводит к увеличению кислородных потоков [14].

В данной работе проведен синтез кислород- и водород-проницаемых мембран в форме микротрубок. Проведено исследование влияния модификации поверхности КП-мембраны каталитически активным материалом на кислородную проницаемость.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

### Изготовление мембран

Порошки состава Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.75</sub>Fe<sub>0.2</sub>Mo<sub>0.05</sub>O<sub>3-δ</sub> (BSCFM5) для КП-мембраны были получены керамическим методом при смешении реагентов в стехиометрических соотношениях в планетарной шаровой мельнице АГО-2 в течение 1.5 мин в этиловом спирте, из расчета 1 мл спирта на 1 г конечного продукта. В качестве реагентов использовали нитрат бария, оксилы железа, молиблена, кобальта и карбонат стронция. Все порошки были предварительно просушены в печи при 600°С в течение 5 ч. После смешения полученный порошок традиционно прокаливали в печи при температуре 900°С в течение 6 ч для частичного удаления побочных продуктов и увеличения удельной площади реакции, затем снова помещали в АГО-2 для измельчения и гомогенизации в течение 10 мин.

Микротрубчатые мембраны были получены методом фазовой инверсии. Для приготовления пасты смешивали порошок-прекурсор (BSCFM5 для КП-мембран, NiO – для ВП мембран), растворитель (N-метил-2-пирролидон) и связующее (полисульфон) в массовом соотношении 10:4:1 соответственно, а затем диспергировали с помощью вакуумного диссольвера DISPERMAT LC-55 (VMA-Getzmann, Германия) скоростью co 1500 об/мин в течение 1 ч с дальнейшей дегазацией при 300 об/мин в течение 1 ч. Полученную пасту выдавливали через фильеру в емкость с водой, воздушный зазор ≈1 см. Схема процесса получения представлена на рис. 1. Полученные заготовки выдерживали в дистиллированной воде сутки для удаления остатков растворителя, после высушивали при 120°С в течение 1 ч.

После сушки трубки для КП-мембран спекали в печи в воздушной атмосфере при 1160-1170°С в течение 6 ч, с температурной полкой на 450°С длительностью 2 ч для выгорания остаточного органического связующего; скорость нагрева  $V_{\rm H}$  =  $= 250^{\circ}$ C/ч; скорость охлаждения выбирали равной скорости нагрева.

Для восстановления заготовок из оксида никеля(II), полученных методом фазовой инверсии, до никелевых микротрубчатых мембран, использовали программируемое спекание при температурах 600-1100°С со скоростью нагрева 50-300°С/ч и скоростью охлаждения 300°С/ч

614



**Рис. 2.** Установка для изучения высокотемпературной кислородной проницаемости микротрубчатых мембран: *1* – источник тока; *2* – пирометр; *3* – смеситель газов; *4* – реактор; *5* – масс-спектрометр.

в восстановительной среде 5% водорода-95% аргона.

Для проведения синтеза никелевых мембран методом частичного окисления—восстановления использовали никелевые капилляры из полуфабрикатного никеля марки НП2. Капилляры частично окисляли в высокотемпературной печи ПВК-1,6 при температуре 1200°С, а затем полученные заготовки восстанавливали в трубчатой печи в восстановительной среде 5% водорода— 95% аргона при температуре 600°С в течение 1 ч, со скоростями нагрева и охлаждения 200°С/ч.

## Приготовление серебряных чернил

Наночастицы серебра для получения серебряного катализатора на поверхности КП-мембран были синтезированы восстановлением в высококипящих спиртах по методике, описанной в [15]. Затем полученные частицы суспендировали в ацетоне с образованием коллоидного раствора [16]. Приготовленные серебряные чернила различной концентрации наносили аддитивно-экструзионным методом с последующим термическим отжигом.

## Характеризация образцов

Морфологию полученных мембран исследовали с помощью сканирующего электронного микроскопа (СЭМ) ТМ-1000 (Hitachi, Япония).

Газоплотность мембран была определена при помощи коммерческого люминесцентного пенетранта NORD-TEST ROT 3000 (Helling, Германия).

