УДК 544.6.018.42-16

ПОЛУЧЕНИЕ И ЭЛЕКТРОПРОВОДНОСТЬ МОЛИБДАТОВ ВИСМУТА, ЗАМЕЩЕННЫХ СУРЬМОЙ И ОЛОВОМ¹

© 2021 г. А. В. Климова^{а, b, *}, З. А. Михайловская^а, Е. С. Буянова^{а, b}, С. А. Петрова^с

^аИнститут геологии и геохимии им. академика А.Н. Заварицкого УрО РАН, Екатеринбург, Россия ^bУральский федеральный университет им. первого Президента России Б.Н. Ельцина, Химический факультет, Екатеринбург, Россия

> ^сИнститут металлургии УрО РАН, Екатеринбург, Россия *e-mail: bbgiyongchy@gmail.com Поступила в редакцию 30.11.2020 г. После доработки 06.02.2021 г. Принята к публикации 12.03.2021 г.

Статья посвящена исследованию возможности получения, установлению специфики структуры и свойств кислородно-ионных проводников на основе молибдата висмута, замещенного сурьмой и оловом в подрешетке молибдена. Для полученных составов были установлены области гомогенности и изучены структурные особенности. Определены параметры элементарной ячейки и объемная плотность образцов. Методом ИК-спектроскопии определены характеристические частоты связей металл-кислород. Общая электропроводность составов исследована методом импедансной спектроскопии в диапазоне температур 200–825°С. Построены температурные и проанализированы концентрационные зависимости проводимости.

Ключевые слова: молибдаты висмута, допирование, сурьма, олово, кислород-ионные проводники, импедансная спектроскопия

DOI: 10.31857/S0424857021080053

введение

Кислород-ионные проводники являются перспективными материалами мембран кислородных датчиков, каталитических систем, газоразделительных устройств, топливных элементов. По совокупности электрофизических характеристик, термической и структурной устойчивости, молибдаты висмута с колончатой структурой относятся к этой категории соединений.

В структуре колончатых молибдатов висмута имеются, с одной стороны, колончатые фрагменты $[Bi_{12}O_{14}]_n$, обеспечивающие анизотропный перенос ионов кислорода, а с другой стороны, квазижидкая подрешетка, состоящая из полиэдров MoO_n и изолированных ионов висмута (рис. 1) [1–3].

При комнатной температуре Bi₁₃Mo₅O_{34.5 – δ} кристаллизуется в триклинной симметрии, выше 310°С переходит в моноклинную модификацию, что приводит к повышению его электропроводящих характеристик. Обратный переход в три-клинную модификацию сопровождается резким

снижением электропроводности. Замещение позиций висмута или молибдена в $Bi_{13}Mo_5O_{34.5-\delta}$ другими атомами может привести к стабилизации моноклинной модификации и оптимизации проводящих свойств. Высокая подвижность молибден-кислородной подрешетки нивелирует размерный фактор иона-заместителя, что определяет чрезвычайное разнообразие возможных допантов. Теоретически допустимо замещение висмута в колонках $[Bi_{12}O_{14}]_n$; замещение "изолированных" позиций висмута; замещение молибдена в молибден-кислородных полиэдрах [4-6].

Как было отмечено выше, группировка MoO_n в колончатых молибдатах висмута не связана жестко с другими структурными элементами, что позволяет ей не только совершать необходимые для ионного транспорта ротационные движения, но и допускает внедрение в структуру подобных по координации, но совершенно отличных по размерам ионов, например фосфора [7, 8]. Настоящая работа посвящена исследованию возможности замещения позиций молибдена в колончатых молибдатах висмута оловом и сурьмой, которые ранее в качестве допантов не рассматривались, а сурьма, в силу своей природы (полуметалл), в принципе используется довольно редко. Для оценки воз-

¹ По материалам доклада на 15-м Международном совещании "Фундаментальные проблемы ионики твердого тела", Черноголовка, 30.11–07.12.2020.

Рис. 1. Структура $Bi_{13}Mo_5O_{34.5-\delta}$ в проекциях на плоскость *хог* (а) и *хоу*: (б), модель Ling [3].

