УДК 541.6+544.1

ВЛИЯНИЕ ДОНОРНОГО ДОПИРОВАНИЯ НА ИОННЫЙ (O²⁻, H⁺) ТРАНСПОРТ В НОВЫХ СЛОЖНЫХ ОКСИДАХ BaLaIn_{1 – x}Nb_xO_{4 + x} СО СТРУКТУРОЙ РАДДЛЕСДЕНА-ПОППЕРА¹

© 2021 г. Н. А. Тарасова^{*a*, *b*}, А. О. Галишева^{*a*, *}, И. Е. Анимица^{*a*, *b*, **, А. А. Дмитриева^{*a*}}

^аУральский федеральный университет им. первого Президента России Б.Н. Ельцина, Екатеринбург, Россия ^bИнститут высокотемпературной электрохимии УрО РАН, Екатеринбург, Россия

> *e-mail: a.o.galisheva@urfu.ru **e-mail: Irina.Animitsa@urfu.ru Поступила в редакцию 29.11.2020 г. После доработки 04.03.2021 г. Принята к публикации 12.03.2021 г.

В работе проведен анализ влияния донорного допирования $Nb^{5+} \rightarrow In^{3+}$ на транспортные свойства сложного оксида $BaLaInO_4$, характеризующегося структурой Раддлесдена—Поппера. Установлено, что полученные фазы способны к диссоциативному поглощению воды из газовой фазы и проявлению протонного переноса. Показано, что донорное допирование $BaLaInO_4$ приводит к росту кислород-ионной и протонной проводимости.

Ключевые слова: водородная энергетика, структура Раддлесдена–Поппера, кислород-ионная проводимость, протонная проводимость роц. 10.21857/S0424857021080110

DOI: 10.31857/S0424857021080119

введение

Новый структурный тип, производный от структуры перовскита, был впервые описан С.Н. Раддлесденом и П. Поппером в 1957 г. [1]. Эта слоистая структура может быть выражена общей формулой $AX(A'BX_3)_n$, где A, A' и B – катионы, X – анион, а n – количество слоев октаэдров в перовскитном блоке [A/A'BX₃], разделенных слоями [A/A'X]. В однослойных фазах Раддлесдена–Поппера AA'BX₄ (n = 1) катионы A и A' занимают одну кристаллографическую позицию в блочном слое и имеют координационное число к. ч. = 9. В случае, когда A и A' один и тот же катион, общая формула может быть записана как A₂BX₄, и такие соединения относятся к структуре типа K₂NiF₄ [2]. Катионы В расположены в анионных октаэдрах [BX₆] (к. ч. = 6).

Соединения, обладающие структурой Раддлесдена—Поппера, характеризуются различными физическими свойствами в зависимости от природы входящих в их состав элементов. Такие соединения могут быть использованы в качестве сверхпроводников [3, 4], магнитных [5, 6] и электродных материалов [7–11]. В последние десятилетия значительно увеличилось количество исследований, посвященных изучению материалов, пригодных для использования в качестве компонентов твердооксидных топливных элементов (ТОТЭ), в связи с необходимостью создания эффективных и экологически чистых источников энергии [12-18]. В качестве электролитических материалов могут использоваться кислород-ионные и протонные проводники [19]. Использование протонных проводников в ТОТЭ по сравнению с кислород-ионными проводниками имеет ряд преимуществ, таких как снижение рабочих температуры и повышение эффективности ТОТЭ [16, 17, 19–21]. Поэтому поиск и исследование новых высокопроводящих протонных проводников является одной из важных задач химического материаловедения.

Одним из перспективных представителей семейства однослойных блочно-слоевых структур AA'BX₄ является состав BaLaInO₄. Уникальная возможность катионов In³⁺ адаптировать разные координационные числа позволяет реализовать In-содержащим сложным оксидам различные кристаллические структуры. Например, известны ионные проводники со структурой перовскита и браунмиллерита на основе Ba-допированного LaInO₃ [22–24] и Ba₂In₂O₅ [25–31] соответственно.

¹ По материалам доклада на 15-м Международном совещании "Фундаментальные проблемы ионики твердого тела", Черноголовка, 30.11–07.12.2020.

Возможность протонного транспорта в BaLaInO₄ и соединениях на его основе была описана нами ранее [32–35]. Доказано, что допирование катионных подрешеток в BaLaInO₄ приводит к значительному (до ~1.5 порядка) увеличению значений протонной проводимости. Однако фундаментальные закономерности переноса протона, в том числе влияние природы допанта на величину протонной проводимости, в блочно-слоевых структурах еще не установлены.