Структуру соединений исследовали методом рентгенофазового анализа (**РФА**) с помощью дифрактометра D8 Advance (Bruker, Германия), используя высокоскоростной детектор LynxEye (Си $K_{\alpha}$ -излучение). Данные были получены в диапазоне 20 от 20° до 60° с шагом 0.02°.

#### Измерение кислородной проницаемости

Установка для измерения кислородной проницаемости изображена на рис. 2. Для проведения экспериментов по изучению кислородной проницаемости использовали мембраны без мо-



Рис. 3. Рентгенограмма образца BSCFM5.

дификации поверхности и мембраны, на внутреннюю поверхность которых наносили серебряные чернила с концентрацией 10 мас. % по серебру, выбранной как оптимальная. Для измерений мембраны герметизировали полимерными патрубками с двух сторон, на некотором отдалении от краев мембраны наносили токопроводящее покрытие и закрепляли контакты из серебряной проволоки ( $R_{30Hbi Hardeba} \approx 15$  кОм), после этого помещали в герметичный кварцевый реактор (4). Внутрь мембраны на протяжении эксперимента подавали аргон, с внешней стороны азот и кислород в различных соотношениях в режиме противотока, скорости потоков  $J_{\rm in} = 90$  мл/мин и  $J_{\rm out} =$ = 150 мл/мин были подобраны ранее экспериментально. Газы подавали с помощью смесителя UFPGS-4 (3) (SoLO, Россия). Реактор располагали вертикально, продувочный газ подавали через нижний патрубок для сглаживания градиента температуры по длине реактора. Нагрев осуществляли пропусканием через мембрану переменного электрического тока с помощью источника (1), более подробно описание метода представлено в нашей прошлой работе [17]. Контроль температуры осуществляли с помощью пирометра с обратной связью IGA 300 (2) (IMPAC, Германия). Скорость нагрева  $V_{\text{нагр}} = 350^{\circ}\text{C/ч}.$ Концентрацию прошедшего через мембрану кислорода отслеживали с помощью квадрупольного масс-спектрометра QMS 200 (5) (SRS, США). Эксперимент проводили в диапазоне температур 650-800°С с шагом 50°С. На каждой температуре измеряли концентрацию кислорода в аргоне в диапазоне парциальных давлений кислорода с питающей стороны 0.1–0.7 с шагом 0.1 и выдержкой по времени не менее 5 мин на каждом значении, после каждого шага по температуре проводили калибровку масс-спектрометра по воздуху для повышения точности измерений.



**Рис. 4.** СЭМ-изображение микроструктуры КП мембран.

## РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

## Кислород-проницаемые мембраны

Для определения структурных параметров порошка оксида BSCFM5 и сравнения с литературными данными использовали метод порошковой дифрактометрии. Согласно полученным данным (рис. 3), структура BSCFM5 описывается пространственной группой  $Pm\overline{3}m$ . Полученные данные совпадают с литературными [18] и свидетельствуют о полном протекании твердофазной реакции.

Из характеризованного порошка BSCFM5 методом фазовой инверсии были изготовлены микротрубчатые мембраны (внешний диаметр 3 мм, внутренний диаметр 2.5 мм). Данные СЭМ слома микротрубчатых мембран состава BSCFM5 приведены на рис. 4, где видна развитая микроструктура с наличием finger-like пор и газоплотного слоя, толщину которого можно оценить в ~50 мкм.

На основе изготовленных мембран было получено четыре образца с различной концентрацией нанесенного серебряного катализатора. Сравнительные микрофотографии внутренней поверхности микротрубчатых BSCFM5 мембран с различной концентрацией серебра представлены на рис. 5.

Из сравнительных данных видно, что серебряное покрытие на поверхности мембраны является неравномерным вплоть до использования чернил с 10 мас. % серебра. Таким образом, в дальнейшей работе были изучены МТ-мембраны двух типов: без модификации поверхности и с серебряным катализатором, полученным с использованием наиболее концентрированных чернил.



**Рис. 5.** СЭМ поверхности мембраны: (а) без серебряного покрытия; (б) с нанесенными чернилами концентрации 2; (в) 5; (г) 10 мас. %.



Рис. 6. Линеаризация данных кислородных потоков, полученных на (а) немодифицированной мембране и (б) мембране с серебряным покрытием.