можных эффектов за счет применения указанных элементов, как ионов-заместителей, рассмотрим примеры иных оксидных соединений.

При 580°С для молибдата лантана La₂Mo₂O₉ (LM) наблюдается фазовый переход первого рода [9]. Калориметрические исследования образцов показали, что введение легирующей примеси Sb в LM приводит к снижению температуры фазового перехода $\alpha \rightarrow \beta$ с 570 до 520°С и к существенному подавлению этого перехода. В области высоких температур проводимость полученных твердых растворов также увеличивается, авторы объясняют это образованием дополнительных кислородных вакансий после введения пятивалентной сурьмы на позиции шестивалентного молибдена.

При синтезе сложных оксидов в восстановительных условиях сурьма проявляет степень окисления +3 и легко занимает позиции трехвалентных металлов с большими координационными числами (6–8), например железа или висмута. Авторами [10] был проведен синтез твердых растворов с общими формулами $Bi_{2-x}Sb_xMoO_6$, где $0 \le x \le 2$. Отмечена хорошая проводимость полученных соединений. При введении сурьмы в молибдаты железа происходит искажение структуры $FeMoO_4$ и, за счет этого, модификация его каталитических характеристик: повышение селективности в процессах окисления изобутана и уменьшение скорости разрушения катализатора [11].

Возможность замещения оловом проанализирована для широкого круга самых разных по свойствам и составу оксидов. Например, аналогично системам с сурьмой, исследованы составы LM с оловом. Олово может находиться в степени окисления Sn²⁺ и Sn⁴⁺ и, следовательно, при ввелении в структуру может создавать дополнительные кислородные вакансии, приводящие к увеличению проводимости. Авторами [12] по стандартной твердофазной методике был синтезирован ряд соединений состава $La_2Mo_{2-x}Sn_xO_{9-\delta}$ (*x* = 0-0.3). Они обнаружили, что фазовый переход $\alpha \rightarrow \beta$ между 550-570°С сдвигается в сторону более низких температур при повышении концентрации допанта. Отмечено увеличение энергии активации электропроводности с возрастанием концентрации вводимого иона, что мешает миграции ионов кислорода. Только в температурном диапазоне 520—590°С образцы с концентрацией Sn *x* ≤ 0.05 имеют проводимость выше, чем для LM. С увеличением концентрации допанта при температурах выше 590°С проводимость твердых растворов последовательно снижается.

Таким образом, введение сурьмы и олова на позиции молибдена в колончатых молибдатах висмута перспективно для возможной стабилизации полиморфных модификаций и повышения электропроводящих свойств подобных соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследуемые твердые растворы с общими формулами $Bi_{13}Mo_{5-x}Sn_xO_{34.5-\delta}$ ($x \le 0.7, \Delta x = 0.1$), Bi₁₃Mo_{5− x}Sb_xO_{34 5− δ} ($x \le 1.0, \Delta x = 0.1$) синтезированы по стандартной керамической технологии при использовании следующих исходных оксидов: Bi₂O₃ (ос. ч.), MoO₃ (ос. ч.), SnO₂ (ос. ч.) и Sb₂O₃. Оксид сурьмы получен гидролизом SbCl₃ (ос. ч.) в горячей подкисленной воде с последующим отмыванием и сушкой осадка. Аттестация полученного Sb₂O₃ проведена методами химического и рентгенофазового анализов. Исходные оксиды предварительно прокаливали для удаления влаги и получения устойчивых модификаций. Сурьма в оксиде Sb_2O_3 при отжиге на воздухе выше 683-723 К, согласно [13], повышает степень окисления до +4...+5, что позволяет предположить ее максимальное значение в конечном продукте. Смеси тщательно гомогенизировали и прессовали в брикеты. Брикеты помещали в тигли на прослойку из порошка этого же состава (для

