УДК 544.653.3+546.05

МОДИФИКАЦИЯ КАТОДНОГО МАТЕРИАЛА La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3 - δ} СЕГНЕТОАКТИВНЫМ КАТИОНОМ МОЛИБДЕНА¹

© 2022 г. Б. В. Волошин^{а, b}, Е. И. Кошевой^а, А. С. Улихин^а, М. П. Попов^{а, *}, А. П. Немудрый^а

^аИнститут химии твердого тела и механохимии СО РАН, Новосибирск, Россия ^bНовосибирский государственный университет, Новосибирск, Россия

*e-mail: popov@solid.nsc.ru Поступила в редакцию 25.10.2020 г. После доработки 16.08.2021 г. Принята к публикации 31.08.2021 г.

В настоящей работе показано, что замещение железа 5% сегнетоактивных катионов молибдена в структуре $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ (LSCF) приводит к значительному увеличению удельной электропроводности. С помощью метода порошковой дифрактометрии определен предел растворимости молибдена в структуре ромбоэдрического перовскита. Отмечено, что перовскит состава $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.75}Mo_{0.05}O_{3-\delta}$ (LSCFM5) обладает необходимыми транспортными характеристиками для применения в качестве катодного материала в среднетемпературных твердооксидных топливных элементах (ТОТЭ).

Ключевые слова: МТ ТОТЭ, катод, перовскиты, кислородный обмен, электронная проводимость **DOI:** 10.31857/S0424857022020128

ВВЕДЕНИЕ

Твердооксидные топливные элементы (ТОТЭ) являются предметом интенсивных научных исследований в последние 40 лет. Их привлекательность связана с высокой эффективностью прямого преобразования химической энергии топлива в электрическую, а также возможностью использования нетрадиционных источников энергии. При этом в качестве топлива могут служить любые углеводороды, а окислителя – кислород из воздуха. Большим преимуществом перед традиционными способами производства электроэнергии является то, что низкотемпературное и электрохимическое сгорание топлива обеспечивает высокую экологичность электрогенерации. Помимо отсутствия требований к использованию высокочистотого топлива, ТОТЭ обладают рядом других преимуществ: они имеют высокий КПД (до 70%), химически устойчивы и способны работать без существенного ухудшения характеристик более 5 лет [1].

Современный анализ показывает, что на рынке существует огромная потребность в ТОТЭ мощностью от 1 Вт до 1 кВт для мобильных и портативных устройств (военные приборы, электромобили, гаджеты и т.д.). Требованиями к таким генераторам электроэнергии являются высокая удельная мощность, прочность и возможность быстрого запуска, что может быть реализовано на микротрубчатых кислородпроводящих мембранах (microtubular в англоязычной литературе). Кроме того, уменьшение размеров ТОТЭ связано с понижением температуры ячейки, а следовательно, необходим переход от высокотемпературных электролитов на основе оксида циркония к среднетемпературным, например, на основе оксида церия. Снижение рабочей температуры приводит к тому, что эффективность ТОТЭ ограничивает катодный материал, на котором возрастает поляризационное сопротивление (из-за падения скорости кислородного обмена между оксидом и газовой фазой – лимитирующей стадией кислородного транспорта).

Нами ранее было показано, что введение высокозарядных допантов Nb/Ta(V) и Mo/W(VI) в структуру нестехиометрических перовскитов $A_{1-x}Sr_xCo_{1-y}Fe_yO_{3-\delta}$ является перспективной стратегией по регулированию функциональных свойств этих материалов [2].

С целью выявления механизма влияния допирования высокозарядными катионами на функциональные свойства оксидов со смешанной кислород-электронной проводимостью (СКЭП) было обращено внимание на то, что СКЭП-оксиды по формальным признакам (симметрийный критерий) являются сегнетоэластиками [3, 4], а

¹ Публикуется по материалам VII Всероссийской конференции с международным участием "Топливные элементы и энергоустановки на их основе", Черноголовка, 2020.

