УДК 544.354-128+544.623.032.73+538.9

ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА СИСТЕМЫ ПЭГ 1500-LiTFSI¹

© 2021 г. М. М. Гафуров^{*a*, *, М. А. Ахмедов^{*a*, **, С. И. Сулейманов^{*a*, ***, А. М. Амиров^{*a*}, К. Ш. Рабаданов^{*a*}, М. Б. Атаев^{*a*}, З. Ю. Кубатаев^{*a*}}}}

^аАналитический центр коллективного пользования ДФИЦ РАН, Махачкала, Россия

*e-mail: malik52@mail.ru **e-mail: muhamadahmedov@mail.ru ***e-mail: s.sagim.i@yandex.ru Поступила в редакцию 07.03.2021 г. После доработки 26.05.2021 г. Принята к публикации 04.06.2021 г.

В настоящей работе методами спектроскопии электрохимического импеданса и дифференциальнотермического анализа изучены тепловые эффекты, диэлектрические свойства литий-ионного полимерного электролита – полиэтиленгликоль (ПЭГ 1500)–бис(трифторметансульфонил)имид лития (LiTFSI) при различных мольных соотношениях соли в полимере. Показано, что сложная форма "конечного" диффузионного импеданса электролитной системы ПЭГ 1500–LiTFSI при 293 и 343 К может быть обусловлена наложением двух процессов, протекающих одновременно в приэлектродном слое (SEI) и на границе двойного электрического слоя (ДЭС). Обнаружено, что полученные значения коэффициентов диффузии не вписываются в существующую модель Аррениуса для описания механизма переноса ионов лития в полимерной матрице ПЭГ. Установлено, что с увеличением концентрации LiTFSI в ПЭГ 1500–LiTFSI увеличение времени диэлектрической релаксации. Предположено, что в системе ПЭГ 1500–LiTFSI увеличение ионной проводимости с увеличением температуры до 343 К происходит за счет волновых флуктуаций иона лития и движения полимерной матрицы ПЭГ 1500.

Ключевые слова: литий-ионный полимерный электролит, полиэтиленгликоль, тепловой эффект, диэлектрические свойства

DOI: 10.31857/S0424857021110049

введение

На сегодняшний день весьма актуальны исследования свойств полимерных электролитов, обладающих хорошей проводимостью, электрохимической стабильностью, низкой воспламеняемостью и позволяющих создавать безопасные твердотельные устройства с любой удобной формой, геометрией, размерами и др. [1–4]. Данные исследования необходимы как для установления фундаментальных закономерностей формирования транспортных свойств полимерных систем, так и для их практического использования в различных электрохимических устройствах [5–10].

Исследуемый объект данной работы относится к классу литий-ионпроводящих полимерных электролитов (ПЭ) на основе полимерной матрицы – полиэтиленгликоля (ПЭГ) или полиэтиленоксида (ПЭО) и литиевой соли – бис(трифторметансульфонил)имида лития (LiTFSI). Преимуществом использования литиевой соли LiTFSI является сочетание таких свойств, как хорошая растворимость (без растворителя) в полимерной матрице, высокая ионная проводимость, термическая электрохимическая стабильность И [11-15]. Использование в качестве полимерной матрицы ПЭГ или ПЭО обусловлено способностью кислородных групп (О) полимерной матрицы образовывать с ионом лития (Li⁺) комплексы типа электрон-дырочных пар, характеризующиеся низкой температурой стеклования, аморфностью и гибкостью полимерной цепи [16]; в то же время известными недостатками данной системы является ее хрупкость и невысокая термическая стабильность [6, 17].

Однако, несмотря на приведенные выше недостатки, во многих странах продолжаются научные исследования Li⁺ полимерных электролитов [18–28] и катодных материалов [29–32], в которых в качестве полимерной матрицы используется ПЭГ/ПЭО.

Авторами [33] при сравнении свойств низкомолекулярного ПЭГ (М \approx 550), полиэтиленгли-

¹ По материалам доклада на 15-м Международном совещании "Фундаментальные проблемы ионики твёрдого тела", Черноголовка, 30.11.—07.12.2020.

коля монометилового эфира (ПЭГМЭ) и полиэтиленгликоля диметилового эфира (ПЭГДМЭ) было обнаружено, что в присутствии LiTFSI увеличиваются коэффициенты самодиффузии как для катионов Li⁺, так и для имид-анионов TFSI⁻. При исследовании реологических и ионнотранспортных свойств в фторсульфонимид-ионных полиэфирных расплавленных электролитах [34] было установлено, что сегментальные движения концевых групп в ПЭО в случае прыжкового механизма для иона Li⁺ менее выражены, чем в низкомолекулярном ПЭГ. По мнению авторов [34], это может быть связано с малыми размерами доступного свободного объема при сегментальном движении концевых групп ПЭО. В работе [35] на основании данных электрометрии и термического анализа было выявлено, что механизм переноса ионов Li⁺ с увеличением концентрации соли в электролитной системе ПЭГ 1500-LiTFSI имеет сложный характер. Одновременно исследования методами спектроскопии комбинационного рассеяния света и квантово-химического моделирования показали, что в системе ПЭГ 1500-LiTFSI с увеличением концентрации соли в полимере сольватация анионов TFSI⁻ ионами Li⁺ в LiTFSILi⁺ является энергетически менее выгодной и маловероятной. Важно отметить, что перенос ионов в Li⁺-полимерных электролитах изучается около полувека, однако особенности миграции ионов лития в полимерной матрице ПЭГ/ПЭО и сам механизм ионной проводимости в ней до сих пор не нашли однозначного описания [36].

