УДК 541.133.1

ПРОВОДИМОСТЬ ТВЕРДЫХ ЭЛЕКТРОЛИТОВ R_{1-y} Pb_yF_{3-y} (R = Pr, Nd) СО СТРУКТУРОЙ ТИСОНИТА¹

© 2021 г. Н. И. Сорокин^{а, *}, Д. Н. Каримов^а, И. И. Бучинская^а

^аИнститут кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

**e-mail: nsorokin1@yandex.ru* Поступила в релакцию 08.08.2020 г.

После доработки 05.10.2020 г. Принята к публикации 14.02.2021 г.

Методом импедансной спектроскопии исследована концентрационная зависимость ионной проводимости $\sigma_{dc}(y)$ продуктов кристаллизации в квазибинарных системах RF_3 —PbF₂ (R = Pr, Nd) в области составов R_{1-y} Pb_yF_{3-y} ($0 \le y \le 0.22$), обогащенных редкоземельным компонентом RF_3 . Однофазные тисонитовые (пр. гр. $P\overline{3}c1$) твердые растворы R_{1-y} Pb_yF_{3-y} получены из расплава методом направленной кристаллизации для y < 0.1. Максимальная величина проводимости σ_{dc} при 296 ± 1 K равна 7×10^{-5} и 3×10^{-5} См/см для кристаллов составов $Pr_{0.96}$ Pb_{0.04}F_{2.96} и Nd_{0.95}Pb_{0.05}F_{2.95} соответственно. При содержании PbF₂ более 9–10 мол. % образцы становятся двухфазными, появляется вторая фаза – флюоритовый твердый раствор Pb_{1-x} R_x F_{2+x}, и их ионная проводимость снижается.

Ключевые слова: ионная проводимость, твердые электролиты, неорганические фториды, структура тисонита, импедансная спектроскопия

DOI: 10.31857/S0424857021070136

введение

В конденсированных системах $RF_3 - MF_2$ (M == Ca, Sr, Ba, Cd, Pb и R = редкоземельные элементы (P3Э) La-Lu, Y) образуются широкие области нестехиометрических фаз $R_{1-v}M_vF_{3-v}$ со структурой тисонита (тип LaF₃) [1]. Эти фазы представляют собой анион-дефицитные гетеровалентные твердые растворы с переменным числом ионов в элементарной кристаллической ячейке. Они обладают высокой ионной (по фтору) электропроводностью, обусловленной введением больших концентраций структурных дефектов при изоморфных замещениях катионов R^{3+} на M^{2+} , и рассматриваются в качестве наиболее перспективных фторпроводящих твердых электролитов для источников тока нового поколения, работающих при комнатной температуре (без нагрева) [2-5].

Задача увеличения ионной проводимости (особенно при комнатной температуре) тисонитовых фаз $R_{1-y}M_yF_{3-y}$ за счет варьирования их химического состава является актуальной. Ранее в работах [5–7] нами проведена оптимизация твердых растворов $R_{1-y}M_yF_{3-y}$ с M = Ca, Sr и Ba по проводимости σ_{dc} (dc – direct current) на постоянном токе при комнатной температуре. Для процедуры оптимизации использовали кристаллы этих фаз, выращенные из расплава методом Бриджмена. Полученные результаты [5–7] и данные [8–14] показывают, что концентрационные зависимости проводимости $\sigma_{dc}(y)$ для тисонитовых фаз $R_{1-y}M_yF_{3-y}$ с R = La, Ce, Pr и Nd характеризуются максимумами при содержании 5 ± 2 мол. % MF_2 (M = Ca, Sr и Ba), т.е. для значений $y = 0.05 \pm 0.02$.

Из фазовых диаграмм систем RF_3-MF_2 (M = Ca, Sr u Ba) [1] следует, что большинство тисонитовых фаз $R_{1-y}M_yF_{3-y}$ также имеют температурные максимумы на кривых плавкости (конгруэнтный характер плавления). Это открывает возможность выращивания из расплава однородных по составу кристаллов этих твердых растворов. Однако составы максимумов на кривых плавкости и проводимости, как правило, не совпадают.

В отличие от твердых растворов $R_{1-y}M_yF_{3-y}$ с щелочноземельными элементами M = Ca, Sr и Ba, электрофизические свойства фаз $R_{1-y}Pb_yF_{3-y}$ практически не изучены, несмотря на их ожидаемую высокую проводимость, а области существования тисонитовых твердых растворов в системах RF_3 –Pb F_2 определены приблизительно. Согласно

¹ По материалам доклада на 15-м Международном совещании "Фундаментальные проблемы ионики твердого тела", Черноголовка, 30.11.—07.12.2020.