высокозарядные В⁵⁺ (Nb, Ta) и В⁶⁺ (Mo, W) являются сегнетоактивными катионами [5]. Для оксида SrCo_{0.8}Fe_{0.2}O_{2.5} фазовый переход "перовскитбраунмиллерит" является сегнетоэластичным; изменение точечной симметрии сопровождается образованием 90° двойников субмикронных размеров, которые могут быть переориентированы под действием механической нагрузки [6, 7]. Увеличение композиционного беспорядка в результате изменения кислородной стехиометрии или допирования высокозарядными катионами в SrCo_{0.8}Fe_{0.2}O_{2.5 ± x} (SCF) сопровождается явлениями, схожими с явлениями, наблюдаемыми в сегнетоэлектрических релаксорах (с точки зрения их микроструктурных особенностей), а именно образованием наноразмерных браунмиллеритных доменов в низкотемпературной (сегнетоэластичной) фазе.

В работе [2] было проведено сравнение микроструктурных особенностей для родственных классов сегнетоэлектриков и сегнетоэластиков. В отсутствие композиционного беспорядка для сегнетоэлектриков характерно наличие резкого фазового перехода и образование доменов микронного размера в низкотемпературной сегнетоэлектрической фазе. Внесение композиционного беспорядка путем изоморфного замещения в катионной подрешетке оксидов приводит к релаксорному состоянию:

✓ с точки зрения микроструктурных особенностей, оно характеризуется образованием нанодоменной текстуры, которая образуется за счет диффузных фазовых переходов;

✓ с точки зрения их диэлектрических свойств, это приводит к релаксационному характеру температурной зависимости диэлектрической проницаемости, связанному с термической флуктуацией спонтанной поляризации в полярных нанообластях (ПНО).

Дальнейшее увеличение композиционного беспорядка сопровождается образованием стеклоподобного состояния, в котором ПНО уменьшаются до 3-5 нм, при сохранении кажущейся высокой симметрии на макроскопическом уровне [8]. В [6] было предложено для СКЭП-сегнетоэластиков с высокой степенью композиционного беспорядка, в которых фазовый переход размыт, а низкотемпературная фаза имеет наноразмерную текстуру, использовать термин "сегнетоэластический релаксор" для отражения его микроструктурного подобия с сегнетоэлектрическими релаксорами. Очевидно, что схожесть в характере фазовых превращений и микроструктурных особенностей низкотемпературных фаз для сегнетоэлектриков и сегнетоэластиков связана с единой природой сегнетоэлектричества и сегнетоэластичности, основанной на искажении кристаллической решетки.

Для описания СКЭП-сегнетоэластиков в работе [2] было предложено использовать представление о строении сегнетоэлектриков. Как известно, для сегнетоэлектриков, при охлаждении высокотемпературной пара-фазы до так называемой температуры Бернса $T_{\rm B}$ ($T_{\rm B} > T_{\rm C}$, где $T_{\rm C}$ – температура фазового перехода) флуктуационно возникают динамические ПНО (такое состояние принято называть эргодическим состоянием, другими словами - динамическое наноструктурирование), которые при дальнейшем понижении температуры (до температуры замерзания $T_{\rm F}$) растут в размерах и замораживаются в статические домены (статическое наноструктурирование). Наличие композиционного беспорядка приводит к тому, что образование доменов может быть связано с флуктуацией состава. В этом случае динамическое наноструктурирование сопровождается образованием химических нанообластей (ХНО), а размеры статических доменов зависят от степени композиционного беспорядка. Таким образом, статические ПНО/ХНО, которые могут быть зарегистрированы микроскопически, обязаны своим происхождением динамическим ПНО/ХНО, которые существуют при температурах выше $T_{\rm C}$ и регистрируются с помощью методов рентгеновского и нейтронного диффузного рассеяния и с помощью различных оптических методик [7, 8].

В работе [2] для сегнетоэластических фаз $SrCo_{0.8-x}Fe_{0.2}M_xO_{2.5+y}$ (M = Nb, Ta) показано наличие статического наноструктурирования (образования браунмиллеритных доменов), масштаб которого связан со степенью композиционного беспорядка, вносимого частичным замещением кобальта(III) высоковалентными ионами Nb/Ta(V). Это позволяет по аналогии с сегнетоэлектриками предполагать наличие динамического наноструктурирования при температурах выше температуры фазового перехода "перовскит-браунмиллерит", что согласуется с данны-Мессбауэровской ΜИ высокотемпературной спектроскопии.

