УДК 533.92

УЧЕТ РАЗМЕРНОГО ЭФФЕКТА И ОТСУТСТВИЯ РЕЗКОЙ ГРАНИЦЫ МЕЖДУ ПОВЕРХНОСТЬЮ И ОБЪЕМОМ В ПРОЦЕССАХ ОБРАЗОВАНИЯ ЗАРОДЫШЕЙ ПРИ ЭЛЕКТРОКРИСТАЛЛИЗАЦИИ¹

© 2022 г. Ю. Д. Гамбург*

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский просп., 31, корп. 4, Москва, Россия

**e-mail: gamb@list.ru* Поступила в редакцию 29.11.2021 г. После доработки 16.02.2022 г. Принята к публикации 28.02.2022 г.

Выведена новая формула для вычисления количества атомов в критическом нанокластере, пригодная для случая электрокристаллизации металлов. Формула учитывает размерный фактор Толмена (зависимость удельной поверхностной энергии от размера кластера) и/или наличие градиента поверхностной энергии, то есть влияние подповерхностных атомных слоев. При небольших перенапряжениях формула принимает классический вид.

Ключевые слова: нанокластеры, критические зародыши, электрокристаллизация, размерный фактор **DOI:** 10.31857/S0424857022080047

введение

Удельная поверхностная энергия является одним из важнейших свойств наноматериалов, определяющих многие их характеристики, в частности, при фазовых переходах. Это в полной мере относится и к образованию кристаллических зародышей при электрокристаллизации.

Принято считать [1], что поверхностная энергия металлической частицы E_s пропорциональна площади ее поверхности *S*, и, следовательно, объему *V* в степени 2/3. Поскольку $S = aV^{2/3}$, где $a - \phi$ актор формы, равный для сферы (36π)^{1/3} ≈ 4.836 , то $E_s = \sigma aV^{2/3}$ (σ – удельная поверхностная энергия). Именно исходя из этого положения получена классическая формула для числа атомов в критическом (равновесном) кристаллическом зародыше металла.

Идея о том, что поверхностную энергию малой частицы следует считать пропорциональной не объему в степени 2/3, а числу поверхностных атомов (молекул) в ней, была высказана в [2]. Это можно выразить как $E_s = n_s \psi$, где n_s количество поверхностных атомов, а ψ – энергия связи поверхности кластера с одним новым атомом, т.е. $\psi = 6s_0 (s_0 - площадь поверхности, приходящаяся$ на один атом). Суммарное количество атомов в $кластере обозначим как <math>n_0$. Очевидно, что в случае достаточно крупных частиц, содержащих сотни тысяч атомов ($n_0 > 10^5$), и тот, и другой подходы приводят к одному и тому же результату. Однако при малых n_0 указанная выше степень (для зависимости n_s от n_0) сильно превышает 2/3 [2], достигая 0.8. В этом случае удобнее выполнить прямой подсчет числа поверхностных атомов n_s как функции n_0 .

В дальнейшем речь будет идти только об атомах (условно), так как имеются в виду металлические кластеры.

Как будет показано ниже, подобный подход позволяет довольно просто осуществить учет размерного эффекта Толмена (влияния размера частиц на величину удельной поверхностной энергии). Такой подсчет был впервые выполнен в [3], где установлено, что для наночастиц сферической формы

$$n_{\rm s(sph)} \approx 4.836 n_0^{2/3} - 7.795 n_0^{1/3} + 4\pi/3,$$
 (1)

а для "магических" частиц (полученных добавлением полных плотноупакованных слоев к первичному шару)

- 1-

$$n_{\rm s(mag)} \approx 4.48 \ln_0^{2/3} - 6.694 n_0^{1/3} + 3.333.$$
 (2)

. ...

В общем случае, как показано в [3], эта зависимость имеет вид

$$n_{\rm s} \approx A n_0^{2/3} - (A^2/3) n_0^{1/3} + A^3/27,$$
 (3)

¹ Статья подготовлена для специального выпуска журнала, посвященного памяти выдающегося электрохимика Олега Александровича Петрия (1937–2021).