В настоящей работе изучено влияние допирования ионами Nb⁵⁺ подрешетки индия на транспортные свойства сложного оксида BaLaInO₄, характеризующегося структурой Раддлесдена— Поппера. Исследованы температурные и концентрационные зависимости общей проводимости в различных условиях влажности атмосферы и парциального давления кислорода. Проведена дифференциация общей проводимости на вклады – кислород-ионный и протонный, рассчитана подвижность протонов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Составы BaLaIn_{1 – x}Nb_xO_{4 + x} ($0 \le x \le 0.10$) были получены методом твердофазного синтеза из предварительно осушенных BaCO₃, La₂O₃, In₂O₃, Nb₂O₅. Синтез проводили на воздухе при ступенчатом повышении температуры ($800-1300^{\circ}$ C) и многократных перетираниях в агатовой ступке в среде этилового спирта. Для предотвращения возможного испарения компонентов в ходе высокотемпературного отжига синтез проводили в закрытых тиглях, в засыпках из порошков синтезируемых веществ. Температура первого отжига составляла 800°C, что обеспечивало начало синтеза до разложения карбоната бария и связывание бария в промежуточные фазы. Время отжига на каждой стадии составляло 24 ч.

Рентгенографический анализ был выполнен на дифрактометре Bruker Advance D8 в CuK_{α} -излучении при напряжении на трубке 40 кВ и токе 40 мА. Съемка производилась в интервале 2 θ = = 20°-80° с шагом 0.05° θ и экспозицией 1 с на точку. Расчеты параметров решетки проводили с помощью программы FullProf Suite.

Термический анализ проводили на приборе NETZSCH STA 409 PC в комплекте с квадрупольным масс-спектрометром QMS 403C Aëolos (NETZSCH), позволяющем одновременно выполнять термогравиметрические измерения (**TГ**), и анализ отходящих газов (масс-спектрометрия **MC**), в интервале температур 25–1000°C и скоростью нагрева 10°/мин. Перед измерениями образцы подвергали термической обработке во влажной атмосфере ($pH_2O = 2 \times 10^{-2}$ атм) путем медленного охлаждения от 1000 до 200°C со

ЭЛЕКТРОХИМИЯ том 57 № 9 2021

скоростью 1°/мин с целью получения гидратированных форм образцов.

Электропроводность исследуемых фаз изучалась в атмосферах различной влажности. Влажную атмосферу получали барботированием воздуха при комнатной температуре последовательно через дистиллированную воду и насыщенный раствор бромида калия KBr ($pH_2O = 2 \times 10^{-2}$ атм). Сухую атмосферу задавали циркуляцией газа через порошкообразный оксид фосфора Р₂О₅ $(pH_2O = 3.5 \times 10^{-5} \text{ атм})$. Кроме того, для предотвращения возможной карбонизации керамики проводилось предварительное удаление углекислого газа СО₂ из воздуха, для влажной атмосферы – с помощью 20%-ного раствора NaOH, для сухой – с использованием реактива "Аскарит". Влажность газов контролировали измерителем влажности газов ИВГ-1 МК-С.

Для измерений электрических свойств образцы готовили в виде таблеток, спекание проводили при температуре 1350°С в течение 24 ч. Плотность образцов составляла ~90–93%. Припекание платиновых электродов проводили при температуре 900°С в течение 3 ч.

Изучение электропроводности проводили методом электрохимического импеданса в частотном диапазоне 1 Гц-1 МГц с амплитудой сигнала 15 мВ с использованием измерителя параметров импеданса Elins Z-1000Р. Также проводились измерения электропроводности при варьировании парциального давления кислорода рО₂ в газовой фазе. Контроль рО2 осуществлялся электрохимическим методом. Использовались кислородные насос и датчик из керамики У-стабилизированного ZrO₂. Все электрохимические измерения были выполнены в условиях равновесия с T, pH_2O , pO_2 . Расчет объемного сопротивления проводили с использованием программного обеспечения Zview software fitting.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты рентгенофазового анализа для соединения $BaLaInO_4$ и допированных составов на его основе $BaLaIn_{1-x}Nb_xO_{4+x}$ (x = 0.05, 0.10) показали, что образцы являются однофазными и характеризуются орторомбической симметрией (пространственная группа *Pbca*). В качестве примера обработки рентгенограмм методом полнопрофильного анализа на рис. 1 представлены результаты для (а) безводного $BaLaIn_{0.95}Nb_{0.05}O_{4.05}$ и (б) гидратированного $BaLaIn_{0.95}Nb_{0.05}O_{4.05}$ и H_2O образцов.