Эксперимент по изучению кислородной проницаемости показал, что в среднем величина удельных кислородных потоков на модифицированной мембране в 1.3 меньше, чем на мембране без нанесения серебряного покрытия (рис. 6). Рассчитанная на основании анализа кислородных потоков энергия активации составила  $96 \pm 1$  кДж/моль для модифицированной мембраны, тогда как энергия активации на немодифицированной мембране того же состава  $84 \pm 3$  кДж/моль (рис. 7).

ЭЛЕКТРОХИМИЯ том 57 № 10 2021

КОВАЛЕВ и др.



Рис. 7. Аррениусовские графики для: (а) немодифицированной мембраны; (б) мембраны с серебряным покрытием.

Чтобы разобраться в причинах полученных результатов, нами были проведены элементный и рентгеноструктурный анализы рабочей области модифицированной мембраны после эксперимента, по результатам которых наличие серебра не было установлено, однако незначительное его количество было обнаружено качественным химическим анализом, что говорит о существенном снижении концентрации серебра в сравнении с начальным состоянием поверхности. Такое изменение мы связываем с экстремальными условиями проведения эксперимента: высокие значения температуры, потока продувочного газа, а также плохая адгезия серебра к керамике. Наши предположения подтверждаются экспериментально, что наблюдается из представленных СЭМ микрофотографий, сделанных после экспериментов с изменением таких параметров, как подача продувочного газа и температура. На представленных снимках по длине мембраны наблюдается предсказанный унос серебра, что выражается в изменении концентрации частиц серебра по длине рабочей поверхности в направлении подачи продувочного газа (рис. 8).

Различие в величине удельных кислородных потоков, на наш взгляд, обусловлено тем, что серебро, концентрируясь по границам зерен, снижает количество активных центров, препятствуя переносу кислорода. Различия в энергиях активаций незначительны и могут быть обусловлены множеством факторов, в том числе различием в длине рабочей области исследуемых мембран, прямое влияние на эффективную энергию активации которого было обнаружено ранее [19].

## Водород-проницаемые мембраны

При получении никелевых водород-проницаемых мембран методом фазовой инверсии использовали два подхода - восстановление мембран с использованием предварительного отжига при температуре 1400°С и без него. Данные сканирующей электронной микроскопии показывают, что при восстановлении предварительно отожженных заготовок из оксида никеля(II) в диапазоне температур 600-1100°С (скорость нагрева 50°С/ч) не достигается газоплотность образцов (рис. 9). Это связано с тем, что при восстановлении оксида никеля(II) до металлического никеля теряется около 40% объема с образованием высокой пористости [20]. При достаточно высоких скоростях нагрева пористость не успевает трансформироваться из открытой в закрытую.

Для предотвращения повышенной пористости было решено уменьшить скорость нагрева заготовки из оксида никеля(II) при восстановлении. Результаты электронной микроскопии (рис. 10) и тест на газоплотность при помощи пенетранта определили, что снижение скорости нагрева позволяет достичь полной газоплотности никелевой мембраны.

При разработке метода получения никелевых ВП-мембран методом частичного окисления восстановления промышленных капилляров предполагалось, что два фронта окисления капилляра идут параллельно и навстречу друг другу. При дальнейшем восстановлении частично окисленного никелевого капилляра ввиду потери объема при переходе из NiO в Ni будет образовываться пористый слой на поверхности, который будет способствовать повышенной диффузии водорода

## МИКРОТРУБЧАТЫЕ МЕМБРАНЫ



Внутренняя поверхность

Рис. 8. СЭМ распределения серебра на поверхности мембраны после эксперимента.



**Рис. 9.** Микроснимки никелевых мембран, полученных методом фазовой инверсии с предварительным отжигом при разных температурах восстановления (скорость нагрева 50°С/ч): 600 (а), 800 (б), 1000°С (в).

ЭЛЕКТРОХИМИЯ том 57 № 10 2021



**Рис. 10.** Микроснимки никелевой мембраны, полученной методом фазовой инверсии без предварительного отжига при температуре восстановления 1100°С (скорость нагрева 50°С/ч).



**Рис. 11.** Микроснимки никелевой мембраны, полученной методом частичного окисления—восстановления при температуре окисления 1150°С и температуре восстановления 600°С.