причем величина *А* зависит от формы кластера и в общем случае близка к 5.

Последнее выражение позволяет более точно подойти к решению ряда задач о конденсации и кристаллизации из газовой или жидкой фаз, в том числе об электрокристаллизации. В [3] на его основе была получена новая формула для числа атомов *n** в критическом зародыше, а именно

$$n^* = 8kN^3, \tag{4}$$

причем в случае сферической наночастицы $k = \pi/6$, $N = [1 - (1 - \Delta \mu/\psi)^{1/2})]^{-1}$, т.е.

$$n^* \approx 4.189 \left[1 - \left(1 - \Delta \mu / \psi \right)^{1/2} \right]^{-3}.$$
 (5)

В случае "магической" наночастицы вид (5) сохраняется, но k = 5/12.

Величина $\Delta\mu$ представляет собой выигрыш энергии при фазовом переходе, и в случае электрокристаллизации $\Delta\mu = ne\eta$, где n – число электронов, переносимое в расчете на один атом, e – заряд электрона, η – перенапряжение.

При достаточно высоких $\Delta \mu$ формула (5) дает величину n^* , существенно меньшую по сравнению с классической формулой, определяющей число атомов в критическом зародыше: для сферы классическая формула имеет вид

$$n^* = (32\pi/3)(\psi/\Delta\mu)^3$$
. (6)

Напротив, при малой величине $\Delta \mu$ (5) совпадает с (6). Действительно, при малом $\Delta \mu$ величина (1– $\Delta \mu/\psi$)^{1/2}) в формуле (5) становится очень близкой к (1 – $\Delta \mu/2\psi$), следовательно, [1 – (1 – – $\Delta \mu/\psi$)^{1/2})] $\approx \Delta \mu/2\psi$, откуда сразу следует (6).

Отметим также, что (5) накладывает ограничение на величину перенапряжения, а именно $\Delta \mu < \psi$.

Наряду с вполне естественным предположением о пропорциональности E_s количеству поверхностных атомов в [4] было высказано мнение о том, что более правильно считать эту величину пропорциональной количеству атомов в последу-

ющем (еще не построенном) слое n_s^+ . Это положение основывается на том, что, например, при построении магических кластеров завершенные слои (после первого единичного атома) содержат последовательно $n_s = 12$, 42, 92 и т.д. атомов, что дает для суммарного числа атомов в кластере $n_0 =$ 13, 55, 147 и т.д. При этом слой, содержащий, например, 42 атома, позволяет присоединить к его поверхности 92 атома (т.е., более двух атомов на каждый поверхностный), а слой, содержащий 92 атома, присоединяет 162 (т.е., уже менее двух атомов на каждый поверхностный). В этом состоит особенность малых кластеров, так как в случае плоской поверхности (т.е., очень крупного кластера) на один поверхностный атом будет прихо-

ЭЛЕКТРОХИМИЯ том 58 № 8 2022

диться чуть более одного последующего (практически один).

Общее выражение для n_s^+ отличается от выражения для n_s (3) только знаком второго члена в правой части:

$$n_{\rm s}^+ \approx A n_0^{2/3} + (A^2/3) n_0^{1/3} + A^3/27.$$
 (7)

Пользуясь этим выражением, получаем для энергии зародыша

$$\Delta G = n_0 \Delta \mu - \left(A n_0^{2/3} + \left(A^2/3\right) n_0^{1/3} + A^3/27\right) \psi, \quad (8)$$

где $\Delta \mu$ — изменение химического потенциала при фазовом переходе в расчете на один атом. Дифференцируя (8) по n_0 и приравнивая производную нулю, получаем величину n^* — число атомов в критическом зародыше. В [4] таким образом для сферической частицы получено общее выражение

$$n^* \approx 4.189 \left[\left(1 + \Delta \mu / \psi \right)^{1/2} - 1 \right]^{-3}.$$
 (9)

При малой величине $\Delta \mu$ (9), как и (4), совпадает с классической формулой (6), так как в этом случае $[(1 + \Delta \mu/\psi)^{1/2} - 1)] \approx \Delta \mu/2\psi$. Но (9), в отличие от (5), ничем не ограничивает величину пересыщения (перенапряжения) и, кроме того, приводит к более высоким величинам *n** по сравнению с (6), в то время как (5) дает меньшие *n**.