Из вышеизложенного следует, что для оценки более точного механизма ионного переноса в полимерной матрице ПЭГ/ПЭО необходимо проведение дополнительных экспериментальных исследований по изучению электрофизических свойств электролитной системы ПЭГ/ПЭО-литиевая соль. В данной работе методами дифференциально-термического анализа и спектроскопии электрохимического импеданса были исследованы некоторые электро-теплофизические свойства системы полиэтиленгликоль (ПЭГ 1500)-бис(трифторметансульфонил)имид лития (LiTFSI) при температурах 293 и 343 К и концентрациях соли 0.005–1.0 М.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для приготовления полимерных электролитов был использован полиэтиленгликоль с молекулярной массой 1500 (Acros Organic) и бис-(трифторметансульфонил)имид лития (LiTFSI) (Sigma Aldrich).

Методика приготовления образцов. Все работы при подготовке исследуемых систем проводились в сухом перчаточном боксе, в инертной атмосфе-

ре аргона особой чистоты (99.9999 мас. %). Исходная полимерная матрица ПЭГ 1500 содержала в своем составе 1 мас. % примесь воды. Поэтому полимер предварительно в течение суток высушивали в вакууме при температуре 353 К и остаточном давлении 10^{-3} Па. Соль LiTFSI обезвоживали в течение суток путем нагрева и откачки в вакууме при температуре 423 К. Далее высушенные вещества переносили в перчаточный вакуумный бокс (Plas-Labs, США), где на аналитических весах (Ohaus, Швейцария) взвешивали точную навеску соли LiTFSI и смешивали с точно отмеренным объемом расплавленного полимера ПЭГ 1500 (при *T* = 343–348 К) до образования гомогенного раствора. Полученный раствор вновь помещался в вакуумный сушильный шкаф при температуре 353 К и остаточном лавлении 10^{-3} Па на не менее 6 ч. Полноту удаления воды из исследуемых образцов контролировали методом термогравиметрии. Далее были приготовлены 7 образцов, соответствующие мольному соотношению [EO] и [Li]: 200: 1 (1); 100: 1 (2); 40: 1 (3); 20: 1 (4); 10:1(5);4:1(6);2:1(7).

Методы исследования. Термогравиметрический анализ (ТГА) и дифференциально-термический анализ (ДТА) проводился на приборе STA 449 F3 Jupiter ("NETZSCH", Германия) от комнатной температуры (293 К) при скорости нагрева 10 К/мин в атмосфере аргона в алундовых тиглях. Обработка данных и интегрирование пиков проводились с помощью встроенных прикладных программ фирмы "NETZSCH". Температура плавления исследуемой системы определялась по точкам минимума на кривых ДТА (по температуре пика фазового перехода).

Исследование электрохимического импеданса проводили с помощью RLC-измерителя E7-20 ("МНИПИ", Беларусь) в интервале температур 298–373 К с использованием двухзондовой ячейки с обратимыми литиевыми электродами, площадью 0.25 см², расположенными на расстоянии 0.4 см друг от друга. Значения сопротивления были получены в частотном диапазоне от 25 Гц до 1 МГц с амплитудой прикладываемого сигнала от 0.04 до 1 В. Расчет полученных годографов проводили графоаналитическим методом, подбирая соответствующую эквивалентную схему при помощи программы ZSim 3.20 (Echem Software, США).

Расчетные формулы. Значения активного Z' и мнимой части Z'' импеданса как по сопротивлению (R), так и по диэлектрической проницаемости (ϵ) связаны между собой через тангенс угла наклона tg δ соотношением:

$$tg\delta = \frac{Z'}{Z''} = \frac{\varepsilon''}{\varepsilon'} = \frac{\omega\tau_1\delta}{1+\omega^2\tau_1^2\delta},$$
 (1)

ЭЛЕКТРОХИМИЯ том 57 № 11 2021

где δ — угол потерь, определяется как отношение квадратов круговых частот ω_1^2/ω_2^2 ; ω_1 — частота при Z''(макс), ω_2 — частота при Z''(мин). Значения времен релаксации, соответствующие максимуму по $Z''(\tau_1, c)$ и минимуму по $Z''(\tau_2, c)$ оценивали графическим способом [37]. Длину волны Дебая (λ_D) и величину коэффициента диффузии (D, см²/с) определяли, используя соотношения (2)—(4)

$$\tau_1 = \tau_2 \sqrt{\delta}; \tag{2}$$

$$\lambda_{\rm D} = \frac{d}{\delta}; \tag{3}$$

$$D = \frac{d^2 \omega_2}{\delta^2}; \tag{4}$$

где d — половина толщины слоя электролита, см; $l_{\rm D}$ — протяженность длины диффузии, см [37, 38]. Далее из значения D по уравнениям (5)—(8) были определены время релаксации диффузии ($\tau_{\rm D}$, с), время жизни исследуемой системы ($\tau_{\rm s}$, с), коэффициенты подвижности (μ , м²/(B с)) и концентрации подвижных носителей заряда (n, м⁻³).

$$\tau_{\rm D} = \frac{l_{\rm D}^2}{3D};\tag{5}$$

$$\tau_{\rm s} = \frac{l_{\rm D}^2}{D}; \tag{6}$$

$$\mu = \frac{eD}{kT};\tag{7}$$

$$n = \frac{2d}{SR_{\rm e}\mu e} = \frac{\sigma_{\rm e}kT}{De^2},\tag{8}$$

где e – заряд электрона (1.6×10^{-19} Кл); k – постоянная Больцмана (1.38×10^{-23} Дж/К); T – абсолютная температура, К; S – площадь поперечного сечения электролита, см²; R_e – удельное сопротивление электролита, Ом; σ_e – удельная ионная проводимость электролита, См/см [37–41].

Значения длины волны де Бройля для иона лития (λ_{Li^+} , м) и энергия активации (E_{Li^+} , эВ) оценивались, используя уравнения (9) и (10):

$$\lambda_{\rm Li^+} = \frac{h}{m_{\rm Li^+} \mu_{\rm Li^+}} \sqrt{1 - \frac{\mu_{\rm Li^+}}{c^2}};$$
(9)

$$E_{\mathrm{Li}^{+}} = \frac{h^{2}}{m_{\mathrm{Li}^{+}}\lambda_{\mathrm{Li}^{+}}^{2}} = \frac{0.153}{\lambda_{\mathrm{Li}^{+}}^{2} \times 10^{-10}};$$
 (10)

где h — постоянная Планка (6.626 × 10⁻³⁴ Дж с); c — скорость света; μ_{Li^+} — коэффициент подвижности иона лития, м²/(В с); m_{Li^+} — абсолютная масса иона лития, кг [36].