Полученные для BaLaInO₄ значения параметров решетки хорошо согласуются с описанными ранее в литературе [36]. Введение ионов Nb⁵⁺ в In³⁺-подрешетку приводит к изменению объема

Рис. 1. Рентгенограммы безводного образца $BaLaIn_{0.95}Nb_{0.05}O_{4.05}$ (а) и гидратированного образца $BaLaIn_{0.95}Nb_{0.05}O_{4.05}$, nH_2O (б), показаны экспериментальные (точки), расчетные (линия), разностные (внизу) данные и угловые положения рефлексов (штрихи).

элементарной ячейки по сравнению с недопированным BaLaInO₄ (табл. 1). Несмотря на введение в In-подрешетку ($r_{In^{3+}} = 0.80$ Å) иона с меньшим ионным радиусом ($r_{Nb^{5+}} = 0.64$ Å), объем элементарной ячейки увеличивается [37]. Такое изменение обусловлено увеличением параметров *a* и *b*; параметр *c* уменьшается при введении допанта. Данное увеличение параметров может быть объяснено образованием междоузельного кислорода в блоке [La–O], которое сопровождается расширением межслоевого пространства в плоскости (*aOb*). Это вызывает увеличение параметров *a* и *b* [33, 38, 39] и, в итоге, увеличение объема элементарной ячейки.

Гидратация образцов приводила к изменению их симметрии с орторомбической (*Pbca*) на моноклинную (P2/m). Как и в случае безводных образцов, введение допанта приводило к увеличению объема элементарной ячейки (табл. 2).

Для определения возможности диссоциативного поглощения воды из газовой фазы для предварительно гидратированных образцов BaLaInO₄·nH₂O, BaLaIn_{0.9}Nb_{0.05}O_{4.05}·nH₂O и BaLaIn_{0.9}Nb_{0.1}O_{4.1}·nH₂O были проведены термические и масс-спектрометрические исследования. По убыли массы гидратированных составов была определена степень гидратации. Для удобства сравнения данные приведены в пересчете на число молей воды на формульную единицу сложного оксида (рис. 2). Совместно с ТГ-кривыми представлены резульмасс-спектрометрии таты для состава BaLaIn_{0.9}Nb_{0.05}O_{4.05} $\cdot n$ H₂O. Основная потеря массы наблюдается в температурном интервале 200-700°С, что, согласно результатам масс-спектрометрического анализа, обусловлено выходом H₂O. Выделения других возможных летучих веществ (СО₂, О₂) не было обнаружено. Наличие нескольких сигналов на кривой ионного тока (H₂O) было обусловлено наличием в структуре

Таблица 1.	Параметры	ячейки и	объем	ячейки	безводных	образцов
	· · ·					· ·

Образец	<i>a</i> , Å	b, Å	<i>c</i> , Å	Объем ячейки, Å ³
BaLaInO ₄	12.932(3)	5.906(1)	5.894(2)	450.19(5)
$BaLaIn_{0.9}Nb_{0.05}O_{4.05}$	12.956(6)	5.918(0)	5.886(3)	451.34(5)
$BaLaIn_{0.9}Nb_{0.1}O_{4.10}$	12.961(8)	5.938(5)	5.878(5)	452.70(9)

Таблица 2. Параметры ячейки и объем ячейки гидратированных образцов

Образец	<i>a</i> , Å	b, Å	c, Å	β, град	Объем ячейки, Å ³
BaLaInO₄· <i>n</i> H₂O	12.683(6)	14.708(1)	7.169(9)	92.81(9)	1 335(9)
BaLaIn _{0.9} Nb _{0.05} O _{4.05} ·nH ₂ O	12.684(2)	14.716(0)	7.176(0)	92.85(2)	1 337(8)
$BaLaIn_{0.9}Nb_{0.1}O_{4.10} \cdot nH_2O$	12.685(1)	14.722(3)	7.181(6)	92.89(8)	1 339(4)

Рис. 2. Данные термогравиметрии для образцов BaLaInO₄:nH₂O (*1*), BaLaIn_{0.9}Nb_{0.05}O_{4.05}:nH₂O (*2*) и BaLaIn_{0.9}Nb_{0.1}O_{4.1}:nH₂O (*3*), а также данные масс-спектрометрии для образца BaLaIn_{0.9}Nb_{0.05}O_{4.05}:nH₂O.