данным [15], тисонитовые фазы R_{1-v} Pb_vF_{3-v} образуются в системах с R = La - Ho, Y. Для систем с R = La - Gd область существования этих фаз примыкает к трифториду РЗЭ. В системах с R = Tb-Но, У по перитектической реакции образуются бертоллидные фазы, область существования которых резко сокращается с уменьшением ионного радиуса R^{3+} . Высокая летучесть PbF₂, большая разница в температурах плавления компонентов PbF₂ и RF₃, а также инконгруэнтный характер плавления (для R = Tb-Ho, Y) и полиморфизм (R = Gd) препятствуют получению кристаллов твердых растворов $R_{1-\nu}$ Pb_{ν}F_{3- ν} из расплава. Кроме того, дифторид свинца имеет высокую реакционную способность и сильно подвержен пирогидролизу. Наиболее перспективными для выращивания из расплава можно считать твердые растворы с R = La - Sm, из которых высокая проводимость может ожидаться у фаз R_{1-v} Pb_vF_{3-v} c R = La, Ce, Pr и Nd.

Максимальным изоморфно вошедшим содержанием свинца в кристаллах LaF₃, доказанным рентгенофлуоресцентным анализом, является значение 0.33 ± 0.01 мас. % PbF₂ [16]. В этих экспериментах PbF₂ использовался в качестве "раскислителя" для подавления пирогидролиза при выращивании кристаллов LaF₃. В [17] приводятся сведения о твердофазном синтезе тисонитовой фазы $Ce_{1-v}Pb_vF_{3-v}$ с $y = 0.04 \pm 0.01$ при 800°C в золотых ампулах. Ранее нами в работе [18] были изучены области существования твердых растворов $Pr_{1-\nu}Pb_{\nu}F_{3-\nu}$ и $Nd_{1-\nu}Pb_{\nu}F_{3-\nu}$ и получены поликристаллические образцы этих соединений методом направленной кристаллизации в тиглях специальной конструкции. Предельная изоморфная растворимость PbF2 в твердых растворах составила величину $y = 0.09 \pm 0.02$ и 0.10 ± 0.02 для матриц на основе PrF_3 и NdF₃ соответственно.

Целью работы является исследование ионной проводимости продуктов кристаллизации $R_{1-y}Pb_{y}F_{3-y}$ в квазибинарных системах $RF_{3}-PbF_{2}$ (R = Pr, Nd) в области составов, обогащенных трифторидами РЗЭ ($0 \le y \le 0.22$).

МЕТОДИКА ЭКСПЕРИМЕНТА

Кристаллизация фаз R_{1-y} Pb_yF_{3-y} ($0 \le y \le 0.22$) с $R = \Pr$ и Nd осуществлялась из расплава методом Бриджмена. В качестве исходных реактивов использовали порошки PbF₂ (чистота 99.995 мас. %, Sigma-Aldrich), PrF₃ и NdF₃ (чистота 99.99 мас. %, LANHIT). Для очистки от кислородсодержащих примесей исходные порошки предварительно просушили в вакууме и переплавляли в атмосфере CF₄. Температурный градиент в ростовой зоне составлял ~100 К/см. Эксперименты проводились двумя способами. В первом способе применялся квазигерметичный тигель [19]. Компоненты загружались в тигель, расплав гомогенизировался, и осуществлялось его перемещение в градиентном тепловом поле. Во втором способе применялось дозирующее устройство, позволяющее подпитывать расплав легколетучим компонентом [20]. Плавленные гранулы PbF₂ помещались в дозатор, который вакуумноплотно устанавливался на верхний фланец ростовой камеры. Расплав исходного RF₃ подпитывался через это устройство летучим компонентом PbF₂ и кристаллизовался с заданной скоростью. Разница в качестве полученных образцов фаз R_{1-v} Pb_vF_{3-v} как с применением квазигерметичного тигля, так и при подпитке расплава с помощью дозатора, не наблюдалась. Общие потери на испарение (преимущественно PbF₂) в экспериментах с дозатором были выше и превышали 15 мас. % от массы загруженной шихты.