В рамках данного подхода $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ (далее LSCF) является типичным сегнетоэластическим релаксором, в котором увеличение композиционного беспорядка в кристаллической решетке, вызванного замещением ионов La³⁺ (1.01 Å) ионами Sr²⁺ с большими ионными радиусами (1.40 Å), приводит к высокой кислородной проводимости. На основании ранее развитых представлений можно полагать, что внесение в LSCF дополнительного зарядового беспорядка путем частичного замещения ионов железа(III/IV) на молибден(VI) позволит полавить/размыть фазовый переход в гексагональную модификацию и стабилизировать стеклообразное (кубическое) состояние.

Содержание молибдена, х	$T_{\rm спек}$, °С
0	1300
0.05	1250
0.10	1300
0.15	1350
0.20	1350

Таблица 1. Зависимость температуры спекания образцов от содержания молибдена

Таким образом, настоящая работа направлена на поиск нового катодного материала путем модификации состава $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ (LSCF) высокозарядным сегнетоактивным катионом молибдена с дальнейшей аттестацией общей проводимости полученных составов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследуемые соединения были синтезированы твердофазным методом согласно уравнению реакции:

$$0.3La_{2}(CO_{3})_{3} + 0.4SrCO_{3} + 0.067Co_{3}O_{4} + + (0.4 - x/2)Fe_{2}O_{3} + xMoO_{3} \rightarrow$$
(1)
$$\rightarrow La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8-x}Mo_{x}O_{3-\delta} + 1.3CO_{2}.$$

Стехиометрическую смесь реагентов перемешивали в планетарной шаровой мельнице АГО-2 с ускорением мелющих тел 20 g в течение 30 с с добавлением этилового спирта (1 мл на 1 г смеси) для получения гомогенной смеси. Высушенную смесь прокаливали (кальцинировали) при 900°С в течение 7 ч, затем, предварительно измельчив в ступке, снова гомогенизировали в мельнице.

Рис. 1. Данные рентгенофазового анализа медленно охлажденных на воздухе образцов $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8-x}Mo_xO_{3-\delta}$ (x = 0-0.20).

Полученные порошки спекали в виде дисков ($T = 1250 - 1350^{\circ}$ С, скорости нагрева и охлаждения: $V_{\text{нагрева}} = 250^{\circ}$ /ч, $V_{\text{охлаждения}} = 150^{\circ}$ /ч) со следующими параметрами: диаметр ≈ 15.5 мм, толщина ≈ 3.0 мм. Всего было синтезировано 5 составов: 0, 5, 10, 15 и 20% замещения молибденом по отношению к суммарной концентрации катионов в подрешетке кобальта-железа.

Для изучения фазового состава и структуры синтезированных образцов использовали метод порошковой рентгеновской дифракции. Съемку проводили на дифрактометре Bruker D8 Advance (медное излучение), с использованием позиционно-чувствительного высокоскоростного детектора LynxEye (угол захвата 3°) в геометрии Брегга—Брентано. Измерения проводили на воздухе в диапазоне $2\theta = 10^\circ - 70^\circ$ с шагом 0.05° и временем накопления 5 с.

Общую проводимость измеряли 4-контактным методом Ван Дер Пау на прецизионном измерителе электрохимических характеристик, разработанном в Институте автоматики и электрометрии СО РАН, ИПУ-1. Установка, представляющая собой измеритель и высокотемпературную измерительную ячейку, позволяет проводить изучение транспортных свойств в широком диапазоне температур, а также на воздухе, в атмосфере различных газов и в вакууме.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Условия синтеза и спекания LSCF мембран были выбраны на основе литературных данных [9]. Для модифицированных молибденом соединений условия синтеза подбирали экспериментально. Использованные в настоящей работе температуры спекания материалов La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8 - x}Mo_xO_{3 - δ} (x = 0-0.20) приведены в табл. 1. Анализ полученных эмпирических данных о температурах спекания образцов не дал прямых корреляций. Можно предположить, что небольшие количества молибдена приводят к образованию твердых растворов с большей поверхностной активностью и до определенной поры, по сути, выступают в роли спекающей добавки.