ЭЛЕКТРОХИМИЯ том 57 № 11 2021

Тепловой поток, отн. ед.

Рис. 1. ДТА-кривые ПЭГ 1500 (*1*) и ПЭГ 1500–LiTFSI (2–8) при мольном соотношении [EO] :[Li]: 200 : 1 (2); 100 : 1 (3); 40 : 1 (4); 20 : 1 (5); 10 : 1 (6); 4 : 1 (7); 2 : 1 (8).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Из данных рис. 1 видно, что в системе ПЭГ 1500-LiTFSI температура фазового перехода (плавления) и энтальпия плавления (площадь под пиком фазового перехода на кривой ДТА) уменьшаются по сравнению с чистым полимером. С ростом концентрации соли до величин мольных соотношений [EO] : [Li] = 40 : 1 и более проявление плавления системы ПЭГ 1500-LiTFSI на кривых ДТА носит сильно "размытый" характер и при достижении максимальных значений концентрации соли в полимере (рис. 1, кривая 8) определить температуру плавления системы из результатов термического анализа не представляется возможным. Поэтому точка минимума плавления системы ПЭГ 1500-LiTFSI, представленная на фазовой диаграмме (рис. 2), была установлена визуальным методом в соответствии с ГОСТ 21553-76.

В ходе проведения ДТА-измерений было также обнаружено, что время восстановления исходного твердофазного состояния системы ПЭГ 1500— LiTFSI при ее охлаждении из расплавленного состояния имеет тенденцию к уменьшению с ростом концентрации соли в полимерной матрице в диапазоне от 80 до 15 мин.

Представленная на рис. 2 фазовая диаграмма плавкости указывает на то, что минимальные значения температуры плавления системы ПЭГ 1500–LiTFSI наблюдаются при содержании 0.43 мол. доли соли в полимере.

Параметры зависимости удельной ионной проводимости (σ , См/см) от температуры (1000/*T*, K⁻¹) для системы ПЭГ 1500–LiTFSI (рис. 3) были построены при частоте 0.5 МГц. Наличие твердой и жидкой фазы в диапазоне температур (293–323 и 343–373 К) на рис. 3 отражается в виде двух температурных соответствующих участков. Важно отметить, что область излома

Рис. 2. Фазовая диаграмма плавкости для системы ПЭГ 1500-LiTFSI.

кривых на рис. 3 совпадает с температурой плавления по данным термического анализа (рис. 1). На основе данных прямолинейных участков (рис. 3), подчиняющихся уравнению Аррениуса, было предположено, что перенос ионов Li⁺ в твердой кристаллической матрице ПЭГ 1500 в диапазоне температур (293–323 К) может протекать через простой прыжковый механизм, тогда как при переходе системы ПЭГ 1500-LiTFSI в жидкое (аморфное) состояние (333-373 К) необходимо учитывать движение полимерной цепи. Следует отметить, что угол наклона кривых зависимости $lg(\sigma) - 1000/T$ в зависимости от концентрации соли в ПЭГ 1500 имеет разный характер, что может указывать на различие в подвижностях ионов в исследуемой системе.

Полученные экспериментальные значения энергий активации (табл. 1) демонстрируют нелинейный характер, что также указывает на раз-

Рис. 3. Зависимость удельной ионной проводимости от температуры в системах ПЭГ 1500–LiTFSI при мольном соотношении [EO] : [Li]: 200 : 1 (I); 100 : 1 (2); 40 : 1 (3); 20 : 1 (4); 10 : 1 (5); 4 : 1 (6); 2 : 1 (7).

личие механизмов переноса ионов Li⁺ в двух температурных участках (293–323 и 343–373 K). С ростом концентрации соли LiTFSI в полимере в интервале температур 293–323 К происходит увеличение энергии активации. Это, возможно, связано с тем, что усиливается межионное взаимодействие.

Следует отметить, что полученные невысокие значения энергии активации и высокие значения удельной ионной проводимости хорошо согласуются с приведенными ранее в литературе данными [33, 34, 40].

Зависимость удельной ионной проводимости от молярной концентрации LiTFSI (рис. 4) в полимерной матрице ПЭГ 1500 при двух значениях температуры (303 и 343 К) имеет линейный характер, а по абсолютным величинам различаются примерно на порядок.

Мольное отношение [EO] : [Li]	Δ <i>T</i> , K	<i>E</i> _a , эВ	$\sigma_{ac}, 10^{-5} \text{См/см}$	Δ <i>T</i> , K	<i>E</i> _a , эВ	σ _{ac} , 10 ⁻⁴ См/см
200:1		0.27 ± 0.01	1.85		0.20 ± 0.04	2.13
100:1	293-323	0.28 ± 0.02	2.01	343-373	0.24 ± 0.05	3.79
40:1		0.30 ± 0.03	2.53		0.27 ± 0.06	4.13
20:1		0.40 ± 0.06	4.27	222 272	0.28 ± 0.04	6.16
10:1		0.55 ± 0.05	5.21	555-575	0.24 ± 0.03	8.89
4:1	293-333	0.65 ± 0.07	13.70	242 272	0.22 ± 0.04	12.39
2:1		0.77 ± 0.08	23.72	343-3/3	0.25 ± 0.04	18.91

Таблица 1. Параметры энергии активации и удельной ионной проводимости, определенные в электролитной системе ПЭГ 1500–LiTFSI

Рис. 4. Зависимость удельной ионной проводимости от молярной концентрации в электролитной системе ПЭГ 1500–LiTFSI при 303 (1) и 343 К (2).