минимизации взаимодействия с тиглем) и подвергали отжигу в две стадии. Первая стадия – отжиг при 823 К (24 ч), затем закаливание брикета помещением его в воду комнатной температуры. Вторая стадия – отжиг при 1163 К, затем медленное охлаждение вместе с печью. Границы области гомогенности и существования структурных модификаций, структурные параметры полученных твердых растворов определены методом порошковой рентгеновской дифракции с использованием дифрактометра D8 ADVANCE Bruker AXS (ЦКП "Урал-М" ИМЕТ УрО РАН, детектор VÅNTEC, Cu K_{α} -излучение, Ni-фильтр, θ/θ геометрия) в интервале углов $2\theta = 5^{\circ} - 125^{\circ}$ с шагом 0.02°. Частотные характеристики связей металлкислород устанавливали методом ИК-фурьеспектроскопии путем снятия ИК-спектров отражения (спектрометр Nicolet 6700 с приставкой нарушенного полного внутреннего отражения (НПВО) Smart Orbit, средняя и дальняя ИК-области).

Анализ распределения частиц порошков по размерам методом дифракции лазерного излучения был выполнен на анализаторе дисперсности SALD-7101 Shimadzu (источник света — фиолетовый полупроводниковый лазер, длина волны 375 нм). Анализ микроструктуры спеченных образцов проведен с использованием растрового электронного микроскопа JEOL JSM 6390LA, оснащенного рентгеновским энергодисперсионным микроанализатором INCA Energy 450 X-Max 80.

Денситометрические измерения осуществляли пикнометрически (порошок) и гидростатическим взвешиванием плотно спеченных керамических брикетов, покрытых тонким слоем гидроизолирующего лака. Пористость образцов определяли как результат соотношения полученных экспериментальных и теоретических рентгенографических плотностей.

Оценку величины общей электропроводности полученных молибдатов висмута проводили методом импедансной спектроскопии в двухконтактной ячейке с платиновыми электродами и интервале температур 200—825°С в режиме охлаждения на импедансметре Elins Z-3000 (интервал частот 3 МГц—10 Гц). Для анализа годографов импеданса был использован метод эквивалентных схем (Zview software, Version 2.6b, Scribner Associates, Inc.).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно результатам аттестации порошков методом РФА для всех серий образцов $Bi_{13}Mo_{5-x}Sn_xO_{34.5-\delta}$ ($x \le 0.7$, $\Delta x = 0.1$) и $Bi_{13}Mo_{5-x}Sb_xO_{34.5-\delta}$ ($x \le 1.0$, $\Delta x = 0.1$) граница области гомогенности твердых растворов ограничена значением x = 0.3. В случае серии $Bi_{13}Mo_{5-x}Sn_xO_{34.5-\delta}$ триклинная модифи-

ЭЛЕКТРОХИМИЯ том 57 № 8 2021

кация твердых растворов существует до $x \le 0.2$, в случае $Bi_{13}Mo_{5-x}Sb_xO_{34.5-\delta} - до x \le 0.1$ (Пр. гр. *P*-1). При увеличении концентрации допанта происходит стабилизация моноклинной модификации молибдата висмута (Пр. гр. *P2/c*). На рис. 2 в качестве примера приведена рентгеновская дифрактограмма образца $Bi_{13}Mo_{5-x}Sb_xO_{34.5-\delta}$ для x = 0.3. С использованием метода Ритвельда (пакет Fullprof [14]) проведено уточнение структуры и рассчитаны параметры элементарной ячейки. В качестве стартовых были выбраны модели, описанные в работе [15].

Методом лазерного светорассеяния установлено, что размер частиц полученных порошков отвечает средним значениям для твердофазного метода синтеза и составляет для серии $Bi_{13}Mo_{5-x}Sb_xO_{34.5-\delta}$ 0.3-50 мкм, для серии $Bi_{13}Mo_{5-x}Sn_xO_{34.5-\delta}-0.3-$ 30 мкм, частицы склонны к агломерации. Максимум распределения приходится на интервал 5– 12 мкм.

Согласно денситометрическому анализу, полученные из исследуемых порошков керамические брикеты хорошо спекаются, среднее значение общей пористости брикетов составляет от 2 до 5%.