Состав продуктов кристаллизации оценивался с помощью рентгенофазового анализа (РФА) по аналитическим концентрационным зависимостям параметров решетки твердых растворов, полученным в [15, 18]. Регистрация дифрактограмм продуктов кристаллизации проводилась с использованием рентгеновского дифрактометра Rigaku MiniFlex 600 (излучение CuK_{α}). Параметры элементарных ячеек присутствующих в образцах кристаллических фаз (в рамках пр. гр. $P\overline{3}c1$ и $Fm\overline{3}m$) рассчитывались методом полнопрофильного анализа Ритвельда с использованием программного обеспечения *HighScore Plus* (PANanalytical, Нидерланды).

Кристаллические були $R_{1-y}Pb_yF_{3-y}$ с $y \le 0.01$, полученные описанными выше способами, были моноблочными и визуально однородными. Продукты кристаллизации с $y \sim 0.04-0.05$ представляли собой однофазные тисонитовые (пр. гр. $P\overline{3}c1$) твердые растворы, но имели поликристаллическую структуру, обусловленную высокой скоростью кристаллизации. Попытки снижения скорости протяжки тигля приводили практически к полному испарению PbF₂ независимо от способа получения.

На рис. 1 приведены дифрактограммы и внешний вид некоторых полученных образцов R_{1-y} Pb_yF_{3-y}. При увеличении доли фторида свинца y > 0.1продукты кристаллизации становятся двухфазными, дополнительно детектируется кубическая (пр. гр. $Fm\overline{3}m$) фаза насыщенного твердого раствора Pb_{1-x} R_x F_{2+x} ($x \sim 0.4$) [15].

Для электрофизических измерений использовали плоскопараллельные диски, вырезанные из центральных частей полученных заготовок. Торцевые поверхности образцов тщательно шлифовались.

Рис. 1. Вид образцов R_{1-y} Pb_yF_{3-y} и рентгенограммы порошка Nd_{1-y}Pb_yF_{3-y} для составов y = 0.01 (1), 0.05 (2) и 0.11 (3). Показаны положения рефлексов Брэгга для фаз указанных пространственных групп.

Статическая электропроводность σ_{dc} на постоянном токе полученных продуктов кристаллизации в системах RF_3 -PbF₂ (R = Pr, Nd) измерялась методом импедансной спектроскопии при комнатной температуре (296 \pm 1 K). В качестве материала инертных электродов использовали серебряную пасту Leitsilber. Измерения комплексного импеданса $Z^*(\omega)$ электрохимических ячеек Ад | кристалл | Ад выполнялись в диапазонах частот $5-5 \times 10^5$ Гш и сопротивлений $1-10^7$ Ом (импедансметр Tesla BM-507), в вакууме ~1 Па. Методика электрофизических измерений приведена в [21]. Относительная погрешность измерений $Z^*(\omega)$ составляла 5%. Ориентирование образцов относительно кристаллографических осей не проводилось, так как величиной анизотропии электропроводности тисонитовых кристаллов можно пренебречь [11, 22].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В качестве примера на рис. 2 приведены годограф импеданса $Z^*(\omega)$, частотные зависимости его составляющих и эквивалентная электрическая схема для электрохимической системы Ag|Pr_{0.99}Pb_{0.01}F_{2.99}|Ag. При низких частотах годограф $Z^*(\omega)$ представлен прямой линией, идущей под углом к оси абсцисс, которая соответствует

ЭЛЕКТРОХИМИЯ том 57 № 8 2021

элементу $P_{\rm el}(\omega)$ с постоянным фазовым углом и моделирует электрические процессы на границе кристалл/электрод. При повышении частоты наблюдается полуокружность с центром, лежащим ниже оси абсцисс, которая соответствует параллельному соединению сопротивления R_b и элемента $P_{\rm b}(\omega)$ и моделирует электрические процессы в объеме кристалла. Величина *R*_b отвечает объемному сопротивлению образца. Наличие в спектрах импеданса блокирующего эффекта от инертных (серебряных) электродов при низких частотах указывает на ионную природу электропереноса в исследуемых кристаллах. Для поликристаллических образцов находилась общая проводимость образца, ее разделение на объемный и межкристаллитный вклады не проводилось.

Ионный транспорт двухзарядных (Pb²⁺) и трехзарядных (Pr³⁺, Nd³⁺) катионов маловероятен, поэтому ионная проводимость обусловлена ионами F⁻. На это прямо указывают результаты исследования методом ¹⁹F ЯМР тисонитовых фаз $R_{1-y}M_yF_{3-y}$ (M = Ca, Sr, Ba) [23–25], в которых обнаружена высокая подвижность ионов F⁻.