Очевидно, что выражения типа (4), (5), (9) пригодны лишь для завершенных оболочек нанокластеров, а для промежуточных чисел n_0 возможны отклонения в сторону увеличения n_s . Близкие по идее численные расчеты для кластеров из малого количества атомов были выполнены Стояновым [5] и привели к имеющим заметные изломы зависимостям *E* от ψ и $\Delta \mu$. Расчеты, проведенные согласно формулам (4) и (9), дают результаты, очень близкие к полученным в [5], хотя и в виде гладкой функции.

РАСЧЕТНАЯ ЧАСТЬ

Как известно, в реальных системах отсутствует резкое разделение между поверхностной и объемной частями, а переход происходит постепенно. Анализ этого привел к появлению ряда новых моделей процесса нуклеации, которые могут быть использованы для анализа электрокристаллизации; сюда относятся теории Кана–Хилларда– Хиллерта [6, 7] и другие. Представляют значительный интерес, например, аналогии с магнитными системами [7].

С другой стороны, ряд исследователей отмечают зависимость удельной поверхностной энергии от размера нанокластера. Это впервые отмечено в

работе Толмена [8] с тех пор широко исследовано. Одна из форм уравнения Толмена имеет вид [9]

$$\Psi = \Psi_0 \left(1 - b / n_0^{1/3} \right), \tag{10}$$

где *b*, судя по литературным данным, меньше единицы.

Далее мы попытаемся, не выходя за рамки классической теории, учесть оба указанные фактора.

Учет плавного перехода от поверхности к объему

Для этого рассмотрим вклад двух внешних слоев атомов на основе уравнения (1), причем внешний слой возьмем с коэффициентом 0.8, а предыдущий с коэффициентом 0.2. Это приводит в случае сферических частиц к выражению

$$\Delta G = n_0 \Delta \mu - \left(4.836 n_0^{2/3} - 10.92 n_0^{1/3} + 9.0\right) \psi, \quad (11)$$

которое после дифференцирования по n_0 и приравнивания производной нулю приводит к следующему квадратному уравнению для $x = (n^*)^{-1/3}$:

$$x^{2} - 0.885x - 0.274 \,\Delta\mu/\psi = 0, \qquad (12)$$

решение которого в пересчете на *n** есть

$$n^* = 11.54N^3$$
, (13)

что по форме совпадает с (4), (5), однако, в отличие от (5),

$$N = \left[1 - (1 - 1.40\Delta\mu/\psi)^{1/2}\right]^{-3},$$
 (14)

а также коэффициент перед N увеличен в 2.76 = $= (1.4)^3$ раза.

Учет изменения удельной поверхностной энергии

Расчет выполняем в соответствии с уравнениями (1) и (8). Их сочетание дает для общей поверхностной энергии кластера

$$\left(4.836n_0^{2/3} - 7.795n_0^{1/3} + 4\pi/3\right)\psi_0\left(1 - b/n_0^{1/3}\right).$$
 (15)

Коэффициент *b* примем равным 0.7, что приблизительно соответствует литературным данным: при такой величине *b* поверхностная энергия кластера из 125 атомов уменьшается на 14% по сравнению с объемной величиной.

Соответствующий расчет, который мы опускаем, приводит к следующему результату для числа атомов в критическом зародыше:

$$n^* = 12.36N^3,$$
 (16)

причем

$$N = \left[1 - (1 - 1.433\Delta\mu/\psi)^{1/2}\right]^{-1}.$$
 (17)

Таким образом, сравнение последних четырех выражений показывает, что как учет толменов-

ского изменения удельной поверхностной энергии, так и учет влияния нижележащих слоев приводят фактически к одному и тому же результату. Можно подобрать b так, что результаты будут полностью идентичны.