Представленные спектры (годографы) электрохимического импеданса системы ПЭГ 1500-LiTFSI для двух температурных участков — 303 К (рис. 5) и 343 К (рис. 6) имеют сложную форму. Предположено, что сложная форма годографа "конечного" диффузионного импеданса (рис. 5а) может быть обусловлена определенными диффузионными ограничениями миграции ионов лития в твердой кристаллической матрице ПЭГ 1500 на границе двойного электрического слоя (ДЭС) и приэлектродном слое (SEI). Важно отметить, что наличие приэлектродного слоя (SEI) обнаруживается также и в случае плавления системы ПЭГ 1500-LiTFSI (рис. 6а). Из данных рис. 5а видно, что наблюдаемый рост ионной проводимости на спектрах импеданса с увеличением концентрации соли в полимерной матрице ПЭГ 1500 выражается в виде уменьшения форм полуокружностей "конечного" диффузионного импеданса. После достижении температуры плавления при 343 К годографы электрохимического импеданса (рис. 6а) существенно изменяются, приобретая вид годографов полубесконечной диффузии с элементом Варбурга. Значительные изменения спектров импеданса и увеличение ионной проводимости обусловлены фазовым переходом системы ПЭГ 1500-LiTFSI из кристаллического (твердого) в аморфное (жидкое) состояние. Заметные структурные преобразования в виде увеличения угла потерь и значительного смещения сдвига фаз в диапазоне 25 Гц до 500 кГц также отражаются при сравнении рис. 5б и 6б, что может говорить о более высоких значениях времен релаксаций системы.

Рис. 5. Годографы электролитной системы ПЭГ 1500—LiTFSI: (а) в координатах Найквиста, (б) зависимость тангенса угла потерь от частоты (1-7) и сдвига фаз от частоты (1'-7') в координатах Боде при мольном соотношении [EO]: [Li]: 200: 1 (1); 100: 1 (2); 40: 1 (3); 20: 1 (4); 10: 1 (5); 4: 1 (6); 2: 1 (7) при температуре 303 К.

В табл. 2 и 4 приведены удельные значения $R_{\rm e}$, $R_{\rm SEI}$, $R_{\rm o6}$, $R_{\rm f}$, $C_{\rm dl}$, $C_{\rm SEI}$, $\varepsilon_{\rm SEI}$, ε , полученные в результате анализа эквивалентных спектров импеданса для системы ПЭГ 1500—LiTFSI при 293 и 343 К с использованием программы ZSim 3.20.

Как видно из данных электрофизических свойств при 343 К (табл. 4 и 5) в сравнении с данными, полученными при 293 К (табл. 2 и 3), в зависимости от концентрации соли в полимере наблюдаются значительные изменения: происходит увеличение ионной проводимости, времени релаксации, константы скорости (тока обмена) и

Рис. 6. Годографы электролитной системы ПЭГ 1500–LiTFSI: (а) в координатах Найквиста, (б) зависимость тангенса угла потерь от частоты (1-7) и сдвига фаз от частоты (1'-7') в координатах Боде при мольном соотношении [EO]: [Li]: 200: 1 (1); 100: 1 (2); 40: 1 (3); 20: 1 (4); 10: 1 (5); 4: 1 (6); 2: 1 (7) при температуре 343 К.

концентрации подвижных носителей заряда, что можно объяснить плавлением матрицы ПЭГ 1500 и переходом от твердого к жидкому агрегатному состоянию. Необходимо также отметить, что уменьшение времени релаксации полимерной матрицы существенно влияет на уменьшение сопротивления электролитной системы ПЭГ 1500— LiTFSI при различных температурах (293 и 343 K). При этом следует иметь в виду, что и значения подвижности и скорости диффузии ионов

Таким образом, невысокие значения коэффициента диффузии (табл. 3 и 5) не совсем вписываются в существующую модель уравнения Аррениуса для объяснения причин механизма переноса ионов лития и роста ионной проводимости при плавлении полимерной матрицы ПЭГ 1500.

Li⁺ и TFSI⁻ в системе ПЭГ 1500-LiTFSI умень-

В работах [41, 42] было предположено, что основными контролирующими параметрами скорости диффузии могут служить коэффициент трения мономера в расплаве, время релаксации полимера и длина волны де Бройля для иона лития (λ_{Li^+}).

В табл. 6 представлены расчетные данные λ_{Li^+} и E_{Li^+} , полученные при двух температурных участках 293—323 и 343—373 К для различных концентраций соли LiTFSI в ПЭГ 1500.

Как видно из табл. 6, значение λ_{Li^+} почти на порядок ниже теоретической суммы ван-дер-ваальсовых радиусов атомов О и Li (1.9 Å) и намного меньше среднего расстояния между занятым узлом иона Li⁺.

Таким образом, полученные результаты вновь демонстрируют, что перенос иона Li⁺ в полиэтиленгликоле является сложным процессом, который можно условно разделить на несколько механизмов: а) подчиняющийся уравнению Аррениуса и связанный с прыжковым переносом иона Li⁺ в твердой (кристаллической) матрице ПЭГ 1500; б) в виде квазимасштабных волновых флуктуаций

Мольное отношение [EO] : [Li]	<i>f</i> при <i>Z</i> '' мин, кГц	$R_{\rm e} imes 10^3,$ Om	$R_{\rm SEI} imes 10^3$, Ом	$R_{ m of} imes 10^3,$ Om	$R_{ m f} imes 10^3,$ Ом	$C_{\rm e} \times 10^{-11},$ Φ	ε, Ф/м	$C_{\text{SEI}} \times 10^{-11}, \Phi$	ε _{SEI} , Ф/м	$C_{\rm dl},$ 10 ⁻⁹ , Φ
200:1	490	73.2	305.36	1287.01	1213.8	1.08	1.22	2.04	2.31	0.54
100:1	490	68.58	140.21	611.03	542.42	1.13	1.27	2.13	2.41	1.19
40:1	490	39.01	103.56	564.14	525.14	0.94	1.06	2.44	2.75	1.24
20:1	490	47.61	68.95	467.05	419.44	2.23	2.52	3.61	4.08	4.86
10:1	490	30.85	59.09	295.78	264.93	2.07	2.34	3.42	3.87	3.49
4:1	490	18.61	38.06	205.02	186.41	1.52	1.72	2.67	3.01	2.45
2:1	490	12.34	16.79	145.34	133.01	1.23	1.39	2.49	2.82	1.55

Таблица 2. Данные анализа эквивалентных спектров импеданса для системы ПЭГ 1500-LiTFSI при 293 К

ЭЛЕКТРОХИМИЯ том 57 № 11 2021

шаются.