Значения анионной проводимости изученных образцов приведены в табл. 1. На рис. 3 показаны зависимости ионной проводимости продуктов кристаллизации от состава. Можно видеть, что

Рис. 2. Годограф импеданса $Z^*(\omega)$, частотные зависимости модуля импеданса, фазового угла и эквивалентная электрическая схема для системы Ag|Pr_{0.99}Pb_{0.01}F_{2.99}|Ag при 296 K. Объемное сопротивление кристалла $R_b = 1.2 \times 10^6$ Oм.

для обеих систем зависимости $\sigma_{dc}(y)$ имеют сходный вид. Максимальные значения проводимости наблюдаются в областях существования твердых растворов при 4–5 мол. % PbF₂. Значения σ_{dc} равны 7 \times 10⁻⁵ и 3 \times 10⁻⁵ См/см для Pr_{0.96}Pb_{0.04}F_{2.96} и Nd_{0.95}Pb_{0.05}F_{2.95} соответственно. Введение PbF₂ в тисонитовую матрицу PrF₃ демонстрирует более высокие значения электропроводности, чем в случае матрицы NdF₃.

Проведенный анализ электрофизических данных для тисонитовых твердых растворов с $R = \Pr$ и Nd показал, что составы максимумов проводимости для кристаллов R_{1-y} Pb_yF_{3-y} совпадают с составами максимумов для ранее [5–7] изученных кристаллов R_{1-y} Sr_yF_{3-y} и Nd_{1-y}Ca_yF_{3-y}. Механизм ионной проводимости в тисонитовых кристаллах $R_{1-y}M_y$ F_{3-y} обусловлен миграцией вакансий фтора V_F , образующихся вследствие гетеровалентных замещений катионов РЗЭ R^{3+} на M^{2+} , кластеры дефектов не обнаружены [26–28]. При переходе в двухфазную область ионная проводимость образцов снижается.

На рис. 3 для сравнения приведены данные [29] по проводимости для твердых растворов

ЭЛЕКТРОХИМИЯ том 57 № 8 2021

$R = \Pr$		R = Nd	
содержание PbF ₂ , мол. %	σ _{dc} , См/см	содержание PbF ₂ , мол. %	σ _{dc} , См/см
1	9.4×10^{-7}	1	6.8×10^{-7}
4.2	7.3×10^{-5}	5	2.9×10^{-5}
11.8	3.1×10^{-5}	11	6.0×10^{-6}
21.4	2.2×10^{-5}	13.2	6.6×10^{-6}
		21.6	2.6×10^{-6}

Таблица 1. Ионная проводимость σ_{dc} при 296 ± 1 К продуктов кристаллизации в системах RF_3 —PbF₂ (сведения о фазовом составе продуктов кристаллизации приведены в [18])

Рb_{1-x} R_x F_{2+x}, R = La, Се и Gd со структурой флюорита (тип CaF₂). В ряду РЗЭ Рг и Nd находятся между Се и Gd. Можно видеть, что в системах PbF₂-RF₃ тисонитовые кристаллы R_{1-y} Pb_yF_{3-y} обладают более высокой фтор-ионной проводимостью по сравнению с флюоритовыми кристаллами Pb_{1-x} R_x F_{2+x} ($x \le 0.4$).

На рис. 4 показаны зависимости ионной проводимости тисонитовых твердых растворов $R_{1-v}M_vF_{3-v}$ (M = Ca, Sr, Ba, Pb) при y = 0.04-0.05.

Проводимость образцов R_{1-y} Pb_yF_{3-y} несколько ниже, чем проводимость кристаллов с M =Ca, Sr. Однако следует заметить, что электрофизические свойства фаз $R_{1-y}M_y$ F_{3-y} (M = Ca, Sr) измеряли на монокристаллических образцах в отличие от поликристаллических R_{1-y} Pb_yF_{3-y}. Для повышения их ионной проводимости необходимо получить Pb-содержащие твердые электролиты в виде однородных кристаллов без блочной (зернистой) структуры.

Рис. 3. Концентрационные зависимости ионной проводимости продуктов кристаллизации в системах $PrF_3 - PbF_2(I)$, $NdF_3 - PbF_2(2)$; флюоритовых твердых растворов $Pb_{1-x}R_xF_{2+x}$, R = La, Ce (3) и Gd (4) (поликристаллы) [29]. Вертикальные штриховые линии показывают усредненные границы существования тисонитовых (*T*) и флюоритовых (*F*) твердых растворов в системах $RF_3 - PbF_2$ (R = La - Nd) [18].