Вкратце этот суммарный результат можно выразить следующим образом: в общем случае для критических зародышей при гомогенной нуклеации имеет место формула:

$$n^* \approx (4\pi/3) \lambda^3 \left[1 - (1 - \lambda \Delta \mu/\psi)^{1/2} \right]^{-3},$$
 (18)

причем λ несколько превышает единицу и является функцией *b*. При достаточно малых $\Delta \mu$ (18) совпадает с классической формулой $n^* = (32\pi/3)(\psi/\Delta\mu)^3$, так как в этом случае сомножитель $[1 - (1 - \lambda\Delta\mu/\psi)^{1/2}]^{-3}$ равен $8\psi/\lambda^3\Delta\mu$, и величина λ из формулы выпадает. Для магических кластеров вместо 4π в этой формуле получается ровно 10.

При электрохимической кристаллизации, как известно, $\Delta \mu = ze\eta$, где z – число электронов, переносимых в единичном акте, e – заряд электрона, η – кристаллизационное перенапряжение. Величину ψ можно выразить как $\sigma_0 s_0$, где σ_0 удельная поверхностная энергия, а s_0 – поверхность, приходящаяся на один атом. Тогда (16) записывается как

$$n^* \approx (4\pi/3) \lambda^3 \left[1 - (1 - \lambda z e \eta/\sigma_0 s_0)^{1/2} \right]^{-3}.$$
 (19)

При достаточно высоких перенапряжениях эта формула дает значения в несколько раз меньшие по сравнению с классической. Например, при $\lambda = 1.4$ и $ze\eta/\sigma_0 s_0 = 0.6n^* \approx 53$, в то время как при таком же перенапряжении, но $\lambda = 1n^* \approx 85$, а классическая формула дает $n^* \approx 155$. Другими словами, при определенном перенапряжении формула (19) предсказывает резкое уменьшение размера зародыша, и, следовательно, столь же резкое повышение скорости нуклеации.

При этом, как обычно, необходимо тщательно выделить именно кристаллизационное перенапряжение, а также учитывать взаимодействие с подложкой (гетерогенная нуклеация), в результате которого величина n^* может снизиться еще в несколько раз.

Отметим в заключение, что до сих пор не преодолено противоречие между величинами удельных поверхностных энергий металлов, измеренных традиционными методами, и существенно отличающимися величинами этих энергий, получаемыми из электрохимических измерений в процессах нуклеации и роста электролитических осадков. Данная работа является еще одним шагом на этом пути. Автор подтверждает, что представленные данные не содержат конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Frenkel, Ya.I., *Kinetic theory of liquids*, Oxf. Univ. Press, 1946.
- 2. Жуховицкий, Д.И. Малые кластеры. *Теплофизика* высоких температур. 1994. Т. 32. № 2. С. 261.
- 3. Gamburg, Yu.D., Fraction of surface atoms in nanoparticles and critical nuclei of a new phase, *Russ. J. Phys. Chem.*, 2022, vol. 96, no. 1, p. 96. https://doi.org/10.31857/S0044453722010101
- 4. Gamburg, Yu.D., The magic and spherical metallic nanoclusters and their properties as nuclei at phase

transitions, in particular at electrocrystallization, *Appl. Electrochem. and surface finishing*, 2022 (in press).

- 5. Stoyanov, S., *Current topics in material science*, North-Holland Publ. Co., 1978, vol. 3.
- Vollath, D., Fischer, F.D., and Holec, D., Surface energy of nanoparticles influence of particle size and structure, *Beilstein J. Nanotechnol.*, 2018, vol. 9, p. 2265.
- Баранов, С.А. О возможности применения модели Кана–Хилларда для описания процессов электроосаждения наноструктур. Электрон. обработка материалов. 2017. Т. 53(2). С. 7.
- 8. Tolman, R.C., The effect of droplet size on surface tension, *J. Chem. Phys.*, 1949, vol. 17, p. 333.
- 9. Weissmuller, J., *Thermodynamics of crystalline solids, in: Nanocrystalline metals and oxides*, Kluwer Acad. Publ., 2001, p. 1.