Микроструктура и состав брикетированных образцов из области гомогенности исследованы методом электронной микроскопии с энергодисперсионным микроанализом (ЭДА). На рис. 3 приведены микрофотографии сколов брикетов некоторых образцов, иллюстрирующие их однородность и отсутствие посторонних включений. Согласно результатам ЭДА, для спеченных брикетов характерно равномерное распределение элементов в соответствии с номинальным составом.

Как следует из табл. 1 и 2 с рассчитанными параметрами элементарной ячейки замещенных сурьмой и оловом молибдатов висмута, в рамках триклинной симметрии для всех составов наблюдается возрастание объема ячейки по сравнению с матричным соединением, что связано с замещением молибдена допантами большего ионного радиуса ($rMo^{6+} = 0.41$ Å, $rSb^{3+} = 0.76$ Å, $rSb^{5+} =$ = 0.60 Å, *r*Sn⁴⁺= 0.55 Å, KЧ = 4) [17]. При этом параметр b практически не изменяется, так как жесткость элементарной ячейки в данном направлении определяется висмут-кислородными слоями, а основной вклад в увеличение объема вносит антибатное изменение параметров а и с. С ростом концентрации допанта при переходе в моноклинную модификацию происходит уменьшение объема элементарной ячейки, вероятно связанное с локальной перестройкой кислородной подрешетки, что описано в более ранних работах [15, 16]. В частности, для образцов чистого и допированного Bi₁₃Mo₅O_{34.5-δ} было показано, что при нахождении молибдата висмута в триклинной модификации, молибден проявляет смешан-

Рис. 2. Рентгеновская порошковая дифрактограмма образца $Bi_{13}Mo_{5-x}Sb_xO_{34,5-\delta}$, x = 0.3. Точки – экспериментальные данные, сплошная линия – расчетная кривая, штрихи – положение рефлексов, в нижней части – разностная кривая. На вставке представлен фрагмент в больших углах, показывающий сходимость экспериментальных и модельных кривых при малых значениях интенсивностей рефлексов ($R_{\text{Bragg}} = 4.98$, $R_{\text{F}} = 3.40$, $R_{\text{exp}} = 8.56$, $R_{\text{p}} = 11.3$, $R_{\text{wp}} = 10.5$, $\chi^2 = 1.93$).

Рис. 3. СЭМ-изображения сколов образцов $Bi_{13}Mo_{5-x}Sb_xO_{34,5-\delta}$ (а) и $Bi_{13}Mo_{5-x}Sn_xO_{34,5-\delta}$ (б), x = 0.2.

ную координацию по кислороду (координационные числа 4 и 5). Если сложный оксид находится в моноклинной модификации — исключительно тетраэдрическую координацию. Таким образом, при повышении симметрии элементарной ячейки в ходе допирования или повышения температуры происходит уменьшение эффективного размера полиэдра MoO_n и сжатие элементарной ячейки.

В ИК-спектрах твердых растворов (рис. 4) для составов $Bi_{13}Mo_{5-x}Sn_xO_{34.5-\delta}$, как и в матричном соединении, наблюдаются характеристические

полосы, отвечающие колебаниям типичных для молибдатов висмута связей висмут — кислород, молибден — кислород [18]. Полосы поглощения в области 560–400 см⁻¹ относятся к валентным и деформационным колебаниям связей Bi–O [19], в области 680–900 см⁻¹ наблюдаются полосы, отвечающие валентным колебаниям связи Мо–O, симметричным и асимметричным колебаниям тетраэдров MoO_4 . При увеличении концентрации допантов сдвига характеристических полос связи Bi–O не происходит. Колебания связи Sn–O обычно наблюдаются в диапазоне 670–560 см⁻¹

Sn, x	Пр. гр.	Параметры элементарной ячейки							
		$a \pm 0.002$, Å	$b \pm 0.001$, Å	$c \pm 0.005$, Å	$\alpha \pm 0.01$, град	$\beta \pm 0.01$, град	$\gamma \pm 0.01$, град	$V \pm 0.01, Å^3$	
0	<i>P</i> -1	11.799	5.803	24.744	89.87	102.75	89.90	1652.42	
0.1	<i>P</i> -1	11.800	5.805	24.756	89.87	102.852	89.94	1653.27	
0.2	<i>P</i> -1	11.786	5.805	24.780	89.95	102.892	89.93	1652.64	
0.3	<i>P</i> 2/ <i>c</i>	11.749	5.803	24.785	90	102.84	90	1647.57	