ЭЛЕКТРОХИМИЯ том 57 № 8 2021

Рис. 4. Зависимости ионной проводимости тисонитовых твердых растворов $R_{1-y}M_yF_{3-y}$ (M = Ca, Sr, Ba, Pb) при y = 0.04-0.05: (1) $Pr_{1-y}M_yF_{3-y}$ и (2) $Nd_{1-y}M_yF_{3-y}$, M = Ca, Sr, Ba - монокристаллы [5-7], M = Pb - поликристаллы.

ЗАКЛЮЧЕНИЕ

Измерена ионная проводимость продуктов кристаллизации в системах PrF₃-PbF₂ И NdF₃-PbF₂ в области составов, обогащенных трифторидами РЗЭ. Обнаружены максимумы на зависимостях проводимости $\sigma_{dc}(y)$ при концентрации 4-5 мол. % PbF₂. Введение PbF₂ в тисонитовую матрицу PrF₃ демонстрирует более высокие значения электропроводности при сопоставимых концентрациях фторида свинца. Значения проводимости σ_{dc} равны 7 × 10⁻⁵ и 3 × 10⁻⁵ См/см для кристаллов составов $Pr_{0.96}Pb_{0.04}F_{2.96}$ И Nd_{0.95}Pb_{0.05}F_{2.95} при комнатной температуре соответственно. Это позволяет рассматривать их в качестве низкотемпературных фторпроводящих твердых электролитов.

БЛАГОДАРНОСТИ

Авторы благодарят Центр коллективного пользования Федерального научно-исследовательского центра "Кристаллография и фотоника" РАН за использование его оборудования (проект RFMEFI62119X0035).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 19-0200877) в части отработки методики выращивания кристаллических образцов и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию Федерального научно-исследовательского центра "Кристаллография и фотоника" РАН в части характеризации свойств кристаллов.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Sobolev, B.P., *The Rare Earth Trifluorides*, Institute of Crystallography, Moscow, and Institut d'Estudis Catalans, Barcelona: Ed. Institut d'Estudis Catalans, Spain, 2000–2001. 960 p.
- 2. Mahammad, I., Witter, R., Fichtner, M., and Anji Reddy, M., Introducing interlayer electrolytes: toward room temperature high potential solid state rechargeable fluoride ion batteries, *Appl. Energy Mater.*, 2019, vol. 2, p. 1553.
- 3. Motohashi, K., Nakamura, T., Kimura, Y., Uchimoto, Y., and Amezawa, K., Influence of microstructures on conductivity in tysonite-type fluoride ion conductors, *Solid State Ionics*, 2019, vol. 338, p. 113.
- Liu, L., Yang, L., Liu, M., Wang, X., Li, X., Shao, D., Luo, K., Luo, Z., and Chen, G., A flexible tysonitetype La_{0.95}Ba_{0.05}F_{2.95}@PEO-based composite electro-

lyte for the application of advanced fluoride ion battery, *J. Energy Storage*, 2019, vol. 25, p. 100886.