Мольное отношение [EO] : [Li]	$\tau_1 imes 10^{-4},$ c	$\tau_2 \times 10^{-5},$ c	$\tau_{\rm D} imes 10^{-3},$	τ_s, c	$\lambda_{\mathrm{D}} imes 10^{-5},$ cm	$D_{\rm SEI} \times 10^{-5},$ cm^2/c	$D imes 10^{-6},$ cm^2/c	$i_0 \times 10^{-6},$ A/cm ²	$\mu \times 10^{-6},$ m ² /(B c)	$n \times 10^{14},$ M ⁻³
200:1	6.55	8.99	6.27	0.14	1.31	0.79	32.55	3.81	11.41	0.75
100:1	6.45	9.30	8.07	0.29	4.05	1.17	24.48	8.52	8.58	1.87
40:1	6.51	9.55	7.41	0.21	4.65	1.78	13.47	8.80	3.80	3.18
20:1	20.38	30.40	4.87	0.68	10.57	2.40	8.16	34.75	2.86	3.45
10:1	9.25	15.77	6.25	0.38	8.04	2.13	10.84	24.8	4.72	4.29
4:1	4.57	7.71	5.65	0.16	1.94	0.49	17.95	17.45	6.29	5.33
2:1	2.06	3.35	5.08	0.07	1.63	0.11	19.33	11.02	6.78	7.47

Таблица 3. Электрофизические свойства системы ПЭГ 1500-LiTFSI при 293 К

Таблица 4. Данные анализа эквивалентных спектров импеданса для системы ПЭГ 1500–LiTFSI при 343 К

Мольное отношение [EO] : [Li]	ω при <i>Ζ</i> " мин, кГц	$R_{\rm e} imes 10^3$, Ом	$R_{\rm SEI} imes 10^3$, Ом	<i>R</i> _{об} × 10 ³ , Ом	$R_{\rm f} imes 10^3,$ Om	$C_{\rm e} \times 10^{-11},$ Φ	ε, Ф∕м	$C_{\text{SEI}} \times 10^{-11}, \Phi$	ε _{SEI} , Ф/м	$C_{\rm dl} \times 10^{-6},$ Φ
200:1	15	5.24	5.65	7.45	1.80	1.12	1.26	4.25	4.80	6.20
100:1	15	3.15	3.29	5.59	2.30	1.06	1.20	9.03	1.02	9.23
40:1	15	2.87	3.19	5.01	1.82	0.56	6.31	10.70	1.21	11.67
20:1	40	1.15	1.58	2.86	1.28	0.76	8.67	12.60	1.41	11.79
10:1	90	1.04	1.19	2.57	1.38	0.71	8.03	2.57	2.90	2.56
4:1	130	0.76	0.89	2.22	1.33	0.69	7.86	1.39	1.59	1.84
2:1	130	0.54	0.665	1.87	1.21	0.61	6.88	1.23	1.39	1.06

Таблица 5. Электрофизические свойства системы ПЭГ 1500-LiTFSI при 343 К

Мольное отношение [EO] : [Li]	τ_1, c	τ ₂ , c	τ_D, c	τ_{s}, c	$\lambda_{\mathrm{D}} \times 10^{-4},$ см	$D_{\mathrm{SEI}} \times 10^{-8},$ cm ² /c	<i>D</i> × 10 ⁻⁹ , см ² /с	$i_0 \times 10^{-4},$ A/cm ²	$\mu \times 10^{-7},$ cm ² /(B c)	$n \times 10^{21},$ cm ⁻³
200:1	40.18	4.14	29.04	126.11	3.34	2.69	8.96	2.59	3.49	3.17
100:1	76.42	8.86	26.68	134.02	4.26	2.05	6.84	2.01	2.67	7.13
40:1	76.46	9.53	22.59	109.32	4.84	2.45	8.17	2.54	3.18	6.14
20:1	54.33	3.93	22.51	67.06	1.49	0.57	1.90	3.61	10.46	11.47
10:1	12.72	0.92	20.36	10.97	1.79	3.50	18.38	3.35	7.15	9.80
4:1	8.81	0.66	18.31	5.89	1.91	5.51	11.68	3.48	4.55	8.98
2:1	4.60	0.37	17.52	2.54	1.74	8.06	2.68	3.84	0.74	5.34

Таблица 6. Параметры энергии активации и длины волны де Бройля электролитной системы ПЭГ 1500–LiTFSI

Мольное отношение [EO] : [Li]	Δ <i>Τ</i> , K	<i>E</i> _a , эВ	$\lambda_{\mathrm{Li}},10^{-11}$ м	Δ <i>Τ</i> , K	<i>Е</i> _а , эВ	$\lambda_{\mathrm{Li}},10^{-11}\mathrm{m}$
200:1		0.27	2.89		0.20	3.41
100:1		0.30	2.79	343-373	0.24	3.09
40:1	293-323	0.28	2.89		0.27	2.94
20:1		0.40	2.41	222 272	0.28	2.92
10:1		0.55	2.06	333-373	0.24	3.14
4:1	202 222	0.65	1.89	242 272	0.22	3.26
2:1	293-333	0.76	1.75	343-373	0.25	3.06

иона Li⁺ между соседними участками функциональных групп ПЭГ 1500 [40], сопровождающихся нарушением динамических взаимодействий между кислородными лигандами и катионами лития в процессе увеличения амплитуд колебаний полимерной матрицы ПЭГ 1500.