гидратированных образцов энергетически неэквивалентных гидроксо-групп, характеризующихся различным кристаллографическим положением и различной степенью участия в водородных связях. Подробный анализ был выполнен ранее [40] на примере образца $BaLaIn_{0.9}Nb_{0.1}O_{4.10}$. Введение допанта приводит к росту степени гидратации, что может быть обусловлено увеличением параметров *a* и *b* при введении допанта и увеличением межслоевого пространства (т.е., увеличением размеров солевого блока).

Таким образом, исследуемые в работе допированные образцы, как и недопированный BaLaInO₄, способны к поглощению воды из газовой фазы, несмотря на отсутствие в их структуре вакансий кислорода.

Поскольку было установлено, что исследуемые составы способны к диссоциативному поглощению воды, и, как следствие, для них может быть реализована протонная проводимость, то изучение электрических свойств проводилось в атмосферах с контролируемой влажностью.

На рис. З приведены типичные годографы импеданса для состава BaLaIn_{0.9}Nb_{0.05}O_{4.05} в атмосферах сухого воздуха и сухого аргона при температуре 520°С. Годографы состояли из нескольких компонент, отвечающих объемному ($C_{\rm rof} \sim 10^{-11} \, \Phi/{\rm cm}$) и зернограничному ($C_{\rm rs} \sim 10^{-9} \, \Phi/{\rm cm}$) сопротивлению образца. Для расчетов удельной проводимости использовали значение сопротивления образца, полученное путем экстраполяции высокочастотной полуокружности ($C_{\rm rof} \sim 10^{-11} \, \Phi/{\rm cm}$) на ось абсцисс (обработка Zview).

Температурные зависимости общей электропроводности для твердых растворов $BaLaIn_{1-x}Nb_xO_{4+x}$, полученные в сухой атмосфере, представлены на

Рис. 3. Годограф импеданса для образца ВаLaIn_{0.9}Nb_{0.05}O_{4.05} в атмосфере сухого воздуха (1) и сухого аргона (2) при 520°С.

рис. 4а. Как видно, значения проводимости для допированных образцов выше на ~1.5 порядка величины по сравнению со значениями для недопированного BaLaInO₄.

На рис. 4б представлены зависимости электропроводности от парциального давления кислорода в сухой атмосфере при температуре 620°С. Как видно, при значениях pO_2 выше 10^{-4} атм, кривые проводимости имеют положительный наклон, что подтверждает вклад дырочной проводимости. Хорошее соответствие значений проводимости из области плато ($10^{-18}-10^{-5}$ атм), где доминирует ионная проводимость, со значениями, полученными в атмосфере сухого аргона (красные символы на рис. 4б), позволяет говорить о том, что значения, полученные в сухом азоте, соответствуют значениям кислородно-ионной проводимости.

При высоких температурах, значение электропроводности, полученные в атмосфере сухого аргона, были ниже значений, полученных в атмосфере сухого воздуха для всех образцов (рис. 4а), что подтверждает смешанный ионно-электронный характер проводимости:

$$1/2O_2 \Leftrightarrow O_i'' + 2h^{\bullet}. \tag{1}$$

Концентрационные зависимости кислородионной проводимости для твердого раствора BaLaIn_{1 – x}Nb_xO_{4 + x} представлены на рис. 5. Как видно, введение Nb⁵⁺ приводит к значительному росту кислород-ионной проводимости.

Сравнение температурных зависимостей общей электропроводности для твердого раствора $BaLaIn_{1-x}Nb_xO_{4+x}$, полученных в атмосфере влажного воздуха (закрытые знаки) и влажного аргона (открытые знаки) представлено на рис. 6.

В температурной области появления протонных носителей заряда (ниже 500°С), значения проводимости, полученные в атмосфере влажно-

Рис. 4. Температурные зависимости общей электропроводности для твердого раствора $BaLaIn_{1-x}Nb_xO_{4+x}$ в атмосфере сухого воздуха (закрытые знаки) и сухого аргона (открытые знаки) (а), а также зависимости электропроводности от парциального давления кислорода в сухой атмосфере при температуре 620°C для образцов x = 0 (1), x = 0.05 (2), x = 0.1 (3) (6).