через мембрану. При проведении эксперимента по получению мембраны данным методом было показано, что итоговый продукт представляет из себя трубчатую трехслойную структуру, у которой внешние слои более пористые, чем сердцевина мембраны (рис. 11). При этом тест на газоплотность показывает, что данные мембраны не являются газоплотными.

Механизм окисления никеля хорошо установлен [21, 22]. Рост слоя оксида происходит преимущественно за счет диффузии катионов никеля и переноса электронов через слой оксида. Взаимодействие кислорода на внешней поверхности оксида приводит к образованию вакансий никеля. Вакансии никеля диффундируют к границе раздела металл/оксид, что соответствует диффузии никеля в обратном направлении. В результате оксид растет на внешней поверхности (оксид-газ), а вакансии накапливаются в металле, что и является причиной образования пор в продукте реакции. После стадии окисления образуется два слоя оксила и слой недоокисленного металла межлу ними. Толщина слоев контролируется временем реакции. Наблюдается характерная для диффузионных процессов корневая зависимость толщины оксида от времени реакции [22]. На стадии восстановления в водороде оксид превращается в пористый металл. Уменьшение объема при реакции реализуется в виде лабиринта пор. Размер пор сильно зависит от температуры и концентрации водорода [23]. Пористые слои металла являются газопроницаемыми и в результате образуется мембрана, состоящая из двух пористых слоев и сплошного слоя исходного металла между ними.

Однако в данной работе было обнаружено, что в слое оставшегося, недоокисленного металла поры расположены преимущественно вдоль границ зерен. Также на границах зерен в этом слое наблюдаются небольшие выделения фазы оксида. Можно предположить, что нарушение газоплотности мембраны связано с образованием сквозных каналов или трещин вдоль границ зерен в слое недоокисленного металла после цикла окисление—восстановление.

## ЗАКЛЮЧЕНИЕ

В настоящей работе показано, что использование серебра в качестве поверхностного катализатора кислородной проницаемости микротрубчатых мембран на основе оксидов со смешанной кислород-электронной проводимостью приводит к снижению удельных кислородных потоков, а также не влияет на энергию активацию процесса. Ко всему прочему, серебряное покрытие является крайне нестабильным в рабочих условиях эксплуатации данных мембран, что также является аргументом против использования серебра как катализатора.

Показано, что метод обратной фазовой инверсии с контролируемым спеканием позволяет получать газоплотную никелевую водородселективную мембрану. Полная газоплотность достигается при спекании заготовки из оксида никеля(II) при температуре 1100°С со скоростью нагрева 50°С/ч. Установлено, что метод частичного окисления—восстановления промышленных капилляров не позволяет синтезировать никелевые мембраны, удовлетворяющие необходимым условиям для водородселективных мембран.

## ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИХТТМ СО РАН (проект № 0237-2019-0002) и (проект FWUS-2021-0001).

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Cailletet, L., First report of H embrittlement of metals, 1864, *Compt. Rend*, vol. 58, p. 327.
- Wang, J., On the Diffusion of Gases through Metals, *Proc. Cambridge Philos. Soc.*, 1936, vol. 32, p. 657.
- 3. Pena, M.A. and Fierro, J.L.G., Chemical structure and performance of perovskite oxides, *Chem. Rev.*, 2001, vol. 101, p. 1981.