- 5. Sobolev, B.P., Sorokin, N.I., and Bolotina, N.B. Nonstoichiometric Single Crystals $M_{1-x}R_xF_{2+x}$ and $R_{1-y}M_yF_{3-y}$ (M - Ca, Sr, Ba; R - Rare Earth Elements) as Fluorine-Conducting Solid Electrolytes, in Photonic & Electronic Properties of Fluoride Materials, Tressaud, A. and Poeppelmeier, K., Eds, Amsterdam: Elsevier., 2016, p. 465.
- 6. Сорокин, Н.И., Соболев, Б.П., Кривандина, Е.А., Жмурова, З.И. Оптимизация по проводимости при 293 К монокристаллов твердых электролитов со структурой тисонита (LaF₃). II. Нестехиометрические фазы $R_{1-y}M_yF_{3-y}$ (R = La - Lu, Y; M = Sr, Ba). *Кристаллография*. 2015. Т. 60. № 1. С. 123. [Sorokin, N.I., Sobolev, B.P., Krivandina, E.A., and Zhmurova, Z.I., Optimization for single crystals of solid electrolytes with tysonite-type structure (LaF₃) for conductivity at 293 K: 2. Nonstoichiometric phases $R_{1-y}M_yF_{3-y}$ (R = La - Lu, Y; M = Sr, Ba), *Crystallogr. Rep.*, 2015, vol. 60, no. 1, p. 123.]
- 7. Соболев, Б.П., Сорокин, Н.И., Кривандина, Е.А., Жмурова, З.И. Оптимизация по проводимости при 293 К монокристаллов твердых электролитов со структурой тисонита (LaF₃). І. Нестехиометрические фазы R_{1-y} Ca_yF_{3-y} (R = La-Lu, Y). Кристалография. 2014. Т. 59. № 4. С. 609. [Sobolev, B.P., Sorokin, N.I., Krivandina, E.A., and Zhmurova, Z.I., 293-K conductivity optimization for single crystals of solid electrolytes with tysonite structure (LaF₃): I. Nonstoichiometric phases R_{1-y} Ca_yF_{3-y} (R = La – Lu, Y), Crystallogr. Rep., 2014, vol. 59, no. 4, p. 550.]
- 8. Takahashi, T., Iwahara, H., and Ishikawa, T., Ionic conductivity of doped cerium trifluoride, *J. Electro-chem. Soc.*, 1977, vol. 124, p. 280.
- 9. Мурин, И.В., Глумов, О.В., Амелин, Ю.В. Механизм ионного переноса в LaF₃, *Журн. приклад. химии.* 1980. Т. 53. № 7. С. 1474. [Murin, I.V., Glumov, O.V., and Amelin, Yu.V., Ion transfer mechanism in LaF₃, *J. Appl. Chem. USSR*, 1980, vol. 53, no. 7, p. 1132.]
- 10. Мурин, И.В., Глумов, О.В., Соболев, Б.П. Электропроводность твердых электролитов на основе CeF₃, *Вестник ЛГУ*. 1980. № 10. С. 84. [Murin, I.V., Glumov, O.V., and Sobolev, B.P., Electrical conductivity of solid electrolytes based on CeF₃, *Vestnik LGU* (in Russian), 1980, no. 10, p. 84.]
- 11. Roos, A., van de Pol, F.C.M., Keim, R., and Schoonman, J., Ionic conductivity in tysonite-type solid solutions $La_{1-x}Ba_xF_{3-x}$, *Solid State Ionics*, 1984, vol. 13, p. 191.
- 12. Geiger, H., Schon, G., and Strok, H., Ionic conductivity of single crystals of the non-stoichiometric tysonite phase $La_{1-x}Sr_xF_{3-x}$ ($0 \le x \le 0.14$), *Solid State Ionics*, 1985, vol. 15, p. 155.
- Трновцова, В., Федоров, П.П., Фурар, И. Фторидные твердые электролиты. Электрохимия. 2009. Т. 45. С. 668. [Trnovcova, V., Furar, I., and Fedorov, P.P., Fluoride solid electrolytes, Russ. J. Electrochem., 2009, vol. 45, p. 630.]
- 14. Вергентьев, Т.Ю., Банщиков, А.Г., Королева, Е.Ю., Соколов, Н.С., Захаркин, М.В., Окунева, Н.М. Продольная проводимость тонких пленок и гетероструктур, основанных на LaF₃-SrF₂, *Научно*-

ЭЛЕКТРОХИМИЯ том 57 № 8 2021

технич. Ведомости СПб политех. университета. Физ.-мат. науки. 2013. Т. 4–2(182). С. 76. [Vergentev, Т.Yu., Banshchikov, A.G., Koroleva, E.Yu., Sokolov, N.S., Zaharkin, M.V., and Okuneva, N.M., In-plane conductivity of thin films and heterostructures based on LaF₃–SrF₂, J. St. Petersburg State Polytechnical Universite. Phys.-Math., 2013, vol. 4-2, no. 182, p. 76.]