го аргона, сравнимы со значениями, полученными в атмосфере влажного воздуха (рис. 6), т.е., не зависят от pO_2 , что подтверждает ионный характер проводимости. Увеличение электропроводности в атмосфере влажного аргона, по сравнению с сухим аргоном (рис. 7) подтверждает наличие протонного вклада во влажных атмосферах. Протонная проводимость была рассчитана как разность между значениями электропроводности, полученными в атмосферах влажного и сухого аргона:

$$\sigma_{\rm H} = \sigma_{\rm BJ,Ar} - \sigma_{\rm cvx,Ar}, \qquad (2)$$

а ее температурные зависимости показаны на рис. 8.

Рис. 5. Концентрационные зависимости кислородноионной проводимости, полученные в атмосфере сухого азота, для твердого раствора $BaLaIn_{1-x}Nb_xO_{4+x}$.

Рис. 6. Температурные зависимости общей электропроводности для твердого раствора $BaLaIn_{1-x}Nb_xO_{4+x}$ в атмосфере влажного воздуха (закрытые знаки) и влажного аргона (открытые знаки).

Рис. 7. Температурные зависимости общей электропроводности для твердого раствора $BaLaIn_{1-x}Nb_xO_{4+x}$ в атмосфере сухого аргона (закрытые знаки) и влажного аргона (открытые знаки).

Анализируя концентрационные зависимости протонной проводимости (рис. 9) для твердого раствора BaLaIn_{1 – x}Nb_xO_{4 + x}, видно, что при температурах выше 400°С допирование приводит к росту протонной проводимости, а при температурах ниже 400°С протонная проводимость увеличивается с увеличением концентрации допанта до x = 0.05, а затем уменьшается. Этот максимум хорошо коррелирует с минимумом на кривой концентрационной зависимости энергии активации *E*_a, рассчитанной для температурного интервала 350—500°С. Значения $E_{\rm a}$ для наиболее проводящего образца (x = 0.05) составляет ~0.55 эВ, что характерно для протонного транспорта. Для объяснения изменения протонной проводимости при допировании была рассчитана подвижность протонов µ_н как:

$$\mu_{\rm H} = \sigma_{\rm H} / Zec_{\rm H} \,, \tag{3}$$

где $\sigma_{\rm H}$ — протонная проводимость, Ze — заряд $(Z = 1), c_{\rm H}$ — объемная концентрация протонов. Концентрация протонов $c_{\rm H}$ рассчитывалась как:

$$c_{\mathrm{H}^+} = \frac{2n}{V_{\mathrm{sy}}},\tag{4}$$

где n — степень гидратации, 2n — количество атомов водорода в элементарной ячейке кристаллической решетки, $V_{\rm sy}$ — объем элементарной ячейки (см³).

Как видно, температурные и концентрационные зависимости подвижности протонов (рис. 10 и 11) характеризуются теми же тенденциями, что и температурные и концентрационные зависимости протонной проводимости (рис. 8 и 9). Очевидно,

ЭЛЕКТРОХИМИЯ том 57 № 9 2021

Рис. 8. Температурные зависимости протонной проводимости для твердого раствора BaLaIn_{1 – x}Nb_xO_{4 + x}.

что, как и кислородно-ионный транспорт, протонный транспорт зависит от двух факторов: изменения концентрации носителей заряда и изменения их подвижности при допировании. Согласно термогравиметрическим исследованиям, увеличение концентрации допанта для $BaLaIn_{1-x}Nb_xO_{4+x}$ приводит к увеличению степени гидратации, т.е., к увеличению концентрации протонов. В то же время взаимодействие дефектов может приводить к образованию ассоциатов:

$$Nb_{In}^{\bullet\bullet} + 2(OH)'_{i} \rightarrow \left(Nb_{In}^{\bullet\bullet} \cdot 2(OH)'_{i}\right)^{\times}, \qquad (5)$$

и, соответственно, уменьшению подвижности протонов. При этом данный процесс проявляется

Рис. 9. Концентрационные зависимости протонной проводимости (\bullet) и энергии активации (\blacksquare) для твердого раствора BaLaIn_{1 – x}Nb_xO_{4 + x}.

Рис. 10. Температурные зависимости подвижности протонов для твердого раствора BaLaIn_{1 – x}Nb_xO_{4 + x}.