Таблица 1. Значения параметров элементарной ячейки для составов $Bi_{13}Mo_{5-x}Sn_xO_{34,5-\delta}$

Таблица 2. Значения параметров элементарной ячейки для составов Bi₁₃Mo_{5 - x}Sb_xO_{34.5 - δ}

Sb, <i>x</i>	Пр. гр.	Параметры элементарной ячейки							
		$a \pm 0.002$, Å	$b \pm 0.001$, Å	$c \pm 0.005$, Å	$\alpha \pm 0.01$, град	$\beta \pm 0.01$, град	$\gamma \pm 0.01$, град	$V \pm 0.01$, Å ³	
0	<i>P</i> -1	11.799	5.803	24.744	89.87	102.75	89.90	1652.42	
0.1	P-1	11.800	5.805	24.750	89.85	102.83	89.90	1653.01	
0.2	P2/c	11.795	5.804	24.762	90	102.88	90	1652.50	
0.3	<i>P</i> 2/ <i>c</i>	11.783	5.804	24.775	90	102.89	90	1651.63	

[20], и в настоящей работе в ИК-спектре зафиксированы небольшие по интенсивности полосы поглощения при 665 и 643 см⁻¹, что подтверждает присутствие олова в пробах.

Аналогично для составов $Bi_{13}Mo_{5-x}Sb_xO_{34,5-\delta}$ теоретически в области 900–400 см⁻¹ могут наблюдаться полосы поглощения, относящиеся к валентным и деформационным колебаниям связей Sb–O [21, 22] (768–718 см⁻¹ – симметричные валентные колебания связи Sb–O, полосы в интервале 595—508 см⁻¹ — ассиметричные колебания), однако из-за наложения характеристических полос, отвечающих колебаниям связей висмут — кислород, молибден — кислород отдельно колебания связи Sb—O обнаружить не удалось.

Общая электропроводность серий $Bi_{13}Mo_{5-x}Sn_xO_{34.5-\delta}$ и $Bi_{13}Mo_{5-x}Sb_xO_{34.5-\delta}$ исследована методом импедансной спектроскопии в интервале температур 825–200°С в режиме охлаждения. Характерные для всех исследуемых со-

Рис. 4. ИК-спектры серии $Bi_{13}Mo_{5-x}Sn_xO_{34,5-\delta}$.

ЭЛЕКТРОХИМИЯ том 57 № 8 2021

Рис. 5. Годографы импеданса составов Bi₁₃Mo_{4.8}Sn_{0.2}O_{34.3} и Bi₁₃Mo_{4.8}Sb_{0.2}O_{34.2} при 1023 (а) и 573°С (б).

единений типичные годографы импеданса и описывающие их эквивалентные схемы приведены на рис. 5 для высокотемпературной (650–890°С) и низкотемпературной области (300–550°С).

Импедансная диаграмма при температурах выше 650°С представляет асимметричный полукруг, который может быть описан (рис. 5а) эквивалентной схемой, состоящей из последовательно соединенных сопротивления R_0 и двух элементов Войта R_1 -СРЕ₁ и R_2 -СРЕ₂. Значение СРЕ-Т составляет величину 10^{-5} - 10^{-6} Ф, что позволяет отнести параметр R_0 к общему сопротивлению образца, а элементы Войта – к описанию электродного процесса [23].

Рис. 6. Температурные зависимости электропроводности соединений состава $Bi_{13}Mo_5 - xSn_xO_{34.5} - \delta$.