- Бучинская, И.И., Федоров, П.П. Дифторид свинца и системы с его участием. *Успехи химии*. 2004. Т. 73. № 4. С. 404. [Buchinskaya, I.I. and Fedorov, P.P., Lead difluoride and related systems, *Russ. Chem. Reviews*, 2004, vol. 2004, no. 4, p. 371.]
- 16. Кривандина, Е.А., Жмурова, З.И., Бережкова, Г.Н., Соболев, Б.П., Глушкова, Т.М., Киселев, Д.Ф., Фирсова, М.М., Штыркова, А.Р. Рост, плотность, механические свойства твердых растворов La_{1-x}Sr_xF_{3-x} (0 ≤ x ≤ 0.15) со структурой тисонита. *Кристаллография*. 1995. Т. 40. № 4. С. 741. [Krivandina, Е.А., Zhmurova, Z.I., Berezhkova, G.N., Sobolev, B.P., Glushkova, T.M., Kiselev, D.F., Firsova, M.M., and Shtyrkova, A.R., Growth, density, mechanical properties of La_{1-x}Sr_xF_{3-x} (0 ≤ x ≤ 0.15) solid solutions with tysonite structure, *Crystallogr. Rep.*, 1995, vol. 40, no. 4, p. 686.]
- Федоров, П.П. Дис. "Высокотемпературная химия конденсированного состояния систем с трифторидами редкоземельных элементов как основа получения новых материалов" д-ра хим. наук, М., МИТХТ, 1991. 608 с. [Fedorov, P.P., Dissertation "High-temperature chemistry of the condensed state of systems with trifluorides of rare-earth elements as a basis for obtaining new materials"(in Russian), Moscow: MITKhT, 1991, 608 p.]
- 18. Бучинская, И.И., Архарова, Н.А., Иванова, А.Г., Каримов, Д.Н. Выращивание кристаллов твердых растворов со структурой тисонита в системах PbF₂-RF₃ (R = Pr, Nd). *Кристаллография*. 2020. T. 65. № 1. С. 147. [Buchinskaya, I.I., Arkharova, N.A., Ivanova, A.G., and Karimov, D.N., Growth of crystals of solid solutions with tysonite structure in the PbF₂ – RF₃ systems (R = Pr, Nd), *Crystallogr. Rep.*, 2020, vol. 65, no. 1, p. 147.]
- Каримов, Д.Н., Киреев, В.В., Дымшиц, Ю.М., Бучинская, И.И., Соболев, Б.П., Богдашич, О.В. Тигель для выращивания кристаллов высоколетучих материалов. *Пат. 153101 (Россия)*. 2014. [Karimov, D.N., Kireev, V.V., Dymshitz, Yu.M., Buchinskaya, I.I., Sobolev, B.P., and Bogdashich, O.V., Crucible for growing crystals of high volatile materials, Pat. 153101 (Russia), 2014.]
- 20. Каримов, Д.Н., Бучинская, И.И., Дымшиц, Ю.М. Способ выращивания кристаллов или получения сплавов флюоритовых твердых растворов $M_{1-x}M'_xF_2$, где M = Ca, Sr, Ba; M' = Pb, Cd; *x* – мольная доля компонента M'F₂. Пат. 2742638 (Россия), 2020. [Karimov, D.N., Buchinskaya, I.I., and Dymshitz, Yu.M., A method of growing crystals or obtaining alloys of fluorite solid solutions $M_{1-x}M'_xF_2$, where M = Ca, Sr, Ba; M' = Pb, Cd; *x* is the mole fraction of the M'F₂ component, Pat. 2742638 (Russia), 2020.]