Рис. 11. Концентрационные зависимости подвижности протонов (•) и степени гидратации (•) для твердого раствора $BaLaIn_{1-x}Nb_xO_{4+x}$.

в большей степени в низких температурах, что хорошо демонстрируют зависимости для Nb-замещенных образцов. Числа переноса протонов были рассчитаны по формуле:

$$t_{\rm H^+} = \frac{\sigma_{\rm H^+}}{\sigma_{\rm offul}},\tag{6}$$

где $\sigma_{\text{общ}}$ — значения проводимости из зависимостей σ —1/*T* в атмосфере влажного воздуха, и их зависимость от температуры представлена на рис. 12. Как видно, числа переноса протонов уве-

Рис. 12. Температурные зависимости чисел переноса протонов для твердого раствора $BaLaIn_{1-x}Nb_xO_{4+x}$.

личиваются с понижением температуры, и все исследуемые образцы являются преимущественно протонными проводниками при $T \le 450^{\circ}$ C.

Таким образом, было установлено, что донорное допирование $BaLaInO_4$ по подрешетке индия приводит к росту кислород-ионной и протонной проводимости. В атмосфере влажного воздуха при температурах ниже 500°С как недопированный, так и допированные образцы являются протонными проводниками с долей протонного переноса ~90%, при этом наибольшими значениями протонной проводимости характеризуется образец $BaLaIn_{0.9}Nb_{0.05}O_{4.05}$.

ЗАКЛЮЧЕНИЕ

В работе методом твердофазного синтеза получены составы BaLaIn_{1 – x}Nb_xO_{4 + x} (0 \leq x \leq 0.10), рентгенографически подтверждена их однофазность. Установлено, что данные образцы способны к диссоциативному поглощению воды из газовой фазы и проявлению протонного переноса. Установлено, что донорное допирование подрешетки индия приводит к росту кислород-ионной и протонной проводимости. В атмосфере влажного воздуха при температурах ниже 500°C как недопированный, так и допированные образцы являются протонными проводниками с долей протонного переноса ~90%.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Ruddlesden, S.N. and Popper, P., New compounds of the K₂NiF₄ type, *Acta Crystallogr.*, 1957, vol. 10, p. 538.
- Beznosikov, B.V. and Aleksandrov, K.S., Perovskite-Like Crystals of the Ruddlesden–Popper Series, *Crystallogr. Report.*, 2000, vol. 45, p. 792.
- Le Page, Y., Structural properties of Ba₂RCu₃O₇ high-*T_c* superconductors, *Phys. Rev. B.*, 1987, vol. 36, p. 3517.
- Cheong, S-W., Thompson, J.D., and Fisk, Z., Properties of La₂CuO₄ and related compounds, *Physica C.*, 1989, vol. 158, p. 109.
- 5. Moritomo, Y., Tomioka, Y., Asamitsu, A., and Tokura, Y., Magnetic and electronic properties in hole-doped manganese oxides with layered structures: $La_{1-x}Sr_{1+x}MnO_4$, *Phys. Rev. B.*, 1995, vol. 51, p. 3297.
- 6. Hector, A.L., Knee, C.S., MacDonald, A.I., Price, D.J., and Weller, M.T., An unusual magnetic structure in Sr₂FeO₃F and magnetic structures of K₂NiF₄-type iron(III) oxides and oxide halides, including the cobalt substituted series Sr₂Fe_{1 - x}Co_xO₃Cl, *J. Mater. Chem.*, 2005, vol. 15, p. 3093.
- Sayers, R., Liu, J., Rustumji, B., and Skinner, S.J., Novel K₂NiF₄-Type Materials for Solid Oxide Fuel Cells: Compatibility with Electrolytes in the Intermediate Temperature Range, *Fuel Cell*, 2008, vol. 8, p. 338.
- Montenegro-Hernandez, A., Vega-Castillo, J., Mogni, L., and Caneiro, A., Thermal stability of Ln₂NiO_{4 + δ} (Ln: La, Pr, Nd) and their chemical compatibility with YSZ and CGO solid electrolytes, *Internat. J. Hydrogen Energy*, 2011, vol. 36, p. 15704.
- Grimaud, A., Mauvy, F., Bassat, J.M., Fourcade, S., Marrony, M., and Grenier, J.C., Hydration and transport properties of the Pr_{2-x}Sr_xNiO_{4+δ} compounds as H⁺-SOFC cathodes, *J. Mater. Chem.*, 2012, vol. 22, p. 16017.
- Vibhu, V., Rougier, A., Nicollet, C., Flura, A., Fourcade, S., Penin, N., Grenier, J.C., and Bassat, J.M., Pr₄Ni₃O_{10+δ}: A new promising oxygen electrode material for solid oxide fuel cells, *J. Power Sources*, 2016, vol. 317, p. 184.
- 11. Yatoo, M.A., Du, Z., Zhao, H., Aguadero, A., and Skinner, S.J., $La_2Pr_2Ni_3O_{10 \pm \delta}$ Ruddlesden–Popper phase as potential intermediate temperature-solid oxide fuel cell cathodes, *Solid State Ionics*, 2018, vol. 320, p. 148.
- Mahato, N., Banerjee, A., Gupta, A., Omar, S., and Balani, K., Progress in material selection for solid oxide fuel cell technology: A review, *Progress in Mater. Sci.*, 2015, vol. 72, p. 141.
- Kan, W.H., Samson, A.J., and Thangadurai, V., Trends in electrode development for next generation solid oxide fuel cells, *J. Mater. Chem. A.*, 2016, vol. 4, p. 17913.
- 14. Yesid Gómez, S. and Hotza, D., Current developments in reversible solid oxide fuel cells, *Renewable and Sustainable Energy Rev.*, 2016, vol. 61, p. 155.