ЗАКЛЮЧЕНИЕ

Установлено, что минимальные значения температуры плавления системы ПЭГ 1500–LiTFSI наблюдаются при содержании 0.43 мол. доли соли в полимере. Полученные результаты ДТА-анализа хорошо согласуются с данными по электропроводности и спектрами электрохимического импеданса, где для системы ПЭГ 1500–LiTFSI с увеличением температуры наблюдается фазовый переход I рода и уменьшение времени релаксации.

Показано, что сложная форма "конечного" диффузионного импеданса в электролитной системе ПЭГ 1500-LiTFSI при 293 и 343 К может быть обусловлена наложением одновременно двух процессов, протекающих в приэлектродном слое и на границе двойного электрического слоя. Обнаружено, что значения коэффициентов диффузии в приэлектродном слое и на границе ДЭС с увеличением температуры уменьшаются. Обнаружено, что уменьшение значений коэффициентов диффузии и времени релаксации в системе ПЭГ 1500-LiTFSI не вписывается в существующую модель уравнения Аррениуса для объяснения причин механизма переноса ионов лития и роста ионной проводимости при плавлении полимерной матрицы ПЭГ 1500. Предположено, что в системе ПЭГ 1500-LiTFSI увеличение ионной проводимости с ростом температуры 343-373 К может происходить за счет волновых флуктуаций иона Li⁺ и колебаний полимерной матрицы ПЭГ 1500, сопровождающихся нарушением динамических взаимодействий между кислородными лигандами и катионами лития в процессе увеличения амплитуд колебаний полимерной матрицы ПЭГ 1500.

Полученные новые данные дополняют современные представления о механизме ионного транспорта и реологических свойствах полимерных электролитов на основе полиэтиленгликоля.

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования Аналитического центра коллективного пользования ДФИЦ РАН.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Министерства Высшего образования и науки Российской Федерации (государственное задание № НИОКР АААА-А18-118011800129-4).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wu, F., Maier, J., and Yu, Y., Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, *Chem. Soc. Rev.*, 2020, vol. 49, p. 1569. https://doi.org/10.1039/C7CS00863E
- 2. Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M., and Wang, G., Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects, *Chem.* 2019, vol. 5, p. 2326.

https://doi.org/10.1016/j.chempr.2019.05.009

- Гафуров, М.М. Рабаданов, К.Ш., Шабанов, Н.С., Ахмедов, М.А., Амиров, А.М., Кубатаев, З.Ю. Колебательные спектры и ион-молекулярные взаимодействия в системе поливиниловый спирт + соль лития (LiNO₃, LiClO₄, LiBF₄). *ЖПС*. 2019. № 5(86). С. 691. [Gafurov, M.M., Rabadanov, K.S., Shabanov, N.S., Akhmedov, M.A., Amirov, A.M., and Kubataev, Z.Yu., Vibrational Spectra and Ion-Molecule Interactions in Poly(Vinyl Alcohol) + Lithium Salt (LiNO₃, LiClO₄, LiBF₄), *J. Appl. Spectrosc.*, 2019, vol. 86, no. 5, p. 782.] https://doi.org/10.1007/s10812-019-00893-3
- Рабаданов, К.Ш., Гафуров, М.М., Ахмедов, М.А., Шабанов, Н.С., Сулейманов, С.И., Исаев, А.Б. Электропроводность полимерного электролита ПВС-ПТК-LiClO₄. *Вестник ДГУ*. 2019. 3 (34). С. 242. [Rabadanov, K.Sh., Gafurov, M.M., Akhmedov, M.A., Shabanov, N.S., Suleimanov, S.I., and Isaev, A.B., Electrical conductivity of PVA-PTK-LiClO4 polymer electrolyte, *Herald of DSU* (in Russian), 2019, no. 3(34), p. 242.]
- https://doi.org/10.21779/2542-0321-2019-34-2-98-104
 5. Arya, A. and Lal Sharma, A., Polymer electrolytes for lithium ion batteries: a critical study, *Ionics*, 2017,

vol. 23, p. 497. https://doi.org/10.1007/s11581-016-1908-6

- Long, L., Wang, S., Xiao, M., and Meng, Y., Polymer electrolytes for lithium polymer batteries, *J. Mater. Chem. A*, 2016, vol. 4, p. 10038. https://doi.org/10.1039/C6TA02621D
- Ярмоленко, О.В., Юдина, А.В., Хатмуллина, К.Г. Нанокомпозитные полимерные электролиты для литиевых источников тока (обзор). Электрохимия. 2018. Т. 54. С.377. [Yarmolenko, O.V., Yudina, A.V., and Khatmullina, K.G., Nanocomposite Polymer Electrolytes for the Lithium Power Sources (a Review), *Russ. J. Electrochem.*, 2018, vol. 54, p. 325.] https://doi.org/10.7868/S0424857018040011
- Баймуратова, Г.Р., Слесаренко, А.А., Юдина, А.В., Ярмоленко, О.В. Проводящие свойства нанокомпозитных полимерных электролитов на основе диакрилата полиэтиленгликоля и наночастиц диоксида кремния на границе с литиевым электродом. Изв. АН. Сер. хим. 2018. Т. 67. С. 1648. [Ваути-

ЭЛЕКТРОХИМИЯ том 57 № 11 2021

ratova, G.R., Slesarenko, A.A., Yudina, A.V., and Yarmolenko, O.V., Conducting properties of nanocomposite polymer electrolytes based on polyethylene glycol diacrylate and SiO₂ nanoparticles at the interface with a lithium electrode, *Russ. Chem. Bull.*, 2018, vol. 67, p. 1648.]