В низкотемпературной области импедансная диаграмма имеет вид незавершенного (часто сложенного из двух плохо разделяемых) полукруга с "хвостом", что позволяет предположить эквивалентную схему (рис. 5б) из двух цепочек R_1 + + СРЕ₁ и R_2 + СРЕ₂ и элемента Варбурга Ws. Соединение R_1 + СРЕ₁ относится к общему сопротивлению образца (емкостной параметр СРЕ₁–Т около 10⁻¹¹ Ф) и описывает малый полукруг, R_2 + + СРЕ₂ относится к электродному процессу (СРЕ₂ составляет 10⁻⁶ Ф). Элемент Варбурга характеризует затрудненный с понижением температуры диффузионный процесс и вносит основной вклад в сопротивление системы.

На основе кривых импеданса построены температурные зависимости электропроводности в аррениусовских координатах, представленные на рис. 6 и 7. На температурных кривых для обеих серий образцов заметны перегибы, по всей видимости отвечающие фазовому переходу из триклинной в моноклинную модификацию с ростом температуры, причем температура перехода падает с ростом концентрации допанта от 300 до 200°С и ниже (для состава с x = 0.3 в серии с оловом), что аналогично другим молибдатам [8, 15], и в целом находится в согласии с рентгеновскими исследованиями структуры образцов. Однако стоит отметить, что несмотря на стабилизацию моноклинной модификации при определенных значениях х, у некоторых составов все-таки происходят обратимые изменения в циклах нагревание-охлаждение. Например, составы $Bi_{13}Mo_{5-x}Sb_{x}O_{34.5-\delta}$ (x = 0.2, 0.3), согласно РФА, после синтеза находятся в моноклинной модификации, однако на зависимостях $\lg \sigma - 1000/T$, снятых в режиме охлаждения, можно заметить небольшие перегибы в области 200-240°С. Существенного влияния на

ЭЛЕКТРОХИМИЯ том 57 № 8 2021

Рис. 7. Температурные зависимости электропроводности соединений состава $Bi_{13}Mo_{5-x}Sb_xO_{34.5-\delta}$.

величину электропроводности родоначальника серий при температурах выше 650°С (т.е., моноклинной модификации) введение сурьмы и олова не оказывает, величина энергии активации высокотемпературного участка зависимости $\lg \sigma - 1000/T$ практически не изменяется и находится в диапазоне 0.42-0.48 эВ. Этот факт также находится в согласии с литературными данными по другим молибдатам, следовательно, сложная колончатая структура исходного соединения не оказывает существенного влияния на электроперенос в подобных материалах. Гораздо более значимый разброс наблюдается в низкотемпературной части, где максимальными значениями электропроводности обладают составы, кристаллизующиеся при этих температурах в моноклинной форме.

Таблица 3. Удельная электропроводность соединений составов $Bi_{13}Mo_{5-x}Sn_xO_{34.5-\delta}$ и $Bi_{13}Mo_{5-x}Sb_xO_{34.5-\delta}$ при 350 и 750°C

Состав	$\sigma_{350^\circ C}$, См см ⁻¹	σ _{750°C} , См см ^{−1}
Bi ₁₃ Mo ₅ O _{34.5}	4.48×10^{-4}	1.07×10^{-2}
Bi ₁₃ Mo _{4.9} Sn _{0.1} O _{34.4}	1.11×10^{-4}	5.98×10^{-3}
Bi ₁₃ Mo _{4.8} Sn _{0.2} O _{34.3}	2.28×10^{-4}	4.94×10^{-3}
Bi ₁₃ Mo _{4.7} Sn _{0.3} O _{34.2}	6.06×10^{-4}	1.79×10^{-2}
Bi ₁₃ Mo _{4.9} Sb _{0.1} O _{34.35}	1.60×10^{-4}	8.38×10^{-3}
Bi ₁₃ Mo _{4.8} Sb _{0.2} O _{34.2}	5.50×10^{-4}	1.04×10^{-2}
Bi ₁₃ Mo _{4.7} Sb _{0.3} O _{34.05}	3.06×10^{-4}	1.17×10^{-2}

ЭЛЕКТРОХИМИЯ том 57 № 8 2021

Рис. 8. Сравнение температурных зависимостей электропроводности исследуемых соединений.