- Иванов-Шиц, А.К., Сорокин, Н.И., Федоров, П.П., Соболев, Б.П. Проводимость твердых растворов Sr_{1-x}La_xF_{2+x} (0.03 ≤ x ≤ 0.40). Физика твердого тела. 1983. Т. 25. № 6. С. 1748. [Ivanov-Shitz, А.К., Sorokin, N.I., Fedorov, P.P., and Sobolev, B.P., Conductivity of solid solutions Sr_{1-x}La_xF_{2+x} (0.03 ≤ x ≤ 0.40), *Sov. Solid State Phys.*, 1983, vol. 25, no. 6, p. 1007.]
- 22. Сорокин, Н.И., Соболев, Б.П. Анионная проводимость монокристаллов нестехиометрических фаз $R_{1-y}M_{y}F_{3-y}$ (R = La - Lu; M = Ca, Sr, Ba) со структурой тисонита (LaF₃) при высоких температурах. Электрохимия. 2007. Т. 43. С. 420. [Sorokin, N.I. and Sobolev, B.P., Anionic high-temperature conduction in single crystals of nonstoichiometric phases $R_{1-y}M_{y}F_{3-y}$ (R = La - Lu; M = Ca, Sr, Ba) with the tysonite (LaF₃) structure, *Russ. J. Electrochem.*, 2007, vol. 43, p. 398.]
- 23. Манулев, А.Н., Бузник, В.М., Лившиц, А.И., Федоров, П.П., Соболев, Б.П. Исследования методом ЯМР строения и ионного транспорта в диамагнитных твердых электролитах $M_{1-x}R_xF_{2+x}$. Физика твердого тела. 1988. Т. 30. № 12. С. 3554. [Matsulev, A.N., Buznik, V.M., Livshitz, А.I., Fedorov, P.P., and Sobolev, B.P., NMR studies of the structure and ion transport in diamagnetic solid electrolytes $M_{1-x}R_xF_{2+x}$. Sov. Solid State *Phys.*, 1988, vol. 30, no. 12, p. 2043.]
- 24. Привалов, А.Ф., Мурин, И.В. Разупорядочение ионной подвижности в суперионном проводнике LaF₃ со структурой тисонита по данным ¹⁹F ЯМР. *Физика твердого тела.* 1999. Т. 41. № 9. С. 1616. [Privalov, A.F. and Murin, I.V., Ion-motion disorder in a tysonite superionic conductor from ¹⁹F NMR data, *Physics of the Solid State*, 1999, vol. 41, no. 9, p. 1482.]
- Fujara, F., Kruk, D., Lips, O., Privalov, A.F., Sinitsyn, V., and Stork, H., Fluorine dynamics in LaF₃-type fast ionic conductors – Combined results of NMR and conductivity techniques, *Solid State Ionics*, 2008, vol. 179, p. 2350.
- Хрыкина, О.Н., Сорокин, Н.И., Верин, И.А., Болотина, Н.Б., Соболев, Б.П. Дефектная структура и ионная проводимость кристаллов *R*_{1 v}Sr_vF_{3 v}

(R = Ce, Pr, Nd) "as grown" с высоким содержанием SrF₂. *Кристаллография*. 2017. Т. 62. № 4. С. 559. [Khrykina, O.N., Sorokin, N.I., Verin, I.A., Bolotina, N.B., and Sobolev, B.P., Defect structure and ionic conductivity of as-grown R_{1-y} Sr_yF_{3-y} (R = Ce, Pr, Nd) crystals with high SrF₂ content, *Crystallogr. Rep.*, 2017, vol. 62, no. 4, p. 545.]

- 27. Болотина, Н.Б., Черная, Т.С., Калюканов, А.И., Верин, И.А., Сорокин, Н.И., Фыкин, Л.Е., Исакова, Н.Н., Соболев, Б.П. Связь дефектного строения с фтор-ионной проводимостью кристаллов La_{1 – y}Sr_yF_{3 – y} (0 ≤ y ≤ 0.15) по данным рентгеновской и нейтронной дифракции. *Кристаллография.* 2015. Т. 60. № 3. С. 391. [Bolotina, N.B., Chernaya, T.S., Kalyukanov, A.I., Verin, I.A., Sorokin, N.I., Fykin, L.E., Isakova, N.N., and Sobolev, B.P., Relationship between the defect structure and fluorine-ion conductivity of La_{1 – y}Sr_yF_{3 – y} (0 ≤ y ≤ 0.15) crystals according to X-ray and neutron diffraction data, *Crystallogr. Rep.*, 2015, vol. 60, no. 3, p. 346.]
- 28. Болотина, Н.Б., Калюканов, А.И., Черная, Т.С., Верин, И.А., Бучинская, И.И., Сорокин, Н.И., Соболев, Б.П. Рентгенографическое и нейтронографическое исследование дефектной структуры кристаллов "as grown" нестехиометрической фазы $Y_{0.715}Ca_{0.285}F_{2.715}$. *Кристаллография*. 2013. Т. 58. № 4. С. 574. [Bolotina, N.B., Kalyukanov, A.I., Chernaya, T.S., Verin, I.A., Buchinskaya, I.I., Sorokin, N.I., and Sobolev, B.P., X-ray and neutron diffraction study of the defect crystal structure of the as-grown nonstoichiometric phase $Y_{0.715}Ca_{0.285}F_{2.715}$, *Crystallogr. Rep.*, 2013, vol. 58, no. 4, p. 575.]
- 29. Мурин, И.В. Суперионные проводники: аномально высокая ионная проводимость в неорганических фторидах. Изв. СО АН СССР. Сер. хим. наук. 1984. № 2(1). С. 53. [Murin, I.V., Superionic conductors: abnormally high ionic conductivity in inorganic fluorides, *Izv. SO AN SSSR, Chem. Sci.* (in Russian), 1984, no. 2(1), p. 53.]