https://doi.org/10.1007/s11172-018-2272-7

- Баскакова, Ю.В., Ярмоленко, О.В., Ефимов, О.Н. Полимерные гель-электролиты для литиевых источников тока. *Успехи химии*. 2012. Т. 81. С. 367. [Baskakova, Yu.V., Yarmolenko, O.V., and Efimov, O.N., Polymer gel electrolytes for lithium batteries, *Russ. Chem. Rev.*, 2012, vol. 81(4), p. 367] https://doi.org/10.1070/RC2012v081n04ABEH004210
- Jeon, J, Lee, H, Choi, J. H., and Cho, M., Modeling and Simulation of Concentrated Aqueous Solutions of LiTFSI for Battery Applications, *J. Phys. Chem. C.*, 2020, vol. 124, no. 22, p. 11790. https://doi.org/10.1021/acs.jpcc.0c02187
- Бушкова, О.В., Ярославцева, Т.В., Добровольский, Ю.А. Новые соли лития в электролитах для литий-ионных аккумулятор. Электрохимия. 2017. Т. 53. С. 763. [Bushkova, O.V., Yaroslavtseva, T.V., and Dobrovolsky, Y.A., New lithium salts in electrolytes for lithium-ion batteries (Review), Russ. J. Electrochem., 2017, vol. 53, p. 677.] https://doi.org/10.1134/S1023193517070035
- Kalhoff, J., Bresser, D., Bolloli, M., Alloin, F., Sanchez, J.-Y., and Passerini, S., Enabling LiTFSI-based Electrolytes for Safer Lithium-Ion Batteries by Using Linear Fluorinated Carbonates as (Co)Solvent, *Chem. Sus. Chem.*, 2014, no. 7(10), p. 2939. https://doi.org/10.1002/cssc.201402502
- Ulihin, A.S., Uvarov, N.F., and Gerasimov, K.B., Conductivity of lithium bis(trifluoromethane)sulfonamide (LiTFSI), *Materials Today: Proceedings*, 2020, vol. 31, p. 532–534. https://doi.org/10.1016/j.matpr.2020.06.142
- Nilsson, V., Bernin, D., Brandell, D., Edstrom, K., and Johansson, P., Interactions and Transport in Highly Concentrated LiTFSI-based Electrolytes, *Chemphyschem.*, 2020, no. 21(11), p. 1166. https://doi.org/10.1002/cphc.202000153
- Sharova, V., Moretti, A., Diemant, T., Varzi, A., Behm, R.J., and Passerini, S., Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries, *Power Sources*, 2018, vol. 375, p. 43. https://doi.org/10.1016/j.jpowsour.2017.11.045
- Bekturov, E.A., Ismagulova, S.S., and Dzumadilov, T.K., Complexation of poly(ethylene glycol) with lithium salts in solution, *Die Makromolek. Chem.*, 1990, no. 6(191), p. 1329. https://doi.org/10.1002/macp.1990.021910612
- Xue, Z., He, D., and Xie, X., Poly(ethylene oxide)based electrolytes for lithium-ion batteries, *J. Mater. Chem. A*, 2015, no. 3(38), p. 19218. https://doi.org/10.1039/C5TA03471J
- Banitaba, S.N., Semnani D., Fakhrali, A., Ebadi, S.V., Heydari-Soureshjani, E., Rezaei, B., and Ensafi, A.A., Electrospun PEO nanofibrous membrane enable by LiCl, LiClO₄, and LiTFSI salts: a versatile solvent-free electrolyte for lithium-ion battery application, *Ionics*,

ЭЛЕКТРОХИМИЯ том 57 № 11 2021

2020, no. 7(26), p. 3249.

https://doi.org/10.1007/s11581-019-03414-6

- Cai, D., Wang, D.H., Chen, Y.J., Zhang, S.Z., Wang, X.L., Xia, X.H., and Tu, J.P., A highly ion-conductive three-dimensional LLZAO-PEO/LiTFSI solid electrolyte for high-performance solid-state batteries, *Chem. Engineering J.*, 2020, vol. 394, p. 124993. https://doi.org/10.1016/j.cej.2020.124993
- Sekhar, B.C., Hachicha, R., Maffre, M., Bodin. C., le Vot, S., Favier, F., and Fontaine, O., Evaluation of the Properties of an Electrolyte Based on Formamide and LiTFSI for Electrochemical Capacitors, *J. Electrochem. Soc.*, 2020, no. 167(11), p. 110508. https://doi.org/10.1149/1945-7111/aba076
- Zhou, H., Zhao, R., Xiao, Y., Feng, L., Yang, Y., Bao, L., and Wang, J., Quantum mechanical insight into the Li-ion conduction mechanism for solid polymer electrolytes, *J. Polymer Sci.*, 2020, no. 24(58), p. 3480. https://doi.org/10.1002/pol.20200686
- 22. Steinruck, H.G., Takacs, C.J., Kim, H.K., Mackanic, D.G., Holladay, B., Cao, C.T., Narayanan, S., Dufresne, E.M., Chushkin, Y, Ruta, B., Zontone, F., Will, J., Borodin, O., Sinha, S.K., Srinivasan V., and Toney, M.F., Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte, *Energy & Environmental Sci.*, 2020, no. 11(13), p. 4312. https://doi.org/10.1039/D0EE02193H
- Tran, K.T.T., Le, L.T.M., Phan, A.L.B., Tran, P.H., Vo, T.D., Truong, T.T.T., Nguyen, N.T.B., Garg, A., Le, P.M.L., and Tran, M.V., New deep eutectic solvents based on ethylene glycol - LiTFSI and their application as an electrolyte in electrochemical double layer capacitor (EDLC), *Molecular Liquids*, 2020, vol. 320, p. 114495. https://doi.org/10.1016/j.molliq.2020.114495
- 24. Vélez, J. F., Aparicio, M., and Mosa, J., Effect of Lith-
- ium Salt in Nanostructured Silica–Polyethylene Glycol Solid Electrolytes for Li-Ion Battery Applications, *Phys. Chem. C*, 2016, no. 40(120), p. 22852. https://doi.org/10.1021/acs.jpcc.6b07181
- 25. Costa, L.T., Sun, B., Jeschull, F., and Brandell, D., Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend, *Chem. Phys.*, 2015, no. 2(143), p. 024904. https://doi.org/10.1063/1.4926470
- 26. Wetjen, M., Kim, G.T., Joost, M., Appetecchi, G.B., Winter, M., and Passerini, S., Thermal and electrochemical properties of PEO-LiTFSI-Pyr 14TFSIbased composite cathodes, incorporating 4V-class cathode active materials, *J. Power Sources*, 2014, vol. 246, p. 846. https://doi.org/10.1016/j.jpowsour.2013.08.037
- 27. Zhu, C., Cheng, H., and Yang, Y., Electrochemical characterization of two with room-temperature ionic liquids, *J. Electrochem. Soc.*, 2008, vol. 155, p. A569. https://doi.org/10.1149/1.2931523
- Gupta, H. and Singh, R.K., Chapter: Ionic Liquid-Based Gel Polymer Electrolytes for Application in Rechargeable Lithium Batteries, in book: *Energy Storage Battery Systems—Fundamentals and Applications*, Published: IntechOpen, 2020. 19 p. https://doi.org/10.5772/intechopen.93397