Значения для электропроводности твердых растворов приведены в табл. 3. Таким образом, в исследованной области температур все составы имеют величину общей электропроводности в интервале $4.95 \times 10^{-8} - 1.79 \times 10^{-2}$ Ом⁻¹ см⁻¹. Электропроводность Bi₁₃Mo₅O_{34.5-\delta}, допированного Sb, будет несколько ниже во всей области температур, чем электропроводность при допировании Sn (рис. 8).

ЗАКЛЮЧЕНИЕ

По стандартной твердофазной технологии синтезированы сложные оксиды составов $Bi_{13}Mo_{5-x}Sn_xO_{34.5-\delta}$ ($y \le 0.7, \Delta y =$ 0.1) и Bi₁₃Mo_{5−x}Sb_xO_{345−δ} ($y \le 1.0, \Delta y = 0.1$), определены их области гомогенности и границы существования триклинной и моноклинной модификаций. Определены рентгеноструктурные характеристики замещенных молибдатов висмута (группа симметрии, параметры элементарных ячеек). Проведено исследование образцов методом ИК-спектроскопии для уточнения положения атомов в структуре. Методом импедансной спектроскопии выявлены характер и особенности импедансных спектров и температурных зависимостей электропроводности исследуемых составов. Наибольшую электропроводность показывают молибдаты висмута, допированные оловом и сурьмой с концентрацией допанта x = 0.3. По совокупности электрофизических характеристик, термической и структурной устойчивости, замещенные молибдаты висмута с колончатой структурой можно считать перспективными материалами для использования в электрохимических устройствах.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках темы № АААА-А19-119071090011-6 государственного задания ИГГ УрО РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Buttrey, J.D., Compositional and structural trends among the bismuth molybdates, *Top. Catalysis*, 2001, vol. 15, p. 235.
- 2. Vannier, R.N., Mairesse, G., Abraham, F., and Nowogrocki, G., $Bi_{26}Mo_{10}O_{\delta}$ Solid Solution Type in the Bi_2O_3 -MoO₃-V₂O₅ Ternary Diagram, *J. Solid State Chem.*, 1996, vol. 122, p. 394.
- Ling, C.D., Miller, W., Johnson, M.R., and Richard, D., Local Structure, Dynamics, and the Mechanisms of Oxide Ionic Conduction in Bi₂₆Mo₁₀O₆₉, *Chem. Mater.*, 2012, vol. 24, p. 4607.
- Castro, A., Enjalbert, R., Baules, P., and Galy, G., Synthesis and Structural Evolution of the Solid Solution Bi(Bi_{12 − x}Te_xO₁₄)Mo_{4 − x}V_{1 + x}O₂₀ (0 ≤ x < 2.5), *J. Solid State Chem.*, 1998, vol. 139, p. 185.
- Galy, J., Enjalbert, R., Rozier, P., and Millet, P., Lone pair stereoactivity versus anionic conductivity. Columnar structures in the Bi₂O₃-MoO₃ system, *Solid State Sci.*, 2003, vol. 5, p. 165.
- Enjalbert, R., Hasselmann, G., and Galy, J., [Bi₁₂O₁₄E₁₂]_n Columns and Lone Pairs E in Bi₁₃Mo₄VO₃₄E₁₃: Synthesis, Crystal Structure, and Chemistry of the Bi₂O₃-MoO₃-V₂O₅ System, *J. Solid State Chem.*, 1997, vol. 131, p. 236.
- 7. Vannier, R.N., Danzé, S., Nowogrocki, G., Marielle, H., and Mairesse, G., A new class of mono-dimensional bismuth-based oxide anion conductors with a structure based on $[Bi_{12}O_{14}]_{\infty}$ columns, *Solid State Ionics*, 2000, vol. 136, p. 51.
- Михайловская, З.А., Буянова, Е.С., Петрова, С.А., Морозова, М.В., Еремина, К.С. Одномерные кислородно-ионные проводники на основе замещенных фосфором молибдатов висмута: получение и характеристики. *Журн. неорг. химии.* 2017. Т. 62. С. 1555. [Mikhaylovskaya, Z.A., Buyanova, E.S., Petrova, S.A., Morozova, M.V., and Eremina, K.S., One-dimensional oxygen-ion conductors based on phosphorus-substituted bismuth molybdates: Preparation and characterization, *Russ. J. Inorg. Chem.*, 2017, vol. 62, p. 1549.]
- Alekseeva, O.A., Verina, I.A., Sorokina, N.I., Kharitonova, E.P., and Voronkova, V.I., Structure and Properties of Antimony–Doped Lanthanum Molybdate La₂Mo₂O₉, *Crystallogr. Rep.*, 2011, vol. 56, p. 435.