ЭЛЕКТРОХИМИЯ том 57 № 9 2021

- da Silva, F.S. and de Souza, T.M., Novel materials for solid oxide fuel cell technologies: A literature review, *Internat. J. Hydrogen Energy*, 2017, vol. 42, p. 26020.
- Zhang, Y., Knibbe, R., Sunarso, J., Zhong, Y., Zhou, W., Shao, Z., and Zhu, Z., Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500°C, *Advanced Materials*, 2017, vol. 29, p. 1700132.
- Medvedev, D.A., Lyagaeva, J.G., Gorbova, E.V., Demin, A.K., and Tsiakaras, P., Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes, *Progress in Mater. Sci.*, 2016, vol. 75, p. 38.
- Danilov, N., Lyagaeva, J., Vdovin, G., and Medvedev, D., Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes, *Appl. Energy*, 2019, vol. 237, p. 924.
- Tarancon, A., Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature, *Energies*, 2009, vol. 2, p. 1130.
- Kochetova, N., Animitsa, I., and Medvedev, D., Recent activity in the development of proton-conducting oxides for high-temperature applications, *RSC Adv.*, 2016, vol. 6, p. 73222.
- Wachsman, E.D. and Lee, K.T., Lowering the temperature of solid oxide fuel cells, *Science*, 2011, vol. 334, p. 935.
- 22. Sood, K., Singh, K., and Pandey, O.P., Co-existence of cubic and orthorhombic phases in Ba-doped LaInO₃ and their effect on conductivity, *Physica B.*, 2015, vol. 456, p. 250.
- Byeon, D.-S., Jeong, S.-M., Hwang, K.-J., Yoon, M.-Y., Hwang, H.-J., Kim, S., and Lee, H.-L., Oxide ion diffusion in Ba-doped LaInO₃ perovskite: A molecular dynamics study, *J. Power Sources*, 2013, vol. 222, p. 282.
- 24. Hwang, K.-J., Hwang, H.-J., Lee, M.-H., Jeong, S.-M., and Shin, T.-H., The Effect of Co-Doping at the A-Site on the Structure and Oxide Ion Conductivity in (Ba_{0.5 - x}Sr_x)La_{0.5}InO_{3 - δ}: A Molecular Dynamics Study, *Materials*, 2019, vol. 12, p. 3739.
- 25. Schober, T., Friedrich, J., and Krug, F., Phase transformation in the oxygen and proton conductor Ba₂In₂O₅ in humid atmospheres below 300°C, *Solid State Ionics*, 1997, vol. 99, p. 9.
- Fisher, C.A.J. and Islam, M.S., Detect, protons and conductivity in brounmillerite-structured Ba₂In₂O₅, *Solid State Ionics*, 1999, vol. 118, p. 355.
- 27. Kakinuma, K., Yamamura, H., and Haneda, H., Oxide-ion conductivity of the perovskite–type solid– solution system, (Ba_{1 - x} - ySr_xLa_y)₂In₂O_{5 + y}, *Solid State Ionics*, 2002, vol. 154, p. 571.
- 28. Ta, T.Q., Tsuji, T., and Yamamura, Y., Thermal and electrical properties of Ba₂In₂O₅ substituted for In site by rare earth elements, *J. Alloys Compd.*, 2006, vol. 408, p. 253.
- 29. Jarry, A., Quarez, E., and Kravchyk, K., Rare earth effect on conductivity and stability properties of doped barium indates as potential proton-conducting fuel cell electrolytes, *Solid State Ionics*, 2012, vol. 216, p. 11.
- Tarasova, N. and Animitsa, I., The influence of anionic heterovalent doping on transport properties and chemical stability of F-, Cl-doped brownmillerite Ba₂In₂O₅, *J. Alloys Compd.*, 2018, vol. 739, p. 353.