Для определения структурных параметров оксидов в зависимости от содержания молибдена и сравнения с литературными данными использовали метод порошковой дифрактометрии. Согласно полученным данным (рис. 1), структура LSCF описывается пространственной группой R-3c вплоть до 10% замещения. Образцы с содержанием молибдена более 10% имеют примесные фазы двойного перовскита (тип Sr₂MoO₄), положения рефлексов которого помечены звездочками. Данные для чистого LSCF количественно совпадают с литературными данными [9], что свидетельствует о корректной методике синтеза.

Рис. 2. Интенсивность отражения от плоскости (110) для монофазных образцов $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8} - {}_xMo_xO_3 - \delta (x = 0-0.10).$

При детальном рассмотрении трех монофазных составов (рис. 2) был обнаружен интересный эффект, который проявляется в виде нелинейного изменения параметров ячейки состава от количества допанта, что идет вразрез с правилом Вегарда. Подобная аномалия проявляется при анализе объема элементарной ячейки модифицированных составов при небольшой степени замещения [10], однако исчерпывающего объяснения в литературе нет. Полезный эмпирический вывод заключается в том, что транспортные характеристики состава в экстремуме достигают пика и, часто, выше исходного состава [10–12]. В нашем случае экстремум соответствует 5% замещения.

Таким образом, для дальнейшего изучения удельной электропроводности был выбран состав $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.75}Mo_{0.05}O_{3-\delta}$ (LSCFM5). Следует отметить, что при измерении проводимости возникли проблемы по причине того, что чувствительность прибора не позволяла надежно измерить сопротивление образца во всем температурном диапазоне. Только при температурах ниже 120°C и выше 600°C удалось выполнить надежные измерения (рис. 3).

Это связано с тем, что при низких температурах образец обладает некоторым количеством из-

Таблица	2.	Электронная	проводимость
$La_{0.6}Sr_{0.4}Cc$	$P_{0.2}Fe_{0.75}$	Мо _{0.05} О _{3 – б} в срав	внении с литера-
турными да	анными	по LSFC и LSC [14	4—16]

Состав	Электронная проводимость, См/см
LSCF [лит. данные]	330
LSCFM5	1280
LSC[лит. данные]	1600

ЭЛЕКТРОХИМИЯ том 58 № 3 2022

Рис. 3. Общая проводимость образца LSCFM5.

быточного кислорода, который значительно увеличивает проводимость при низких температурах. Тем не менее, полученное значение общей проводимости 1280 См/см при температуре 700°С является равновесным и. следовательно, надежным. Несмотря на то, что мы измеряем удельную электропроводность, в данных соединениях наибольший вклад в эту величину вносит именно электронная проводимость [13]. Сравнение с литературными значениями [14, 15] выявило положительное влияние допирования молибденом (табл. 2). Полученное значение проводимости позволяет поставить модифицированный состав LSCFM5 в один ряд с наиболее проводящими катодными составами, такими как La_{0.6}Sr_{0.4}CoO_{3 - б} (LSC) [16].

ЗАКЛЮЧЕНИЕ

Показано, что частичное замещение железа сегнетоактивным катионом молибдена в структуре $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ приводит к значительному увеличению электронной проводимости. С помощью метода порошковой дифрактометрии определен предел растворимости молибдена в структуре ромбоэдрического перовскита. При небольших количествах допанта зафиксирована аномалия, которая противоречит правилу Вегарда. Полученные данные позволяют рассматривать LSCFM5 в качестве перспективного катодного материала для среднетемпературных ТОТЭ.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке гранта Президента Российской Федерации для государственной поддержки молодых ученых MK-550.2020.3.