- 10. Bégué, P., Enjalbert, R., Galy, J., and Castro, A., Single-crystal X-ray investigations of the structures of γ (H)Bi₂MoO₆ and its partially substituted As³⁺ and Sb³⁺ homologues, *Solid State Sci.*, 2000, vol. 2, p. 637.
- Graziani, M. and Rao, C.N.R., Advances in Catalyst Design: Proceedings of the 2nd Workshop on Catalyst Design, *Singapore: World Scientific*, 1993, vol. 2, p. 412
- Borah, L.N. and Pandey, A., Impedance studies of La₂Mo_{2-x}Sn_xO_{9-δ} oxide ion conductors, *Acta Metall Sin-Engl.*, 2013, vol. 26, p. 425.
- Лидин, Р.А., Молочко, В.А, Андреева, Л.Л. Химические свойства неорганических веществ, М.: Химия, 2000, 480 с. [Lidin, R.A., Molochko, V.A., and Andreeva, L.L., Chemical properties of inorganic substances (in Russian), Moscow: Khimiya, 2000, 480 p.]
- Rodriguez-Carvajal, J., Recent developments of the program FULLPROF, *CPD Newsletter*, 2001, vol. 26, p. 12.
- Mikhaylovskaya, Z.A., Petrova, S.A., Abrahams, I., Buyanova, E.S., Morozova, M.V., and Kellerman, D.G., Structure and conductivity in iron-doped Bi₂₆Mo₁₀O_{69-δ}, *Ionics*, 2018, vol. 24, p. 3983. https://doi.org/10.1007/s11581-018-2543-1
- Mikhaylovskaya, Z.A., Petrova, S.A., Buyanova, E.S., and Abrahams, A., High-Temperature Studies of the Structure of Complex Oxides Based on Bi₂₆Mo₁₀O_{69 - d}, *J. Struct. Chem.*, 2018, vol. 59, p. 2001.
- Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, *Acta Crystallogr., Sect. A.*, 1976, vol. 32, p. 751.
- Li, H.H., Li, K.W., and Wang, H., Hydrothermal synthesis and photocatalytic properties of bismuth molybdate materials, *Mat. Chem. Phys.*, 2009, vol. 116, p. 134.
- 19. Paul, T. and Ghosh, A., Structure and vibrational properties of $La_{2-x}Bi_xMo_2O_9$ (0.05 $\leq x \leq$ 0.4) oxygen ion conductors, *J. Alloy Compd.*, 2014, vol. 613, p. 146.
- Ayeshamariam, A., Ramalingam, S., Bououdina, M., and Jayachandran, M., Preparation and characterizations of SnO₂ nanopowder and spectroscopic (FT-IR, FT-Raman, UV–Visible and NMR) analysis using HF and DFT calculations, *Spectrochim. Acta A*, 2014, vol. 118, p. 1135.
- Geng, L., Meng, C.Y., Lin, C.S., and Cheng, W.D., A new strontium antimonate^{III} Sr₅Sb₂₂O₃₈: Synthesis, crystal structure and characterizations, *J. Solid State Chem.*, 2013, vol. 203, p. 74.
- Deng, Z., Chen, D., Tang, F., Ren, J., and Muscat, A.J., Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section, *Nano Res.*, 2009, vol. 2, p. 151.
- Irvine, J.T.S., Sinclair, D.C., and West, A.R., Electroceramics: Characterization by Impedance Spectroscopy, *Advanced Materials*, 1990, vol. 2, p. 132.