- Tarasova, N. and Animitsa, I., Anionic doping (F⁻, Cl⁻) as the method for improving transport properties of proton-conducting perovskites based on Ba₂CaNbO_{5.5}, *Solid State Ionics*, 2018, vol. 317, p. 21.
- Tarasova, N., Animitsa, I., Galisheva, A., and Korona, D., Incorporation and Conduction of Protons in Ca, Sr, Ba-Doped BaLaInO₄ with Ruddlesden-Popper Structure, *Materials*, 2019, vol. 12, p. 1668.
- 33. Tarasova, N., Animitsa, I., Galisheva, A., and Pryakhina, V., Protonic transport in the new phases BaLaIn_{0.9}M_{0.1}O_{4.05} (M = Ti, Zr) with Ruddlesden-Popper structure, *Solid State Sciences*, 2020, vol. 101, p. 106121.
- Tarasova, N., Animitsa, I., and Galisheva, A., Electrical properties of new protonic conductors Ba_{1+x}La_{1-x}InO_{4-0.5x} with Ruddlesden–Popper structure, *J. Solid State Electrochem.*, 2020, vol. 24, p. 1497.
- Tarasova, N., Galisheva, A., and Animitsa, I., Improvement of oxygen-ionic and protonic conductivity of BaLaInO₄ through Ti doping, *Ionics*, 2020, vol. 26, p. 5075.
- 36. Корона, Д.В., Обрубова, А.В., Козлюк, А.О., Анимица, И.Е. Гидратация и протонный транспорт в фазах со слоистой структурой $BaCa_xLa_{1-x}InO_{4-0.5x}$ (x = 0.1 и 0.2). Журн. физ. химии. 2018. Т. 92. С. 1439. [Korona, D.V., Obrubova, A.V., Kozlyuk, A.O., and Animitsa, I.E., Hydration and proton transport in

BaCa_xLa_{1 - x}InO_{4 - 0.5x} (x = 0.1 and 0.2) phases with layered structure, *Russ. J. Phys. Chem.*, 2018, vol. 92, p. 1727.]

- Titov, Yu.A., Belyavina, N.M., and Markiv, V.Ya., Synthesis and crystal structure of BaLaInO₄ and SrLnInO₄ (Ln–La, Pr), *Reports National Academy Sci. Ukraine*, 2009, vol. 10, p. 160.
- 38. Troncoso, L., Alonso, J.A., Fernández-Díaz, M.T., and Aguadero, A., Introduction of interstitial oxygen atoms in the layered perovskite LaSrIn_{1 – x}B_xO_{4 + δ} system (B = Zr, Ti), *Solid State Ionics*, 2015, vol. 82, p. 282.
- Troncoso, L., Arce, M.D., Fernández-Díaz, M.T., Mogni, L.V., and Alonso, J.A., Water insertion and combined interstitial-vacancy oxygen conduction in the layered perovskites La_{1.2}Sr_{0.8 - x}Ba_xInO_{4 + δ}, New J. Chem., 2019, vol. 43, p. 6087.
- 40. Тарасова, Н.А., Галишева, А.О., Анимица, И.Е., Корона, Д.В. Гидратация и состояние кислородоводородных групп в сложном оксиде BaLaIn_{0.9}Nb_{0.1}O_{4.1} со структурой Раддлесдена-Поппера. *Журн. физ. химии.* 2020. Т. 94. С. 590. [Тагаsova, N.A., Galisheva, A.O., Animitsa, I.E., and Korona, D.V., Hydration and the State of Oxygen-Hydrogen Groups in the Complex Oxide BaLaIn_{0.9}Nb_{0.1}O_{4.1} with the Ruddlesden-Popper Structure, *Russ. J. Phys. Chem.*, 2020, vol. 94, p. 818.]