 Takeichi, N., Kojima, T., Senoh, H., and Ando, H., Local structure and electrochemical performances of sulfurized polyethylene glycol after heat treatment, *Sci. Rep.*, 2020, no. 10, p. 16918. https://doi.org/10.1038/s41598-020-74118-5

30. Li, S., Lorandi, F., Whitacre, J.F., and Matyjaszewski, K.,

- 50. Ef, S., Eorandi, F., Whitacle, J.F., and WatyJaszewski, K., Polymer Chemistry for Improving Lithium Metal Anodes, *Macromolec. Chem. and Phys.*, 2019, p. 1900379. https://doi.org/10.1002/macp.201900379
- Zhu, J., Zhu, P., Yan, C., Dong, X., and Zhang, X., Recent progress in polymer materials for advanced lithium-sulfur batteries, *Progress in Polymer Science*, 2019, vol. 90, p.118. https://doi.org/10.1016/j.progpolymsci.2018.12.002
- Yuan, Z., Zheng, H., Wang, S., and Feng, C., Influences of polyethylene glycol (PEG) on the performance of LiMn₂O₄ cathode material for lithium ion battery, *J. Mater. Sci.: Mater. in Electronics*, 2016, vol. 27(5), p. 5408.

https://doi.org/10.1007/s10854-016-4442-4

- 33. Geiculescu, O.E., Hallac, B.B., Rajagopal, R.V., Creager, S.E., DesMarteau, D.D., Borodin, O., and Smith, G.D., The effect of low-molecular-weight poly(ethylene glycol) (PEG) plasticizers on the transport properties of lithium fluorosulfonimide ionic melt electrolyte, *Phys. Chem. B*, 2014, vol. 118, p. 5135. https://doi.org/10.1021/jp500826c
- Devaux, D., Bouchet, R., Glé, D., and Denoyel, R., Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups, *Solid State Ionics*, 2012, vol. 227, p. 119. https://doi.org/10.1016/j.ssi.2012.09.020
- 35. Гафуров, М.М., Ахмедов, М.А., Рабаданов, К.Ш., Шабанов, Н.С., Амиров, А.М., Сулейманов, С.И., Атаев, М.Б. Исследование строения и электропроводности литий-полимерных электролитов на основе ПЭГ 1500 – LiX (X = SCN, TFSI). Изв. АН. Сер. хим. 2020. № 8(69). С. 1463. [Gafurov, M.M., Akhmedov, M.A., Rabadanov, K.S., Shabanov, N.S., Amirov, A.M., Suleimanov, S.I., and Ataev, M.B., Study of the structure and electrical conductivity of lithium-conducting polymer electrolytes based on PEG-1500–LiX (X = SCN, N(CF₃SO₂)₂), Russ.

Chem. Bull., 2020, no. 8(69), p. 1463.] https://doi.org/10.1007/s11172-020-2924-2

- Zhou, H., Zhao, R., Xiao, Y., Feng, L., Yang, Y., Bao, L., and Wang, J., Quantum mechanical insight into the Liion conduction mechanism for solid polymer electrolytes, *Polymer Sci.*, 2020, p. 2. https://doi.org/10.1002/pol.20200686
- Уваров, Н.Ф. Композиционные твердые электролиты. СО РАН, Новосибирск, 2008. 258 с. [Uvarov, N.F., Composite Solid Electrolytes, SB RAS (in Russian), Novosibirsk, 2008. 258 p.]
- Nguyen, T.Q. and Breitkopf, C., Determination of Diffusion Coefficients Using Impedance Spectroscopy Data, *Electrochem. Soc.*, 2018, no. 14(165), E826–E831.

https://doi.org/10.1149/2.1151814jes

- Шольц, Ф. Электроаналитические методы. Теория и практика. М: "Бином. Лаборатория знаний"", 2014. С. 150–162. [Scholz, F. Electroanalytic methods. Theory and practice. M.: "Binom. Knowledge Laboratory", 2014. p. 150–162.]
- Емельянова, Ю.В., Морозова, М.В., Михайловская, З.А., Буянова, Е.С. Импедансная спектроскопия: теория и применение. Екатеринбург: Изд-во "УРФУ", 2017. 156 с. [Emelyanova, Yu.V., Morozova, M.V., Mikhailovskaya, Z.A., and Buyanova, E.S. Impedance spectroscopy: theory and application, Ekaterinburg: Publishing house "URFU", 2017. 156 p.]
- Choi, W., Shin, H.-Ch., Kim, J.M., Choi, J.-Y., and Yoon, W.-S., Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithiumion Batteries, *J. Electrochem. Sci. Technol.*, 2020, no. 1(11), p. 1. https://doi.org/10.33961/jecst.2019.00528
- Волгин, И.В., Ларин, С.В., Люлин, С.В. Особенности диффузии наночастиц в полимерных системах. Высокомолекуляр. соед. Серия С. 2018. № 2(60).
 С. 221. [Volgin, I.V., Larin, S.V., and Lyulin, S.V., Diffusion of nanoparticles in polymer systems, Polymer Science. Series C, 2018, no. 1(60), p. 122–134.] https://doi.org/10.1134/S1811238218020212