ЭЛЕКТРОХИМИЯ том 57 № 10 2021

- Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., and Lin, Y.S., Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation, *J. Membr. Sci.*, 2008, vol. 320, p. 13.
- Marques, F.M.B., Kharton, V.V., Naumovich, E.N., Shaula, A.L., Kovalevsky, A.V., and Yaremchenko, A.A., Oxygen ion conductors for fuel cells and membranes: selected developments, *Solid State Ionics*, 2006, vol. 177, p. 1697.
- 6. Pei, S., Kleefisch, M., Kobylinski, T.P., Faber, J., Udovich, C.A., Zhang-McCoy, V., Dabrowski, B., Balachandran, U., Mieville, R.L., and Poeppel R.B., Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas, *Catal. Lett.*, 1994, vol. 30, p. 201.
- Ten Elshof, J.E., van Hassel, B.A., and Bouwmeester, H.J.M., Activation of methane using solid oxide membranes, *Catal. Today*, 1995, vol. 25, p. 397.
- Leo, A., Liu, Sh., and Diniz da Costa, J.C., Development of mixed conducting membranes for clean coal energy delivery, *Int. J. Greenh. Gas Con.*, 2009, vol. 3, p. 357.
- Mahato, N., Banerjee, A., Gupta, A., Omar, S., and Balani K., Progress in material selection for solid oxide fuel cell technology: a review, *Prog. Mater. Sci.*, 2015, vol. 72, p. 141.
- 10. Tarasov, B.P., Hydrogen energetics: Past, present, prospects, *Russ. J. Gen. Chem.*, 2007, vol. 77, p. 660.
- Li, Y., Zhang, M., Chu, Y., Tan, X., Gao, J., Wang, S., and Liu, S., Design of Metallic Nickel Hollow Fiber Membrane Modules for Pure Hydrogen Separation, *AIChE J.*, 2018, vol. 64, no. 1, p. 1.
- Popov, M.P., Bychkov, S.F., and Nemudry, A.P., Direct AC heating of oxygen transport membranes, *Solid State Ion.*, 2017, vol. 312, p. 73.
- 13. Popov, M.P., Bychkov, S.F., Bulina, N.V., and Nemudry, A.P., In situ high-temperature X-Ray diffraction of hollow fiber membranes under operating conditions, *J. Eur. Ceram. Soc.*, 2019, vol. 39, p. 1717.
- Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., Lin, Y., and Diniz da Costa, J.C., Mixed ionicelectronic conducting ceramic-based membranes for oxygen separation, *J. Membrane. Sci.*, 2009, vol. 340, p. 148.
- Titkov, A.I., Logutenko, O.A., Gerasimov, E.Yu., Shundrina, I.K., Karpova, E.V., and Lyakhov, N.Z., Synthesis of silver nanoparticles stabilized by carboxylated methoxypolyethylene glycols: The role of carboxyl terminal groups in the particle size and morphology, *J. Incl. Phenom. Macro.*, 2019, vol. 94, p. 287.
- Malbakhova, I.A., Titkov, A.I., Uvarov, N.F., and Ulihin, A.S., Synthesis of graphite/Ag/AgCl nanocomposite electrode materials, *Mater. Today: Proceedings*, 2019, vol. 25, p. 398.
- 17. Popov, M.P., Bychkov, S.F., and Nemudry, A.P., Direct AC heating of oxygen transport membranes, *Solid State Ion.*, 2017, vol. 312, p. 73.

- Shubnikova, E.V., Bragina, O.A., and Nemudry, A.P., Mixed conducting molybdenum doped BSCF materials, *Ind. Eng. Chem. Res.*, 2018, vol. 59, p. 242.
- 19. Shubnikova, E.V., Popov, M.P., Chizhik, S.A., Bychkov, S.F., and Nemudry, A.P., The modeling of oxygen transport in MIEC oxide hollow fiber membranes, *Chem. Eng. J.*, 2019, vol. 372, p. 251.
- Manukyan, K.V., Avetisyan, A.G., Shuck, C.E., Chatilyan, H.A., Rouvimov, S., Kharatyan, S.L., and Mukasyan, A.S., Nickel Oxide Reduction by Hydrogen: Kinetics and Structural Transformations, *J. Phys. Chem. C*, 2015, vol. 119, no. 28, p. 16131.
- Jeangros, Q., Hansen, T.W., Wagner, J.B., Dunin-Borkowski, R.E., Hébert, C., Vanherle, C.J., and Hessler-Wyser, A., Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope, *Acta Mater.*, 2014, vol. 67, p. 362.
- 22. Mrowec, S. and Grzesik, Z., Oxidation of nickel and transport properties of nickel oxide, *J. Phys. Chem. Solids*, 2004, vol. 65, p. 1651.
- Hidayat, T., Rhamdhani, M.A., Jak, E., and Hayes, P.C. Investigation of Nickel Product Structures Developed during the Gaseous Reduction of Solid Nickel Oxide, *Metall. Mater. Trans. B*, 2009, vol. 40B, p. 462.