120

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Jacobson, A.J., Materials for Solid Oxide Fuel Cells, *Chem. Mater.*, 2009, vol. 22, p. 660.
- Belenkaya, I.V., Matvienko, A.A., and Nemudry, A.P., Phase transitions and microstructure of ferroelastic MIEC oxide SrCo_{0.8}Fe_{0.2}O_{2.5} doped with highly charged Nb/Ta(V) cations, *J. Mater. Chem. A.*, 2015, vol. 3, p. 23240.
- Orlovskaya, N., Browning, N., and Nicholls, A., Ferroelasticity and hysteresis in mixed conducting perovskites, *Acta Mater.*, 2003, vol. 51, p. 5063.
- 4. Lein, H.L., Andersen, Ø.S., Vullum, P.E., Lara-Curzio, E., Holmestad, R., Einarsrud, M.-A., and Grande, T., Mechanical properties of mixed conducting $La_{0.5}Sr_{0.5}Fe_{1-x}Co_xO_{3-\delta}$ ($0 \le x \le 1$) materials, *J. Solid State Electrochem.*, 2006, vol. 10, p. 635.
- Боков, А.А. Закономерности влияния беспорядка в кристаллической структуре на сегнетоэлектрические фазовые переходы. ЖЭТФ. 1997. Т. 111. С. 1817. [Bokov, A.A., Influence of disorder in crystal structure on ferroelectric phase transitions, *JETP*, vol. 84, no. 5, p. 994.]
- Belenkaya, I., Matvienko, A., and Nemudry, A., Ferroelasticity of SrCo_{0.8}Fe_{0.2}O_{3 – δ} perovskite-related oxide with mixed ion-electron conductivity, *J. Appl. Cryst.*, 2015, vol. 48, p. 179.
- Bokov, A.A. and Ye, Z.-G., Recent progress in relaxor reffolectrics with perovskite structure, *J. Mater. Sci.*, 2006, vol. 41, p. 31.
- 8. Kojima, S., Ohta, R., Ariizumi, T., and Zushi, J., Dynamic polar nanoregions and broken local symmetry in

relaxor ferroelectrics probed by inelastic light scattering, J. Phys.: Conf. Series. 2013, vol. 428, p. 12.

- 9. Vibhu, V., Yildiz, S., Vinke, I.C., Eichel, R.-A., Bassat, J.-M., and de Haart, L.G.J., High performance LSC infiltrated LSCF oxygen electrode for high temperature steam electrolysis application, *J. Electrochem. Soc.*, 2019, vol. 166, no. 2, p. F102.
- Haworth, P., Smart, S., Glasscock, J., and Diniz da Costa, J.C., Yttrium doped BSCF membranes for oxygen separation, *Sep. Pur. Tech.*, 2011, vol. 81, p. 88.
- 11. Popov, M.P., Starkov, I.A., Bychkov, S.F., and Nemudry, A.P., Improvement of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ functional properties by partial substitution of cobalt with tungsten, *J. Membr. Sci.*, 2014, vol. 469, p. 88.
- 12. Shubnikova, E.V., Bragina, O.A., and Nemudry, A.P., Mixed conducting molybdenum doped BSCF materials, *J. Industrial and Engineering Chem.*, 2018, vol. 59, p. 242.
- 13. Sun, C., Hui, R., and Roller, J., Cathode materials for solid oxide fuel cells: a review, *J. Solid State Electrochem.*, 2009, vol. 14, no. 7, p. 1125.
- 14. Ullmann, H., Trofimenko, N., Tietz, F., Stöver, D., and Ahmad-Khanlou, A., Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes, *Solid State Ionics*, 2000, vol. 138, p. 79.
- 15. Tai, L.W., Nasrallah, M.M., Anderson, H.U., Sparlin, D.M., and Sehlin, S.R., Structure and electrical properties of $La_{1-x}Sr_xCo_{1-y}Fe_yO_3$. Part 2. The system $La_{1-x}Sr_xCo_{0.2}Fe_{0.8}O_3$, *Solid State Ionics*, 1995, vol. 76, p. 273.
- Teraoka, Y., Zhang, H.M., Okamoto, K., and Yamazoe, N., Mixed ionic-electronic conductivity of La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-δ} perovskite-type oxides, *Mater. Res. Bull.*, 1988, vol. 23, p. 51.